Animating Multiple Instances in BPMN Collaborations:
from Formal Semantics to Tool Support

Flavio Corradini, Chiara Muzi, Barbara Re, Lorenzo Rossi, and Francesco Tiezzi

School of Science and Technology, University of Camerino, Italy

Abstract. The increasing adoption of modelling methods contributes to a better
understanding of the flow of processes, from the internal behaviour of a single or-
ganisation to a wider perspective where several organisations exchange messages.
In this regard, BPMN collaboration is a suitable modelling abstraction. Even if
this is a widely accepted notation, only a limited effort has been expended in for-
malising its semantics, especially for what it concerns the interplay among control
features, data and messages exchange in scenarios requiring multiple instances
of the interacting participants. In this paper, we face the problem of providing a
formal semantics for BPMN collaborations including multiple instances, while
taking into account the data perspective. Beyond defining a novel formalisation,
we also provide a BPMN collaboration animator tool faithfully implementing the
formal semantics. Its visualisation facilities support model designers when deal-
ing with models involving constructs that make them intricate or may be source
of errors. From a technical point of view, the tool is a web-application based on
an extension of the bpmn.io modeller.

1 Introduction

Nowadays, modelling is recognised as an important practice also in supporting the con-
tinuous improvement of IT systems. In particular, IT support for collaborative systems,
where participants can cooperate and share information, demands for a clear under-
standing of interactions and data exchanges. To ensure proper carrying out of such
interactions, the participants should be provided with enough information about the
messages they must or may send in a given context. This is particularly important when
multiple instances of the interacting participants are involved. In this regard, BPMN [1]
capability to model collaboration diagrams results to be an effective way to reflect on
how multiple participants cooperate to reach a shared goal.

Even if widely accepted, a major drawback of BPMN is related to the complexity of
the semi-formal definition of its meta-model and the possible misunderstanding of its
execution semantics defined by means of natural text description, sometimes contain-
ing misleading information [2]. This becomes a more prominent issue as we consider
BPMN supporting tools, such as animators, simulators, enactment tools, whose imple-
mentation of the execution semantics may not be compliant with the standard and be
different from each other, thus undermining models portability and tool effectiveness.

To overcome these issues, several formalisations have been proposed, mainly fo-
cussing on the control flow perspective (e.g. [3,4]). Less attention has been paid to
provide a formal semantics capturing the interplay between control features, messages
exchange, and data. However, these perspectives are strongly related, especially when
a participant interacts with multiple instance participants. In fact, to achieve successful
collaboration interactions it is required to deliver the messages arriving at the receiver
side to the appropriate instances. As messages are used to exchange data between par-
ticipants, the BPMN standard fosters the use of the content of the messages themselves

to correlate them with the corresponding instances. Thus, the data perspective plays
a crucial role when considering multi-instance collaborations. Despite this, no formal
semantics that considers all together these key aspects of BPMN collaboration models
has been yet proposed in the literature.

In this work, we aim at filling this gap by providing an operational semantics of
BPMN collaboration models including multiple instances participants, while taking
into account the data perspective, considering both data objects and data-based decision
gateways. Moreover, we go beyond the mere formalisation, by developing an animator
tool that faithfully implements the proposed formal semantics and provides the correct
visualisation of multi-instance collaborations execution. It is indeed well recognised
that process animators play an important role in enhancing the understanding of busi-
ness processes behaviour [5,6] and that, to this aim, the faithful correspondence with
the semantics is essential [7], although it is not always supported [8]. Visualisation of
model execution via an animator allows to understand the collaboration history, its cur-
rent state (also in terms of data-object values) and possible future execution [9]. This is
particularly useful in case of models not executable in practice, in order to disambiguate
different model interpretations by analysing the token flow [10]. More specifically, our
tool, called MIDA, supports model designers in achieving a priori knowledge of collab-
oration behaviour that can allow them to spot erroneous interactions, which can easily
arise when dealing with multiple instances, and hence to prevent undesired executions.

To sum up, the major contributions of this paper are:

— The definition of a formal semantics for BPMN collaborations considering beyond
control flow multi-instance pools, data objects and data-based decision gateways.
Besides be useful per se, as it provides a precise understanding of the ambiguous
and loose points of the standard, a main benefit of this formalisation is that it paves
the way for the development of tools supporting designers in models analysis.

— The development of the MIDA software tool for animating BPMN collaboration
models, based on the bpmn.io web modeller. MIDA animation features visualise
process instances and their data, resulting helpful both in educational contexts, for
explaining the behaviour of BPMN elements, and in practical modelling activities,
for debugging errors common in multi-instance collaboration models.

The rest of the paper is organised as follows. Sec. 2 provides the motivations un-
derlying our work, and illustrates the key BPMN concepts dealt with in the paper by
means of a multi-instance scenario used as a running example throughout the paper.
Sec. 3 introduces the formal framework at the basis of our approach. Sec. 4 shows how
the formal concepts have been practically realised in our supporting tool MIDA. Sec. 5
compares our work with the related ones. Finally, Sec. 6 concludes the paper.

2 The Interplay between Multiple Instances, Messages and Data
Objects in BPMN Collaborations

To precisely deal with multiple instances in BPMN collaboration models, it is necessary
to take into account the data flow. Indeed, the creation of process instances is triggered
by the arrival of messages, which contain data. Within a process instance, data is stored
in data objects, used to drive the instance execution. Values of data objects can be

YN

Paper

Assign
Paper

o

PC Chiar

.

Receive and
Combine
Reviews

Reviews
Evaluation

Review 5
Managment ?
Review

Request

Review

Prepare

Accept

Reject’

Borderline

—>

\4
@ send
Feedback

A

Letter

Prepare
Rejection
Letter

y
(=]
Send Results .
Decision
5
A\\ Process

A

Completed

Notification

P L R ——
H g

Prepare
Review

Reviewer

1
s v
Review

\
=2 @
‘Submit Feedback
Review Received
Process
1]

o
| Completed

Paper
Receive d

Read
Notification
Notification

Notification
Received Processed

Author

Contact

Fig. 1: Paper reviewing collaboration model.

used to fill the content of outgoing messages, and vice versa the content of incoming
messages can be stored in data objects. We clarify below the interplay between such
concepts. To this aim, we introduce a BPMN collaboration model, used as a running
example throughout the paper, concerning the management of the paper reviewing pro-
cess of a scientific conference (this is a revised version of the model in [11, Sec. 4.7.2]
and [12]). The example concerns the management of a single paper, which is revised by
three reviewers; of course, the management of all papers submitted to the conference
requires to enact the collaboration for each paper.

The collaboration model in Fig. 1 combines the activities of three participants. The
Program Committee (PC) Chair organises the reviewing activities. For the sake of pre-
sentation, we assume that the considered conference has only one chair. A Reviewer
performs reviewing activities having some knowledge in some of the conference topics.
It is modelled as a multi-instance pool. Indeed, each process instance describes the tasks
that each one of the three reviewers has to accomplish to complete her/his assignment.
Finally, the Contact Author is the person who submitted the paper to the conference.

The reviewing process is started by the chair, who assigns (via a multi-instance
sequential activity) the paper to each reviewer. The paper is passed to the PC chair
process by means of a data input. After all reviews are received, and combined in the
Reviews data object, the chair starts their evaluation. According to the value of the
Evaluation data object, the chair prepares the acceptance/rejection letter (stored in the
Letter data object) or, if the paper requires further discussion, the decision is postponed.
After the review letter is prepared, the chair sends back a feedback to each reviewer,
attaches the reviews to the notification letter, and sends the result to the contact author.

In this scenario, data support is crucial to precisely model the message exchanges
between participants, especially because multiple instances of the Reviewer process are
created. In fact, messages coming into this pool might start a new process instance,
or be routed to existing instances already underway. Messages and process instances
must contain enough information to determine, when a message arrives at a pool, if a
new process instance is needed or, if not, which existing instance will handle it. To this
aim, BPMN makes use of the concept of correlation: it is up to each single message
to provide a form of context that permits to associate the message with the appropriate
(possibly new) instance. This is achieved by embedding values, called correlation data,

(a) Paper {title, contact, authors, body} Reviews {title, reviewers, scores, bodies}

Evaluation {title, decision} Letter {title, evaluation} PaperReview {title, score, body}

(b) ReviewRequest {title, body} Notification {title, contact, authors, evaluation, scores, bodies}

Review {reviewerName, title, score, body} Feedback {reviewerName, title, evaluation, }

Fig. 2: Structures of data objects (a) and messages (b) of the paper reviewing example.

in the content of the message itself. Pattern-matching (or possibly a more sophisticated
mechanism) is used to associate a message to a distinct receiving task or event. In
our example, every time the chair sends back a feedback to a reviewer, the message
must contain information (in our case the reviewer name) to be correlated to the correct
process instance of the Reviewer pool.

According to the BPMN standard, data objects do not have any direct effect on
the sequence flow or message flow of processes, since tokens do not flow along data
associations. However, this statement is questionable. Indeed, on the one hand, the in-
formation stored in data objects can be used to drive the execution of process instances,
as they can be referred in the conditional expressions of XOR gateways to take decisions
about which branch should be taken. On the other hand, data objects can be connected
in input to tasks. In particular, the standard states that “the Data Objects as inputs into
the Tasks act as an additional constraint for the performance of those Tasks. The per-
formers still determine when the Tasks will be performed, but they are now constrained
in that they cannot start the Task without the appropriate input”([1], p. 183). In both
cases, a data object does not directly influence the flow of the process instance, in the
sense that a token cannot mark a data object, but it has an implicit, indirect effect on
the execution, since it can affect the decision taken by a XOR gateway or act as a guard
condition on a task. For instance, in our running example, according to the value of the
Evaluation data object, the conditional expression What is the decision? is evaluated
and a branch of the XOR split gateway is chosen. As another example, the task Send
Results can be executed only if the Letfer data object is in the required state, i.e. an
acceptance or rejection letter is stored in the object.

Concerning the content of data objects, the standard left underspecified its struc-
ture, in order to keep the notation independent from the kind of data structure required
from time to time. We consider here a generic record structure, assuming that the data
object is just a list of fields, characterised by a name and the corresponding value. More
complex XML-like structures, which are out of the scope of this work, can be anyway
rendered resorting to nesting. In details, the structure in terms of fields of the data ob-
jects of our running example is specified in Fig. 2(a). Messages are structured as well;
the structure of the messages specified in our example is shown in Fig. 2(b).

3 A Formal Account of Multi-Instance Collaborations

In this section we formalise the semantics of BPMN collaborations supporting multiple
instances. More specifically, we focus on those BPMN elements, informally presented
in the previous section, that are strictly needed to deal with multiple instantiation of
collaborations, namely multi-instance pools, message exchange events and tasks, and
data objects; additionally, in order to define meaningful collaborations, we also consider
some core BPMN elements, whose preliminary formalisation has been given in [13,14].

C = pool(p,P) | miPool(p,P) | Ci|C2

P ::= start(ecnp, €,) | startRev(m:t,e,) | end(e;) | endSnd(e;, m:exp) | terminate(e;)
andSplit(e;, Eo) | xorSplit(e;, G) | andJoin(E;, e,) | xorJoin(E;,e,)
eventBased(e;, (M1 :t1,€01), ..., (Mp:th, eon))

task(e;, exp, A, e,) | taskRcv(e;,exp, A, m:t,e,) | taskSnd(e;, exp, A, m:exp,e,)
interRcv(e;, m:t,e,) | interSnd(e;, m:exp,e,) | Pi| P2

Au=¢c |dfu=exp, A

Fig. 3: BNF syntax of BPMN collaboration structures.

To simplify the formal treatment of collaborations semantics, we resort to a textual
representation of BPMN models, which is more manageable for writing operational
rules than the graphical notation. It is worth noticing that we do not propose an alterna-
tive modelling notation, but we just define a BNF syntax of BPMN model structures.

Textual notation of BPMN Collaborations.

We report in Fig. 3 the BNF syntax defining the textual notation of BPMN collaboration
models. This syntax only describes the structure of models, without taking into account
all those aspects that come into play to describe the model semantics, such as token
distribution and sent messages. In the proposed grammar, the non-terminal symbols C,
P and A represent Collaboration Structures, Process Structures and Data Assignments,
respectively. The first two syntactic categories directly refer to the corresponding no-
tions in BPMN, while the latter refers to list of assignments used to specify updating
of data objects. The terminal symbols, denoted by the sans serif font, are the typical
elements of a BPMN model, i.e. pools, events, tasks and gateways.

We do not provide a direct syntactic representation of Data Objects. Indeed, the
evolution of their state during the model execution is a semantic concern (which will
be described later in this section). Thus, syntactically, only the connections between
data objects and the other elements are relevant. They are rendered by references to
data objects within expressions, used to check when a task is ready to start (in this case,
graphically, the task has a connection incoming from the data object) and to update
the values stored in a data object (in this case, graphically, the task has a connection
outgoing to the data object). A data object is structured as a list of fields, and the field f
of the data object named d is accessed via the usual notation d.f.

Intuitively, a BPMN collaboration model is rendered in our syntax as a collection
of (single-instance and multi-instance) pools, each one containing a process. Formally,
a collaboration C' is a composition, by means of the | operator, of pools either of the
form pool(p, P) (for single-instance pools) or miPool(p, P) (for multi-instance pools),
where: p is the name that uniquely identifies the pool, and P is the enclosed process.

At process level, we use e € E to uniquely denote a sequence edge, while E € 2F
a set of edges. For the convenience of the reader, we refer with e; the edge incoming
in an element and with e, the edge outgoing from an element. Moreover, we refer with
eenp to the (spurious) edge denoting the enabled status of a start event.

In the data-based setting we consider, messages may carry values. Therefore, a send-
ing action specifies a list of expressions whose evaluation will return tuple of values to
be sent, while a receiving action specifies a template to select matching messages and
possibly assign values to data object fields. Formally, a message is a pair m : v, where
m € M is the (unique) message name (i.e., the label of the message edge), and v is a tu-

Overall paper reviewing collaboration scenario:
pool(ppc, Ppe) | miPool(pr, ;) | pool(pea; Pea)

Reviewer process :
P, = startRcv(ReviewRequest : 5, e15) | task(es, true, As, e16) |
taskSnd(eig, exp;, €, Review : expg, e17) |
taskRcv(e17, true, €, Feedback:t3, e15) |end(e1s)

Templates, expressions, assignments :
to = (?ReviewRequest.title, ?ReviewRequest.body)
Ag = PaperReview.title := ReviewRequest.title,
PaperReview.score := assignscore(ReviewRequest.body),
PaperReview.body := writeReview(ReviewRequest.body)
exp, = PaperReview.score # null and PaperReview.body # null
expg = (myName(), PaperReview.title, PaperReview.score, PaperReview.body)
t3 = {myName(), ReviewRequest.title, ?Feedback.evaluation)

Fig. 4: Textual representation of the running example (an excerpt).

ple of values, with v € V and ~ denoting tuples (i.e., v stands for {vy, ..., v,)). Sending
actions have as argument a pair of the form m : exp; the precise syntax of expressions
is deliberately not specified, it is just assumed that they contain, at least, values v and
data object fields d.f. We consider only executable expressions, that is expressions that
can be evaluated. Receiving actions have as argument a pair of the form m :t, where t
denotes a template, that is a sequence of expressions and formal fields used as patterns
to select messages received by the pool. Formal fields are data object field identified by
the ?-tag (e.g., 7d.f) and are used to bind fields to values. In order to store the received
values and allow their reuse, we associate to each message in the receiving process a
data object, whose name coincides with the message name.

The XOR split gateway specifies guard conditions in its outgoing edges, used to
decide which edge to activate according to the values of data objects. This is formally
rendered as a function G : E — EXP mapping edges to conditional expressions, where
[EXP is the set of expressions which includes the distinguished expression default used
to refer to the default sequence edge outgoing from the gateway (it is assigned to at most
one edge). When convenient, we will deal with function G as a set of pairs (e, exp).

Data objects are associated to a task by means of a conditional expressions, which is
a guard enabling the task execution, and a list of assignments A, each of which assigns
the value of an expression to a data field. When there is no data object in input to a task,
the conditional expression is simply true, while if there is no data object in output to a
task the list of assignments is empty (¢).

The correspondence between the syntax used here to represent multi-instance col-
laborations and the graphical notation of BPMN is exemplified by means of (an excerpt
of) our running example in Fig. 4, while the detailed one-to-one correspondence is re-
ported in the companion technical report [15]. Notably, in the textual representation
there is some information (messages content, receiving templates, data object assign-
ments, etc.) that is not reported in the graphical notation. In fact, according to the BPMN
standard these technical details are not part of the graphical representation, but they are
specified within the low-level XML representation. Anyway this information is explic-
itly reported in our textual representation as it is needed to properly define the execution
semantics of collaboration models. Moreover, in the textual notation, to support a com-

positional approach, each sequence (resp. message) edge in the graphical notation is
split in two parts: the part outgoing from the source element and the part incoming into
the target element, the two parts correlated by the unique edge name. Notably, even if
our syntax would allow to write collaborations that cannot be expressed in BPMN, we
only consider those terms that are derived from BPMN models.

Semantics of BPMN Collaborations.

The syntax presented so far represents the mere structure of processes and collabora-
tions. To describe their semantics we need to enrich the structural information with a
notion of execution state, defined by the state of each process instance (given by the
marking of sequence edges and the values of data object fields) and the store of the
exchanged messages. We call process configurations and collaboration configurations
these stateful descriptions.

Formally, a process configuration has the form (P, o, «), where: P is a process
structure; o : [E — N is a sequence edge state function specifying, for each sequence
edge, the current number of tokens marking it (N is the set of natural numbers); and
a : F — Vis the data state function assigning values (possibly null) to data object
fields (FF is the set of data fields and V the set of values). We denoted by o (resp. ay)
the edge (resp. data) state where all edges are unmarked (resp. all fields are set to null);
formally, og(e) = 0 Ve € E and ap(d.f) = null Vd.f € F. The state obtained by
updating in the state o the number of tokens of the edge e to n, written as o - [e > n], is
defined as follows: (o - [e — n])(¢’) returns n if & = e, otherwise it returns o (e’). The
update of data state « is similarly defined. Moreover, to simplify the definition of the
operational rules, we introduce some auxiliary functions to update states. Specifically,
function inc : S, x E — S, (resp. dec : S, x E — §,), where S, is the set of
edge states, allows updating a state by incrementing (resp. decrementing) by one the
number of tokens marking an edge in the state. Formally, they are defined as follows:
inc(o,e) = o-[e — o(e)+1] and dec(c,e) = o-[e — o(e)—1]. These functions extend
in a natural ways to sets F of edges. We also use the function reset : S, x E — S, that
allows updating an edge state by setting to zero the number of tokens marking an edge
in the state; formally, reset(o,e) = o - [e — 0]. We also use the evaluation function
[exp]lo to evaluate an expression exp over state cv: it takes an expression and a state, and
returns the corresponding value. This function is not explicitly defined, since the exact
syntax of expressions is deliberately not specified; we only assume that [[default]], =
false for any «. The evaluation function extends to tuples component-wise. Finally, we
also use the function upd : S, x A" — S, to allow updating of data object values, where
S, is the set of data states and A is the set of assignments. Formally, it is inductively
defined as follows: upd(a, €) = «; upd(a,d.f := exp) = « - [d.f — [exp]l.]; and
upd(cv, Ay, Az) = upd(upd(a, Ay), Az).

A collaboration configuration has the form (C,,§), where: C is a collaboration
structure; ¢ : P — 250 %S is the a instance state function mapping each pool name (P is
the set of pool names) to a multiset of instance states (ranged over by I and containing
pairs of the form (o,)); and § : Ml — 2V is a message state function specifying, for
each message name m, a multiset of value tuples representing the messages received
along the message edge labelled by m in the BPMN collaboration model. Update for
4 is defined in a way similar to ¢’s definition, enabling the definition of the following

auxiliary functions. Function add : S5 x Ml x V* — S; (resp. rm : Sg x M x V" —
Ss), where Ss is the set of message states, allows updating a message state by adding
(resp. removing) a value tuple for a given message name in the state. Formally, they are
defined as follows: add(d, m,v) = § - [m — 6(m) + {vV}] and rm(d,m,V) = ¢ - [m —
d(m) — {V}], where + and — are the union and substraction operations on multisets.
Finally, the instance state function can be updated in two ways: by adding a new created
instance or by modifying an existing one. Formally, we have newl (¢, p, o,) = ¢-[p —
!(p) + {(o, a)}] and updI (1, p, 1) = ¢ - [p — I].

Let us go back to our running example. The scenario in its initial state is rendered
as the following collaboration configuration:

{(pool(ppe, Ppe) | miPool(p;., P;) | pool(pea; Pea)), ¢, 0)
where: t(ppe) = {{o, a)} with o = 0¢-[ecnp — 1] and o = oy -[Paper title, . .., Paper
.body — title, . .. text]; and ¢(p,) = t(pea) = .

The operational semantics is defined by means of a labelled transition system (LTS),
whose definition relies on an auxiliary LTS on the behaviour of process. In our case,
this is a triple (P, £, —) where: P, ranged over by (P, 0, «), is a set of process con-
figurations; £, ranged over by /, is a set of labels (of transitions that process config-
urations can perform); and -< P x L x P is a transition relation. We will write
(P,o,0) EN (P,d’,a’) to indicate that ((P, o, a, £, {P,0’,a’)) e—. Since process ex-
ecution only affects the current states, and not the process structure, for the sake of read-
ability we omit the structure from the target configuration of the transition. Similarly,
to further improve readability, we also omit v when it is not affected by the transition.
Thus, for example, a transition (P, o, o) ER (P, d’,) can be written as (P, o,) BNy

The labels ¢ used by the process transition relation have the following meaning.
Label 7 denotes an action internal to the process, while !m : v and ?m : et, A denote
sending and receiving actions, respectively. Notation et denotes an evaluated template,
that is a sequence of values and formal fields. Notably, the receiving label carries in-
formation about the data assignments A to be executed, at collaboration level, after the
message m is actually received. Label new m : et denotes taking place of a receiving
action that instantiates a new process instance (i.e., it corresponds to the occurrence of
a start message event in a multi-instance pool). The meaning of internal actions is as
follows: e denotes an internal computation concerning the movement of tokens, while
kull denotes taking place of the termination event.

An excerpt of the operational rules defining the transition relation of the processes
semantics is given in Fig. 5 (we present here the rules for the BPMN elements used in
our running example; we refer to [15] for a complete account). Rule P-Start starts the
execution of a (single-instance) process when it has been activated (i.e., the enabling
edge e.,p is marked). The effect of the rule is to increment the number of tokens in the
edge outgoing from the start event and to reset the marking of the enabling edge. Rule
P-End instead is enabled when there is at least one token in the incoming edge of the
end event, which is then simply consumed. Rule P-StartRcv starts the execution of a
process by producing a label denoting the creation of a new instance and containing
the information for consuming a received message at the collaboration layer (see rule
C-CreateMi in Fig. 6). Rule P-XorSplit; is applied when a token is available in the
incoming edge of a XOR split gateway and a conditional expression of one of its out-

{(start(eenp, €0), 0, @) — inc(reset(o, eend), €0) 0 (€enp) > 0 (P-Start)

{end(e;),0,a) = dec(o,e;) o(e;) >0 (P-End)

newm:[[t]a
-

{startRev(m:t, e,), o, @) inc(o, e,) (P-StartRcv)

U(ei) > 0,

[expllam true (F-XorSplits)

(xorSplit(e;, {(e,exp)} U G), o, a) = inc(dec(o, &;), €)
U(ei) >0,
(xorSplit(e;, {(e, default)} U G), 0,) = inc(dec(o, e;),e) V(ej,exp;) € G . (P-XorSplits)
[exp;]la= false

{xorJoin({e} U E;,e,),0,a) = inc(dec(o,e),e,) o(e) >0 (P-XorJoin)

(task(e;,exp, A, &,),0,a) = o(e;) > 0,

(ine(dec(o,e:). o), upd(a, A)) [expla=true T4

{taskRcv(e;, exp, A, m:t,e,), o,) Imelted, g(e;) > 0,

inc(dec(o, e;),e,) [[explla=true (P-Taskfico)

(taskSnd(e;, exp’, A, m:exp, e,), 0,) tmleRle, g(e;) >0, (P-TaskSnd)
(inc(dec(o,e;), o), upd(a, A)> [[explla= true
(P1,0,0) 4)

i £ # kill (P-Int;)
<P1 ‘ P27U7 Oé> - <U/70/>

Fig.5: BPMN process semantics.

going edges is evaluated to true; the rule decrements the token in the incoming edge
and increments the token in the selected outgoing edge. Notably, if more edges have
their guards satisfied, one of them is non-deterministically chosen. Rule P-XorSplits
is applied when all guard expressions are evaluated to false; in this case the default
edge is marked. Rule P-XorJoin is activated every time there is a token in one of the
incoming edges, which is then moved to the outgoing edge. Rule P-Task deals with
atomic tasks, possibly equipped with data objects. It is activated only when there is a
token in the incoming edge, which is then moved to the outgoing edge, and the guard
expression is satisfied. The rule also updates the values of the data objects connected
in output to the task. Rule P-TuskRcv is similar, but it produces a label corresponding
to the consumption of a message. In this case, however, the data updates are not exe-
cuted, because they must be done only after the message is actually received; therefore,
the assignment are passed by means of the label to the collaboration layer (see rule
C-ReceiveMi in Fig. 6). Rule P-TaskSnd sends a message, updates the data objected
and moves the incoming token to the outgoing edge. The produced send label is used to
deliver the message at the collaboration layer (see rule C-DeliverMi in Fig. 6). Finally,
rule P-Int; deals with interleaving in a standard way for process elements.

Now, the labelled transition relation on collaboration configurations formalises the
message exchange and the data update according to the process evolution. In the case
of collaborations, the LTS is a triple <C, L., —.) where: C, ranged over by {C, ¢,),
is a set of collaboration configurations; L., ranged over by [, is a set of labels; and
—.C C x L. x C is a transition relation. We will apply the same readability simplifi-

(P00, a0) 2™ () oy ved(m) match(ét,v) = A

(miPool(p, P), 1,8 "% (newl (1, p, 0", upd(a’, A)),rm(d, m, 7))

(C-CrreateMs)

L(p) = {<Ua a>} +1 <P7 g, a> - <J/7 O/>
{miPool(p, P), ¢, 8) = {updl (v, p, {{o’, a')} + 1), 8)
L(p) = {<07 CE>} +1 <P7 g, O‘> <0/7 a/>
Ve d(m) match(et,v) = A’ (C-ReceiveMsi)
{miPool(p, P),¢,d) SLEN CupdI (1, p, {0’y upd(a, (A, A))D} + I), rm(8,m,¥)>

(C-InternalMsi)

?m:et, A

Up) = {loyadt + 1 (P,o,0) 2% (o' a)
(miPool(p, P), 1,8 “=% CupdI (1, p, {(o’, &/>} + I), add(s, m, %))

(C-DeliverMi)

<Cl7 L, 6> L <L/, 6/>
(C1 | Cay1,0) 5 (/, 8
Fig. 6: BPMN collaboration semantics.

(C—Int1)

cations as we have done for process configuration transitions. The labels [used by the
collaboration transition relation are as follows: 7 is an internal action, !m: Vv a sending
action, and ?m : v and new m : v receiving actions. Notably, at collaboration level the
receiving labels just keep track of the received message. To define the collaboration
semantics, an additional auxiliary function is needed: match(et, V) is a partial function
performing pattern-matching on structured data, thus determining if an evaluated tem-
plate et matches a tuple of values V. A successful matching returns a list of assignments
A, updating the formal fields in the template; otherwise, the function is undefined.

The relevant operational rules defining the transition relation of the collaboration
semantics are given in Fig. 6 (the full account is in [15]). Rule C-CreateMi deals with
instance creation in the multi-instance case. An instance is created if there is a matching
message; as result, the assignments for the received data are performed, and the mes-
sage is consumed. The created instance is added to the multiset of existing instances
of the pool. The (omitted) single-instance case is similar, except that the instance is
created only if no instance exists for the considered pool (¢(p) =). The next three
rules allow a single pool to evolve according to the evolution of one of its process in-
stances (P, o, «). In particular, if the process instance performs an internal action (rule
C-InternalMi) or a receiving/delivery action (rules C-ReceiveMi or C-DeliverMi), the
pool performs the corresponding action at collaboration layer. As for instance creation,
rule C-ReceiveMi can be applied only if there is at least one matching message. Re-
call indeed that at process level, the receiving labels just indicate the willingness of a
process instance to consume a received message, regardless the actual presence of mes-
sages. Notably, the delivering of messages is based on the correlation mechanism: the
correlation data are identified by the template fields that are not formal (i.e., those fields
requiring specific matching values). Moreover, when a process performs a sending ac-
tion, the message state function is updated in order to deliver the sent message to the
receiving organization. Finally, rule C-Int; permits interleaving execution.

10

On non-atomic tasks. So far, we have only considered tasks with atomic execution.
Indeed, for a given task, the evaluation of its enabling guard, the execution of its ac-
tivities, the possible sending/receiving of a message, and the data object assignments,
are performed atomically. This semantics fits well in many scenarios, e.g. when a task
acts on a data object representing a paper document managed by a human actor, which
cannot be accessed concurrently by other actors involved in the collaboration. However,
there are also some situations where non-atomic access is more suitable, e.g. when data
objects represent shared digital documents.

Actually, the BPMN standard is intentionally loose on this point, in order to allow
the use of the modelling language in different contexts of use. To more effectively sup-
port designers, both modality of access to data objects are included in our formalisation.
This enables the identification of concurrency issues in those situations where they can
arise and, at same time, it allows to not take into account such issues when in the reality
they cannot occur. We discuss below how the atomic execution constraint can be re-
laxed (technical details are in [15]). Form the syntactic point of view, we have to extend
the syntax of processes with specific constructs representing the tasks with non-atomic
access to data objects. In practice, we can think of these as BPMN task elements with an
appropriate attribute set to specify that their execution is non-atomic. Now, to achieve a
non-atomic semantics for these elements we have only to include in process and collab-
oration configurations information about the status of tasks: idle, running or exchanged
message. Intuitively, the rule for non-communicating tasks is split in two rules: one
dealing with task activation and another one dealing with task completion. Notice that
the data update assignments are performed at the completion time. Similarly, the rules
for receiving/sending tasks are split in three rules: one for task activation, one for receiv-
ing/sending the message while the task is running, and one for task completion (and,
hence, data updating). No change are required at the collaboration layer, apart for the
addition in collaboration configurations of a state function mapping task names to their
execution status, which anyway is not actively involved in collaboration transitions.

4 Support tool for animation

In this section, we present our BPMN animator tool MIDA (Multiple Instances and
Data Animator) and provide details about its implementation and use. MIDA is based
on the Camunda bpmn.io web modeller. More precisely, we have integrated our formal
framework into the bpmn.io token simulation plug-in'. We have enriched this plug-in
with a wider set of BPMN elements and redefined their semantics. Moreover, we have
implemented data objects, data-driven gateways, pattern-matching for messages and
correlation. Hence, we have produced a complete tool for animating BPMN models in
collaborative, multi-instance and data-based contexts.

MIDA inherits its architecture from bpmn.io. In fact, MIDA is a web application
written in JavaScript that embeds BPMN models into personal browsers without using
any server backend. The graphical interface of MIDA, shown in Fig. 7, presents to
users a modelling environment. Here, users can create BPMN models using all the
facilities of the Camunda modeller. When the animation mode is activated, by clicking
the corresponding button, one or more instances of the desired processes can be fired. To

"https://github.com/bpmn-io/bpmn-js—token—-simulation

11

https://github.com/bpmn-io/bpmn-js-token-simulation

3 4 Sceglifile | Nessun file selezionato X Saved Property Panel Data Panel &

Value

Q

Paper_auihors
Paper_body

undefined
(_tile A New Paper

PaperReview_score borderine,aceepted borderline
PaperReview_body Review of 2,Review of 3, Review of 4

& Click to refresh data

. o
Fig.7: MIDA web interface.

do this, users have to press the "play" button depicted over each fireable start event. This

creates a new token labelled with a number uniquely representing a process instance.

Tokens will cross the model following the rules induced by our formal semantics, thus

also considering data values. The execution of a process instance terminates once all its

tokens cannot move forward.

MIDA animation features may be an effective support to business process de-
signers in their modelling activities, especially when multi-instance collaborations
are involved. Indeed, in this context, the choice of correlation data is an error-prone
task that is a burden on the shoulders of the designers. For example, let us con-
sider the Reviewer participant in our running scenario; if the template within the
task for receiving the feedback would not properly specify the correlation data (e.g.,
t3 = (?Feedback.reviewerName, ?Feedback.title, ?Feedback.evaluation)), the feed-
back messages could not be properly delivered. Indeed, each Reviewer instance would
be able to match any feedback message, regardless the reviewer name specified in the
message. Thus, the feedback messages could be mixed up. Fortunately, MIDA allows to
detect, and hence solve, this correlation issue. Similarly, MIDA helps designers on de-
tecting issues concerning the exchange of messages. In fact, malformed or unexpected
messages may introduce deadlocks in the execution flow, which can be easily identified
by looking for blocked tokens in the animation. For instance, in the running example a
feedback message without the evaluation field would be never consumed by a receiving
task of the Reviewer instances. Finally, since our animation is based on the current val-
ues of data objects, also issues due to bad data handling can be detected using MIDA.
For instance, let us suppose that the Discuss task in the PC Chair pool would not be in a
loop, but it would have its outgoing edge directly connected to the XOR join in its right
hand side. In this way, after the execution of the Discuss task, the task Send Feedback
would be performed, whereupon the task Send Results would be activated. However, the
task guard would not be satisfied, because the Letter data object would not be properly
instantiated. This would cause a deadlock, which can be find out by using MIDA.

The MIDA tool, as well as its source code and examples, is freely available from
http://pros.unicam.it/mida/.

5 Related Work

In the following we refer to the most relevant attempts in formalising multiple instances
and data, considering first the formalisations of BPMN collaboration and choreography

12

http://pros.unicam.it/mida/

diagrams and then other modelling language. Afterwards, a discussion on already avail-
able animation tools concludes the section.

On Formalising Multiple Instances and Data. Considering multiple instances and data
in BPMN collaborations, relevant works are [16,17,18,19]. Meyer et al. in [16] discuss
on the role of data in BPMN proposing a set of extensions. In particular, the authors fo-
cus on process models where data objects are shared entities and the correlation mech-
anism is used to distinguish and reference data object instances. Use of data object
local to instances, exchange of messages between (multi-instantiated) participants, and
delivery of messages based on the correlation mechanism are instead the key aspects
of collaborations that we focus on. In [17], the authors describe a model-driven ap-
proach for BPMN to include the data perspective, enabling the complete automation of
data exchange between participants. The challenges they face are data heterogeneity,
correlation and 1-to-n communication. Differently from us, the authors do not aim at
providing a formal semantics for BPMN multiple instances. Moreover, even if they use
data objects in the correlation mechanism, they do not formalise how data can be used
in case of data-based decision gateways. Another interesting work is described in [18],
where Kheldoun et al. propose a formal semantics of BPMN covering features such as
message-exchange, cancellation, multiple instantiation of sub-processes and exception
handling, while taking into account the data flow aspect. However, they do not consider
multiple instance pools and do not solve the correlation issue. Data objects seman-
tics and their use to formalise decision gateways is instead proposed by El-Saber and
Boronat in [19]. Differently from us, the authors provide a context-free grammar to for-
mally define guard expressions, while we leave the expression language underspecified,
as done in the BPMN standard. The formal treatment presented in the paper does not
include collaborations and, hence, exchange of messages and multiple instances. More-
over, considering other modelling languages, YAWL [20] and high-level Petri nets [21]
provide direct support for the multiple instance patterns. However, they lack support for
handling data. In both cases, process instances are characterised by their identity, rather
than by the values of their data, which is however necessary to correlate messages to
running instances according to the generic content of the messages.

Regarding choreographies, relevant works are [22,23,24]. Lopez et al. [22] propose
an automatic detection of the synchronisation points in choreographed models, derived
from exchanged objects. They study the choreography problem derived from the syn-
chronisation of multiple instances necessary for the management of data dependencies.
Thus, they do not aim at providing a formal characterisation of BPMN multiple in-
stances and data. Moreover, asynchronous communication feature is not supported by
the considered choreography diagrams. Knuplesch et al. [23] introduces a data-aware
collaboration approach including formal correctness criteria. However, they define the
data perspective using data-aware interaction nets, a proprietary notation, instead of the
wider accepted BPMN. The flow of message exchanges is specified without having any
knowledge about the partner processes, thus data exchanged via messages cannot be
used within processes by decision gateways. Finally, their framework does not to sup-
port asynchronous message exchange, which is instead common in distributed systems
in reality. Improving data-awareness and data-related capabilities for the modelling and
execution of choreographies is the goal of Hahn at al. [24]. They propose a way to

13

unify the data flow across participants with the data flow inside a participant. Anyway,
the scope of data objects is global to the overall choreography, while we consider data
object scopes local to participant instances, as prescribed by the BPMN standard. Apart
from the specific differences mentioned above, our work differs from them for the focus
on collaboration diagrams, rather than on choreographies. This allows us to focalise on
multiple process instantiation and messages correlation.

Finally, concerning the correlation mechanism, the BPMN standard and, hence, our
work have been mainly inspired by works in the area of service-oriented computing (see
the relationship between BPMN and WS-BPEL [25] in [1, Sec. 14.1.2]). In fact, when
a service engages in multiple interactions, it is generally required to create an instance
to concurrently serve each request, and correlate subsequent incoming messages to the
created instances. Among the others, the COWS [26] formalism captures the basic as-
pects of SOC systems, and in particular service instantiation and message correlation
a la WS-BPEL. From the formal point of view, correlation is realised by means of a
pattern-matching function similar to that used in our formal semantics.

Business Process Animation in the Literature. Relevant contributions are proposed
by Allweyer and Schweitzer [10], and by Signavio and Visual Paradigm. However,
differently from us, in their implementations they do not fully support the interplay be-
tween multiple instances, messages and data. Allweyer and Schweitzer propose a tool
which can be used for animating BPMN models. This work covers several BPMN ele-
ments and introduces process instances. Anyway, this tool animates only processes, as
it discards message exchanges, both semantically and graphically. In addition, gateway
decisions are performed manually during the animation by users, instead of depending
on data. Worth to notice is also the step-by-step simulator of the Signavio modeller.
This animator allows users to step through the process element-by-element and to fo-
cus completely on the process flow. However, it discards important elements, such as
message flows and data objects. Hence, Signavio animates only non-collaborative pro-
cesses, without data-driven decisions, which instead are key features of our approach.
Visual Paradigm provides an animator that supports also collaboration diagrams. This
tool allows users to visualise the flow of messages and implements the semantics of
receive tasks and events, but it does not animate data evolution and multiple instances.

6 Concluding Remarks
This paper aims at answering the following research questions:

RQ1: What is the precise semantics of multi-instance BPMN collaborations?
RQ2: Can supporting tools assist designers to spot erroneous behaviours related to
multiple instantiation and data in BPMN collaborations?

The answer to RQ1 is mainly given in Sec. 3, where we provide a novel operational
semantics clarifying the interplay between control features, data, message exchanges
and multiple instances. Indeed, in the literature, there is a lack of a formal semantics
dealing with all these features at the same time, which is however critical considering
the wide adoption of the BPMN specification in distributed scenarios where the same
role can be activated multiple times. The answer to RQ2 is instead given in Sec. 4, where
we propose MIDA, an animator tool, based on our formal semantics, that provides
the visualisation of a collaboration behaviour by taking into account the data-based

14

correlation of messages to process instances. We have shown, on our running example,
that MIDA supports the identification of erroneous interactions, due e.g. to incorrect
data handling or wrong message correlation.

We conclude the paper by discussing the assumptions and limitations of our ap-
proach, and touching upon directions for future work.

Discussion. Our formal semantics focusses on the communication mechanisms of col-
laborative systems, where multiple participants cooperate and share information. Thus,
we have intentionally left out those features of BPMN whose formal treatment is orthog-
onal to the addressed problem, such as timed events and error handling. On the other
hand, to keep our formalisation more manageable, multi-instance tasks, sub-processes
and data stores are left out too, despite they can be relevant for multi-instance collabo-
rations. We discuss below what would be the impact of their addition to our work.

Let us first consider multi-instance tasks. The sequential instances case, as shown in
the formalisation of our running example, can be simply dealt with as a macro; indeed,
it corresponds to a task enclosed within a ‘for’ loop. The parallel case, instead, is more
tricky. It is a common practice to consider it as a macro as well, which can be replaced
by tasks between AND split and join gateways [27,20], assuming to know at design
time the number of instances to be generated. However, this replacement is no longer
admissible when this kind of element is used within multi-instance pools [15], thus
requiring a direct definition of the formal semantics of multi-instance parallel tasks.

Similar reasoning can be done for sub-processes, which again are not mere macros.
In fact, in general, simply flattening a process by replacing its sub-process elements by
their expanded processes results in a model with different behaviour. This because a
sub-process, for example, delimits the scope of the enclosed data objects and confines
the effect of termination events. Therefore, it would be necessary to explicitly deal with
the resulting multi-layer perspective, which adds complexity to the formal treatment.
The formalisation would become even more complex if we consider multi-instance sub-
processes, which e.g. would require an extension of the correlation mechanism.

Finally, we do not consider BPMN data stores, used to memorise information that
will persist beyond process instance completion. Providing a formalisation for data
stores would required to extend collaboration configurations with a further state func-
tion, dedicated to data stores. Moreover, the treatment of data assignments would be-
come more intricate, as it would be necessary to distinguish updates of data objects from
those of data stores, which affect different data state functions in the configuration.

Future Work. We plan to continue our programme to effectively support modelling
and visualisation of BPMN multi-instance collaborations, by overcoming the above
limitations. More practically, we intend to enlarge the range of functionalities provided
by MIDA, especially for what concern the data perspective, and improve its usability.

References

1. OMG: Business Process Model and Notation (BPMN V 2.0) (2011)
2. Suchenia et al., A.: Selected approaches towards taxonomy of business process anomalies.
In: Advances in Business ICT: New Ideas from Ongoing Research. Springer (2017)

15

~N

10.

11.
12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

217.

. Van Gorp, P, Dijkman, R.: A visual token-based formalization of BPMN 2.0 based on in-

place transformations. Information and Software Technology 55(2) (2013) 365-394

. Borger, E., Thalheim, B.: A Method for Verifiable and Validatable Business Process Model-

ing. In: Advances in Software Engineering. Volume 5316 of LNCS. Springer (2008) 59-115

. Hermann et al., A.: Collaborative business process management - a literature-based analysis

of methods for supporting model understandability. In: WI. (2017)

. Desel, J.: Teaching system modeling, simulation and validation. In: WSC. (2000) 1669-1675
. Becker, J., Kugeler, M., Rosemann, M.: Process management: a guide for the design of

business processes. Springer Science & Business Media (2013)

. Emens, R., Vanderfeesten, .T.P., Reijers, H.A.: The dynamic visualization of business pro-

cess models: a prototype and evaluation. In: BPM. Volume 256 of LNBIP., Springer (2016)
559-570

. Momotko, M., Nowicki, B.: Visualisation of (distributed) process execution based on ex-

tended BPMN. In: DEXA, IEEE (2003) 280-284

Allweyer, T., Schweitzer, S.: A tool for animating BPMN token flow. In: BPMN Workshop.
Volume 125 of LNBIP., Springer (2012) 98-106

Weske, M.: Business Process Management. Springer (2007)

Corradini et al., F.: On avoiding erroneous synchronization in BPMN processes. In: BIS.
Volume 288 of LNBIP., Springer (2017) 106-119

Corradini, F., Polini, A., Re, B., Tiezzi, F.: An operational semantics of BPMN collaboration.
In: FACS. Volume 9539 of LNCS., Springer (2016) 161-180

Corradini, F., Muzi, C., Re, B., Rossi, L., Tiezzi, F.: Global vs. local semantics of BPMN 2.0
or-join. In: SOFSEM. Volume 10706 of LNCS., Springer (2018) 321-336

Corradini et al., F.: Animating multiple instances in BPMN collaborations. Tech.Rep., Uni-
versity of Camerino (2018) Available at: http://pros.unicam.it/mida/.

Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting complex data depen-
dencies in business processes. In: BPM. Volume 8094 of LNCS., Springer (2013) 171-186

Meyer et al., A.: Data perspective in process choreographies: modeling and execution. In:
Techn. Ber. BPM Center Report BPM-13-29. BPMcenter. org. (2013)

. Kheldoun, A., Barkaoui, K., Ioualalen, M.: Formal verification of complex business pro-

cesses based on high-level Petri nets. Information Sciences 385-386 (2017) 39-54
El-Saber, N.A.: CMMI-CM compliance checking of formal BPMN models using Maude.
PhD thesis, Department of Computer Science (2015)

Wohed, P., van der Aalst, W.M., Dumas, M., ter Hofstede, A.H., Russell, N.: Pattern-based
analysis of UML activity diagrams. Beta, Research School for Operations Management and
Logistics, Eindhoven (2004)

Van Der Aalst, W.M., Ter Hofstede, A.H.: YAWL.: yet another workflow language. Informa-
tion systems 30(4) (2005) 245-275

Loépez et al., M.T.G.: Guiding the creation of choreographed processes with multiple in-
stances based on data models. In: BPMWorkshops. Volume 281 of LNBIP. (2016) 239-251
Knuplesch, D., Pryss, R., Reichert, M.: Data-aware interaction in distributed and collabora-
tive workflows: modeling, semantics, correctness. In: CollaborateCom, IEEE (2012) 223-
232

Hahn, M., Breitenbiicher, U., Kopp, O., Leymann, F.: Modeling and execution of data-aware
choreographies: an overview. Computer Science-Research and Development (2017) 1-12
OASIS WSBPEL TC: Web Services Business Process Execution Language Version 2.0.
Technical report, OASIS (April 2007)

Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. Journal of Applied
Logic 10(1) (2012) 2-31

Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models
in BPMN. Information and Software Technology 50(12) (2008) 1281-1294

16

http://pros.unicam.it/mida/

	*-2cmAnimating Multiple Instances in BPMN Collaborations: from Formal Semantics to Tool Support

