
Safeness and Soundness Checking in BPMN 2.0
Collaborations

– APPENDIX –

Flavio Corradini, Andrea Morichetta, Andrea Polini,
Barbara Re, Lorenzo Rossi, and Francesco Tiezzi

School of Science and Technology, University of Camerino, Italy
{name.surname}@unicam.it

Abstract. This online appendix reports the formal definitions and the
theorem proofs regarding the framework presented in the companion
manuscript.

1 Formal Framework

1.1 Syntax of BPMN Collaborations

To enable the formal treatment of collaborations’ semantics, we defined a BNF
syntax of their model structure (Fig. 1). In the proposed grammar, the non-
terminal symbol C represents a Collaboration Structure, while the terminal
symbols, denoted by the sans serif font, are the considered BPMN elements,
i.e. events, tasks, sub-processes and gateways.

It is worth noticing that our syntax is too permissive with respect to the
BPMN notation, as it allows to write collaborations that cannot be expressed
in BPMN. Limiting such expressive power would require to extend the syntax
(e.g., by distinguishing processes and collaborations with different syntactic cat-
egories), thus complicating the definition of the formal semantics. However, this
is not necessary in our work, as we are not proposing an alternative modelling
notation, but we are only using a textual representation of BPMN models, which
is more manageable for writing operational rules than the graphical notation.
Therefore, in our analysis we will only consider terms of the syntax that are
derived from BPMN models.

In the following e ∈ E denotes a sequence edge, while E ∈ 2E a set of edges;
we require |E| > 1 when E is used in joining and splitting gateways. Similarly,
we require that an event-based gateway should contain at least two message
events, i.e. k > 1 in each eventBased term. For the convenience of the reader,
we refer with ei the edge incoming in an element and with eo the edge outgoing
from an element. In the edge set E we also include spurious edges for denoting
the enabled status of start events and the complete status of end events, named
enabling and completing edges, respectively. They are needed to guarantee multi-
layer activation of sub-processes as well as to check their completion. Moreover,

C ::= start(eenb, eo) | end(ei, ecmp) | andSplit(ei, Eo) | xorSplit(ei, Eo)

| andJoin(Ei, eo) | xorJoin(Ei, eo) | eventBased(ei, (m1, eo1), . . . , (mk, eok))

| task(ei, eo) | taskRcv(ei,m, eo) | taskSnd(ei,m, eo) | interRcv(ei,m, eo)

| interSnd(ei,m, eo) | subProc(ei, C, eo) | C1|C2

Fig. 1. Syntax of BPMN Collaboration Structures.

m ∈ M denotes a message edge, enabling message exchanges between pairs of
participants in the collaboration. Both, e and m denote names uniquely identi-
fying a sequence edge and a message, respectively. The correspondence between
the syntax used here and the graphical notation of BPMN is as follows.

– start(eenb, eo) represents a start event that can be activated by means of the
enabling edge eenb and has an outgoing edge eo.

– end(ei, ecmp) represents an end event with an incoming edge ei and a com-
pleting edge ecmp.

– andSplit(ei, Eo) (resp. xorSplit(ei, Eo)) represents an AND (resp. XOR) split
gateway with incoming edge ei and outgoing edges Eo.

– andJoin(Ei, eo) (resp. xorJoin(Ei, eo)) represents an AND (resp. XOR) join
gateway with incoming edges Ei and outgoing edge eo.

– eventBased(ei, (m1, eo1), . . . , (mk, eok)) represents an event based gateway with
incoming edge ei and a list of possible (at least two) message edges, with the
related outgoing edges that are enabled by message reception.

– task(ei, eo) represents a task with incoming edge ei and outgoing edge eo; we
can also observe taskRcv(ei,m, eo) - resp. taskSnd(ei,m, eo) - to consider a
task receiving - resp. sending - a message m.

– interRcv(ei,m, eo) - resp. interSnd(ei,m, eo) - represents an intermediate re-
ceiving - resp. sending - event with an incoming edge ei and an outgoing
edge eo that are able to receive - resp. sending - a message m.

– subProc(ei, C, eo) represents a sub-process element with incoming edge ei and
outgoing edge eo. When activated, the enclosed sub-process C behaves ac-
cording to the elements it consists of, including nested sub-process elements
(used to describe multi-layer collaborations with a hierarchical structure).

– C1|C2 represents a composition of elements in order to render a collaboration
structure in terms of a collection of elements.

To achieve a compositional definition, each sequence (resp. message) edge of
the BPMN model is split in two parts: the part outgoing from the source element
and the part incoming into the target element. The two parts are correlated
since edge names in the BPMN model are unique. To avoid malformed structure
models, we only consider structures in which for each edge labeled by e (resp.
m) outgoing from an element, there exists only one corresponding edge labeled
by e (resp. m) incoming into another element, and vice versa.

Since we consider collaborations with a multi-layer structure, to refer the
start events of the current layer C we resort to function start(C), which returns

2

their enabling edges:

start(C1 | C2) = start(C1) ∪ start(C2) start(start(einit, eo)) = {einit}

start(C) = ∅ for any element C 6= start(einit, eo)

Notably, we assume that each process in the collaboration has only one start.
Thus, the above function applied on the abstract layer of the collaboration will
return as many edges as the number of participants involved in the collaboration,
while the application of the function in each process/sub-process returns only
one edge.

We similarly define the function end(C) on the structure of collaborations in
order to refer to end events in the current layer:

end(C1 | C2) = end(C1) ∪ end(C2) end(end(ei, ecmp)) = {ecmp}

end(C) = ∅ for any element C 6= end(ei, ecmp)

1.2 Semantics of BPMN Collaborations

The syntax presented so far permits to describe the mere structure of a collabo-
ration. To describe its semantics we need to enrich it with a notion of execution
state, defining the current marking of sequence and message edges. We call col-
laboration configuration this stateful description.

Formally, a configuration has the form 〈C, σ, δ〉, where: C is a collaboration
structure; σ is the first part of the execution state, storing for each sequence
edge the current number of tokens marking it; and δ is the second part of the
execution state, storing for each message edge the current number of message
tokens marking it. Specifically, a state σ : E→ N is a function mapping edges to
numbers of tokens. The state obtained by updating in the state σ the number of
tokens of the edge e to n, written as σ · {e 7→ n}, is defined as follows: (σ · {e 7→
n})(e′) returns n if e′ = e, otherwise it returns σ(e′). Moreover, δ : M → N is a
function mapping message edges to numbers of message tokens; so that δ(m) = n
means that there are n messages of type m sent by a participant to another that
have not been received yet. Update for δ are defined in a way similar to σ’s
definitions. Moreover, in the initial state of a collaboration, the start event of
each process in the abstract level must be enabled, i.e. it has a token in its
enabling edge, while all other sequence edges (included the enabling edges for
the activation of sub-processes in the lower layers) and messages edges must be
unmarked.

Definition 1 (Initial state of collaboration). Let C be a collaboration, the
collaboration configuration 〈C, σ, δ〉 is the initial one, i.e. predicate isInit(〈C, σ, δ〉)
holds, if ∀ eenb ∈ start(C) . σ(eenb) = 1, ∀ e ∈ E\start(C) . σ(e) = 0, and
∀ m ∈M . δ(m) = 0.

The operational semantics is defined, as usual, by means of a labelled tran-
sition system (LTS). In our case, this is a triple 〈C,L,→〉 where: C, ranged over
by 〈C, σ, δ〉, is a set of collaboration configurations; L, ranged over by l, is a

3

〈start(eenb, eo), σ, δ〉
eenb−−−→ 〈inc(dec(σ, eenb), eo), δ〉 σ(eenb) > 0 (C -Start)

〈end(ei, ecmp), σ, δ〉
ei−→ 〈inc(dec(σ, ei), ecmp), δ〉 σ(ei) > 0 (C -End)

〈andSplit(ei, Eo), σ, δ〉
ei−→ 〈inc(dec(σ, ei), Eo), δ〉 σ(ei) > 0 (C -AndSplit)

〈xorSplit(ei, {e} ∪ Eo), σ, δ〉
ei−→ 〈inc(dec(σ, ei), e), δ〉 σ(ei) > 0 (C -XorSplit)

〈andJoin(Ei, eo), σ, δ〉
Ei−−→ 〈inc(dec(σ,Ei), eo), δ〉 ∀e ∈ Ei . σ(e) > 0 (C -AndJoin)

〈xorJoin({e} ∪ Ei, eo), σ, δ〉
e−→ 〈inc(dec(σ, e), eo), δ〉 σ(e) > 0 (C -XorJoin)

〈eventBased(ei, (m1, eo1), . . . , (mk, eok)), σ, δ〉
?mj−−→

〈inc(dec(σ, ei), eoj), dec(δ,mj)〉
σ(ei) > 0, δ(mj) > 0,
1 ≤ j ≤ k (C -EventG)

〈task(ei, eo), σ, δ〉
ei−→ 〈inc(dec(σ, ei), eo), δ〉 σ(ei) > 0 (C -Task)

〈taskRcv(ei,m, eo), σ, δ〉
?m−−→

〈inc(dec(σ, ei), eo), dec(δ,m)〉
σ(ei) > 0,
δ(m) > 0

(C -TaskRcv)

〈taskSnd(ei,m, eo), σ, δ〉
!m−→

〈inc(dec(σ, ei), eo), inc(δ,m)〉
σ(ei) > 0 (C -TaskSnd)

〈interRcv(ei,m, eo), σ, δ〉
?m−−→

〈inc(dec(σ, ei), eo), dec(δ,m)〉
σ(ei) > 0,
δ(m) > 0

(C -InterRcv)

〈interSnd(ei,m, eo), σ, δ〉
!m−→

〈inc(dec(σ, ei), eo), inc(δ,m)〉
σ(ei) > 0 (C -InterSnd)

〈subProc(ei, C, eo), σ, δ〉
ei−→

〈inc(dec(σ, ei), start(C)), δ〉
σ(ei) > 0 (C -SubProcStart)

〈subProc(ei, C, eo), σ, δ〉
marked(σ,end(C))−−−−−−−−−−−−→

〈inc(zero(σ, end(C)), eo), δ〉
completed(〈C, σ, δ〉) (C -SubProcEnd)

〈C1, σ, δ〉
l−→ 〈σ′, δ′〉

(C -Int1)
〈C1 | C2, σ, δ〉

l−→ 〈σ′, δ′〉

〈C2, σ, δ〉
l−→ 〈σ′, δ′〉

(C -Int2)
〈C1 | C2, σ, δ〉

l−→ 〈σ′, δ′〉
Fig. 2. BPMN Collaboration Semantics.

set of labels (of transitions that collaboration configurations can perform); and

→⊆ C × L × C is a transition relation. We will write 〈C, σ, δ〉 l−→ 〈C, σ′, δ′〉 to

indicate that (〈C, σ, δ〉, l, 〈C, σ′, δ′〉) ∈→ and say that ‘the collaboration in the
configuration 〈C, σ, δ〉 can do a transition labelled l and become the collabo-
ration configuration 〈C, σ′, δ′〉 in doing so’. Since collaboration execution only
affects the current states, and not the collaboration structure, for the sake of
readability we omit the structure from the target configuration of the transition.

Thus, a transition 〈C, σ, δ〉 l−→ 〈C, σ′, δ′〉 is written as 〈C, σ, δ〉 l−→ 〈σ′, δ′〉.
The transition relation over collaboration configurations formalizes the exe-

cution of a collaboration in terms of edge and message marking evolution. It is
defined by the rules in Fig. 2. Labels l represent computational steps and are

4

defined as follows: !m and ?m denote sending and receiving actions, respectively,
and E denotes the set of edges from which a token is moved, thus permitting
to identify the current position in the execution flow (for the sake of readability,
we write the set {e} as e). Notably, despite the presence of labels, this has to be
thought of as a reduction semantics, because labels are not used for synchroniza-
tion (as instead it usually happens in labeled semantics), but only for keeping
track of the performed action in order to enable the verification.

Before commenting on the rules, we introduce the auxiliary functions they
exploit. Specifically, function inc : S×E→ S (resp. dec : S×E→ S), where S is
the set of states, allows updating a state by incrementing (resp. decrementing)
by one the number of tokens marking an edge in the state. Formally, they are
defined as follows: inc(σ, e) = σ ·{e 7→ σ(e)+1} and dec(σ, e) = σ ·{e 7→ σ(e)−1}.
These functions extend in a natural ways to sets of edges as follows: inc(σ, ∅) = σ
and inc(σ, {e} ∪ E)) = inc(inc(σ, e), E); the cases for dec are similar. As usual,
the update finction for δ are defined in a way similar to σ’s definitions. We also
use the function zero : S × E → S that allows updating a state by setting to
zero the number of tokens marking an edge in the state. Formally, it is defined
as follows: zero(σ, e) = σ · {e 7→ 0}. Also in this case the function extends in a
natural ways to sets of edges as follows: zero(σ, ∅) = σ and zero(σ, {e} ∪ E)) =
zero(zero(σ, e), E).

To check the completion of a sub-process, and more in general of processes
and collaborations, we exploit the boolean predicate completed(〈C, σ, δ〉). It is
defined according to the prescriptions of the BPMN standard, which states that
“a process instance is completed if and only if [...] there is no token remaining
within the process instance; no activity of the process is still active. For a process
instance to become completed, all tokens in that instance must reach an end
node” and “a sub-process instance completes when there are no more tokens
in the Sub-Process and none of its Activities is still active” [1, pp. 426, 431].
Then, a collaboration completes when all involved processes complete. The fact
that in our formalisation we do not provide a specific construct for identifying
processes does not raise any issue related to the collaboration completion check,
as tokens cannot pass from one process to another and edge names are unique
in the model. Thus, the collaboration/process/sub-process completion can be
formalised as follows:

Definition 2. Let C be a collaboration, having the form end(ei, ecmp) | C ′, the
predicate completed(〈C, σ, δ〉) is defined as

σ(ecmp) > 0 ∧ σ(ei) = 0 ∧ isZero(C ′, σ)

where isZero(·) is inductively defined on the structure of its first argument as
follows:

– isZero(end(ei, ecmp), σ) if σ(ei) = 0;
– isZero(start(eenb, eo), σ) if σ(eenb) = 0 and σ(eo) = 0;
– isZero(andSplit(ei, Eo), σ) if σ(ei) = 0 and ∀e ∈ Eo . σ(e) = 0;
– isZero(xorSplit(ei, Eo), σ) if σ(ei) = 0 and ∀e ∈ Eo . σ(e) = 0;

5

– isZero(andJoin(Ei, eo), σ) if ∀e ∈ Ei . σ(e) = 0 and σ(eo) = 0;
– isZero(xorJoin(Ei, eo), σ) if ∀e ∈ Ei . σ(e) = 0 and σ(eo) = 0;
– isZero(eventBased(ei, (m1, eo1), . . . , (mk, eok)), σ) if σ(ei) = 0

and ∀i ∈ {1..k} . σ(eoi) = 0;
– isZero(task(ei, eo), σ) if σ(ei) = 0 and σ(eo) = 0;
– isZero(taskRcv(ei,m, eo), σ) if σ(ei) = 0 and σ(eo) = 0;
– isZero(taskSnd(ei,m, eo), σ) if σ(ei) = 0 and σ(eo) = 0;
– isZero(interRcv(ei,m, eo), σ) if σ(ei) = 0 and σ(eo) = 0;
– isZero(interSnd(ei,m, eo), σ) if σ(ei) = 0 and σ(eo) = 0;
– isZero(subProc(ei, C, eo), σ) if σ(ei) = 0 and σ(eo) = 0;
– isZero(C1|C2, σ) if isZero(C1, σ) and isZero(C2, σ).

Notably, the completion of a collaboration does not depend on the exchanged
messages, and it is defined considering the arbitrary topology of the model, which
hence may have one or more end events with possibly more than one token in
the completing edges.

Finally, we use the function marked(σ,E) to refer to the set of edges in E
with at least one token, which is defined as follows:

marked(σ, {e} ∪ E) =

{
{e} ∪marked(σ,E) if σ(e) > 0;

marked(σ,E) otherwise.

marked(σ, ∅) = ∅.
We now briefly comment on some of the operational rules in Fig. 2. Rule

C -Start starts the execution of a collaboration (sub-)process when it has been
activated (i.e., the enabling edge eenb is marked). The effect of the rule is to
increment the number of tokens in the edge outgoing from the start event. Rule
C -End instead is enabled when there is at least one token in the incoming edge
of the end event, which is then moved to the completing edge. Rule C -AndSplit
is applied when there is at least one token in the incoming edge of an AND
split gateway; as result of its application the rule decrements the number of
tokens in the incoming edge and increments that in each outgoing edge. Similarly,
rule C -XorSplit is applied when a token is available in the incoming edge of a
XOR split gateway, the rule decrements the token in the incoming edge and
increment the token in one of the outgoing edges, non-deterministically chosen.
Rule C -AndJoin decrements the tokens in each incoming edge and increments
the number of tokens of the outgoing edge, when each incoming edge has at least
one token. Rule C -XorJoin is activated every time there is a token in one of the
incoming edges, which is then moved to the outgoing edge. Rule C -EventBased
is activated when there is a token in the incoming edge and there is a message
mj to be consumed, so that the application of the rule moves the token from
the incoming edge to the outgoing edge corresponding to the received message,
whose number of tokens in the meantime is decreased (i.e., a message from the
corresponding queue is consumed). Rule C -Task deals with simple tasks, acting
as a pass through. It is activated only when there is a token in the incoming
edge, which is then moved to the outgoing edge. Rule C -TaskRcv is activated
not only when there is a token in the incoming edge, like the one related to

6

simple tasks, but also when there is a message to be consumed. Similarly, rule
C -TaskSnd , instead of consuming, send a message before moving the token to the
outgoing edge. Rule C -InterRcv (resp. C -InterSnd) follows the same behavior
of rule C -TaskRcv (resp. C -TaskSnd). Rules C -SubProcStart and C -SubProcEnd

deal with a subprocess element. The former rule is activated only when there
is a token in the incoming edge of the sub-process, which is then moved to the
enabling edge of the start event in the sub-process body. Then, the sub-process
behaves as its body till it completes, according to the completion check performed
by the rule C -SubProcEnd . When this rule is applied, it removes all tokens from
the sequence edges of the sub-process body1, and adds a token to the outgoing
edge of the sub-process. Finally, Rules C -Int1 and C -Int2 deal with interleaving
in a standard way.

1.3 Safeness and Soundness

We now provide a formal definition of the correctness properties we verify on
multi-layer collaboration models.

Safeness refers to the occurrence of no more than one token along the same
sequence edge of each process in the collaboration. Safeness formalisation is an
important criterion of correctness for business process models, since an unsafe
model could lead to errors in the execution, as shown in the following examples.
The formalisation of the property is based on the following auxiliary function
determining the maximum number of tokens marking the sequence edges of
a process (this function relies on the standard function max (·) returning the
maximum in a list of natural numbers).

maxMarking(〈start(einit, eo), σ, δ〉) = σ(eo)
maxMarking(〈end(ei, ecmp), σ, δ〉) = σ(ei)
maxMarking(〈andSplit(ei, {eo1, . . . , eok}), σ, δ〉) = max (σ(ei), σ(eo1), ..., σ(eok))
maxMarking(〈xorSplit(ei, {eo1, . . . , eok}), σ, δ〉) = max (σ(ei), σ(eo1), ..., σ(eok))
maxMarking(〈andJoin({ei1, . . . , eik}, eo), σ, δ〉) = max (σ(ei1), ..., σ(eik), σ(eo))
maxMarking(〈xorJoin({ei1, . . . , eik}, eo), σ, δ〉) = max (σ(ei1), ..., σ(eik), σ(eo))
maxMarking(〈eventBased(ei, (m1, eo1), . . . , (mk, eok)), σ, δ〉) = max (σ(ei), σ(eo1), ..., σ(eok))
maxMarking(〈task(ei, eo), σ, δ〉) = max (σ(ei), σ(eo));
maxMarking(〈taskRcv(ei,m, eo), σ, δ〉) = max (σ(ei), σ(eo));
maxMarking(〈taskSnd(ei,m, eo), σ, δ〉) = max (σ(ei), σ(eo));
maxMarking(〈interRcv(ei,m, eo), σ, δ〉) = max (σ(ei), σ(eo));
maxMarking(〈interSnd(ei,m, eo), σ, δ〉) = max (σ(ei), σ(eo));
maxMarking(〈subProc(ei, C, eo), σ, δ〉) = max (σ(ei), σ(eo),maxMarking(〈C, σ, δ〉));
maxMarking(〈C1|C2, σ, δ〉) = max (maxMarking(〈C1, σ, δ〉),maxMarking(〈C2, σ, δ〉));

Now, a collaboration is defined to be safe if it is preserved that the maximum
marking does not exceed one along the collaboration execution. We use −→∗ to

denote the reflexive and transitive closure of −→.
1 Actually, due to the definition of sub-process completion (Def. 2), only the complet-

ing edges of the end events within the sub-process body need to be set to zero.

7

Definition 3 (Safe collaborations). A collaboration C is safe if and only if,
given σ and δ such that isInit(〈C, σ, δ〉), for all σ′ and δ′ such that 〈C, σ, δ〉−→∗

〈σ′, δ′〉 we have that maxMarking(〈C, σ′, δ′〉) ≤ 1.

Soundness is a more elaborated property, which is based on a notion of proper
completion of a collaboration. Intuitively, it requires that from any reachable con-
figuration it is possible to arrive in a (completed) configuration where all marked
end events are marked exactly by a single token and all sequence edges are un-
marked. However, this notion does not take into account enqueued messages that
will never be consumed. Considering this aspect, as mentioned in Sections ??
and ??, we provide two notions of soundness: one that requires message queues
to be empty for a proper completion, and another that relaxes this requirement.

Definition 4 (Sound collaboration). A collaboration C is sound if and only
if, given σ and δ such that isInit(〈C, σ, δ〉), for all σ′ and δ′ such that 〈C, σ, δ〉−→∗

〈σ′, δ′〉 we have that there exist σ′′and δ′′ such that 〈C, σ′, δ′〉−→∗〈σ′′, δ′′〉, ∀ ecmp ∈
marked(σ′′,end(C)) . σ′′(ecmp) = 1, isZero(C, σ′′), and ∀m ∈M . δ′′(m) = 0.

Definition 5 (Message-Disregarding Sound collaboration). A collabora-
tion C is message-disregarding sound if and only if, given σ and δ such that
isInit(〈C, σ, δ〉), for all σ′ and δ′ such that 〈C, σ, δ〉−→∗〈σ′, δ′〉 we have that there

exist σ′′ and δ′′ such that 〈C, σ′, δ′〉−→∗〈σ′′, δ′′〉, ∀ ecmp ∈ marked(σ′′,end(C)) .

σ′′(ecmp)=1, and isZero(C, σ′′).

8

2 The S3 Supporting Tool: From Theory to Practice

As shown in Sec. 1.2, our BPMN operational semantics is defined in terms of
an LTS. The LTS generated by our semantics implementation is minimal and
deterministic. In fact, during the construction of the LTS, each time a new
state has to be added we check if a state representing the same collaboration
configuration (i.e., same σ and δ) is already present. In such a case, we connect
the transition edge under construction to the existing state, without introducing
a separate state corresponding to the same configuration. This characteristic of
the generated LTS is then exploited (see Definition 10) for putting in relation
the soundness of the collaboration with the existence in the LTS of a unique
‘final’ state (representing a configuration where all tokens are consumed and no
other sequence or message edge is enabled).

Considering a collaboration C, we now formally introduce the notions of
safeness, soundness and message-disregarding soundness related to the LTS in-
duced by the semantics. Consequently, we prove the correspondence between
this definitions and Def. 3, 4 and 5.

Definition 6 (Safe Labelled Transition System). A LTS 〈C,L,→〉 of a
collaboration is safe if and only if ∀〈C, σ, δ〉 ∈ C we have that ∀ e ∈ E . σ(e) ≤ 1.

Theorem 1 (Safeness correspondence). Let C be a collaboration and 〈C,L,→〉
its LTS, then C is safe if and only if 〈C,L,→〉 is safe.

Proof. We prove below the if and the only if parts of the theorem.

– (if part) In this case we have to show that if 〈C,L,→〉 is safe then C is
safe. The proof proceeds by contradiction. Suppose that C is unsafe. By
Def. 3, given σ and δ such that isInit(〈C, σ, δ〉), there exist σ′ and δ′ such

that 〈C, σ, δ〉−→* 〈σ′, δ′〉 and maxMarking(〈C, σ′, δ′〉) > 1. This means that

∃ e ∈ E . σ′(e) > 1. Hence, by Def. 6, 〈C,L,→〉 is unsafe, which is a
contradiction.

– (only if part) In this case we have to show that if C is safe then 〈C,L,→〉
is safe. The proof proceeds by contradiction. Suppose that 〈C,L,→〉 is un-
safe. This means, by Def. 6, that there exists 〈C, σ, δ〉 ∈ C such that ∃ e ∈
E . σ(e) > 1. So that, there exists a state of the collaboration in which
maxMarking(〈C, σ, δ〉) > 1. Hence, by Def. 3, C is unsafe, which is a contra-
diction. ut

The formal definition of soundness requires the definition of the following
auxiliary functions determining the incoming labels of a state in the LTS, the
presence of an execution trace of the LTS where given labels occur more than
one time, and the set of edge labels incoming to the end events of a collaboration.

Definition 7 (Incoming Labels). Let 〈C,L,→〉 be an LTS and 〈C, σ, δ〉 ∈ C,

incoming(〈C, σ, δ〉) = {l ∈ L | ∃σ′, δ′ : 〈C, σ′, δ′〉 l−→ 〈σ, δ〉}.

9

Definition 8 (Labels Duplication). Let 〈C,L,→〉 be an LTS and I ⊆ L a
set of labels, predicate isNotDuplicated(〈C,L,→〉, I) holds true if ∀ li ∈ I and

〈C, σ1, δ1〉, 〈C, σ2, δ2〉, 〈C, σ3, δ3〉 ∈ C the sequence 〈C, σ1, δ1〉
li==⇒ 〈C, σ2, δ2〉

li==⇒
〈C, σ3, δ3〉, where

li==⇒ = −→∗ li−→ −→∗, never holds.

Definition 9 (End Events Incoming Labels). Let C be a collaboration, then
endIn(·) is inductively defined as follows:

endIn(C1 | C2) = endIn(C1) ∪ endIn(C2) endIn(end(ei, ecmp)) = {ei}

endIn(C) = ∅ for any element C 6= end(ei, ecmp)

Now, our notions of soundness on LTSs and their correspondence with the
definitions on collaborations can be defined as follows.

Definition 10 (Soundness Labelled Transition System). A LTS 〈C,L,→〉
of a collaboration C is sound if and only if ∃!〈C, σ, δ〉 ∈ C such that:

(i) 〈C, σ, δ〉 6−→ (i.e., 6 ∃ l, σ′, δ′ such that 〈C, σ, δ〉 l−→ 〈σ′, δ′〉)
(ii) isNotDuplicated(〈C,L,→〉, incoming(〈C, σ, δ〉))
(iii) incoming(〈C, σ, δ〉) = endIn(C)
(iv) ∀ e ∈ E . σ(e) = 0
(v) ∀ m ∈M . δ(m) = 0

Definition 11 (Message-Disregarding Soundness Labelled Transition
System). A LTS 〈C,L,→〉 of a collaboration C is message-disregarding sound
if and only if ∀〈C, σ, δ〉 ∈ C such that 〈C, σ, δ〉 6−→ we have that:

(i) isNotDuplicated(〈C,L,→〉, incoming(〈C, σ, δ〉))
(ii) incoming(〈C, σ, δ〉) = endIn(C)
(iii) ∀ e ∈ E . σ(e) = 0

Theorem 2 (Soundness Correspondence). Let C be a collaboration and
〈C,L,→〉 its LTS, then C is sound if and only if 〈C,L,→〉 is sound.

Proof. We prove below the if and the only if parts of the theorem.

– (if part) In this case we have to show that if 〈C,L,→〉 is sound then C is
sound. The proof proceeds by contradiction.

By Def. 10, ∃!〈C, σ′′, δ′′〉 ∈ C such that 〈C, σ′′, δ′′〉 6 l−→ and isNotDuplicated(〈C,L,→
〉, incoming(〈C, σ′′, δ′′〉)) and incoming(〈C, σ′′, δ′′〉) = endIn(C) and ∀ m ∈
M . δ′′(m) = 0

By contradiction, suppose C is unsound, then ∀〈C ′, σ′, δ′〉 : 〈C, σ, δ〉−→*〈σ′, δ′〉
∃〈C, σ′′, δ′′〉 such that:

• 〈C, σ′, δ′〉 6 l−→ 〈σ′′, δ′′〉. This implies that the collaboration never reaches
a final configuration, hence the generated LTS do not show an unique
final state, contradicting the hypothesis. Hence, by Def. 10, 〈C,L,→〉 is
unsound, which is a contradiction.

10

• completed(〈C, σ′′, δ′′〉) is false. Hence, there exists e such that σ′′(e) > 0,
contradicting the hypothesis. Hence, by Def. 10, 〈C,L,→〉 is unsound,
which is a contradiction.

• ∃ ecmp ∈ marked(σ′′,end(C)) . σ′′(ecmp) > 1. Due to this, there ex-
ists 〈end(ei, ecmp), σ, δ〉 reached by more than one token. It means that

∃〈C, σ1, δ1〉, 〈C, σ2, δ2〉 and 〈C, σ3, δ3〉 ∈ C such that 〈C, σ1, δ1〉
ei==⇒ 〈C, σ2, δ2〉

ei==⇒
〈C, σ3, δ3〉 where ei ∈ endIn(C) is the incoming edge this end event.
Hence, by Def. 10, 〈C,L,→〉 is unsound, which is a contradiction.

• isZero(C, σ′′) is false. Then there exists an edge e ∈ M . σ′′(e) > 0.
Hence, by Def. 10, 〈C,L,→〉 is unsound, which is a contradiction.

• ∃ m ∈ M . δ′′(m) 6= 0. Hence, by Def. 10, 〈C,L,→〉 is unsound, which is
a contradiction.

– (only if part) In this case we have to show that if C is sound then 〈C,L,→〉
is sound. The proof proceeds by contradiction.

By Def. 4, let 〈C, σ, δ〉 be the collaboration configuration such that isInit(〈C, σ, δ〉)
then ∀σ′ and δ′ such that 〈C, σ, δ〉−→∗ 〈σ′, δ′〉 there must be σ′′ and δ′′ such

that 〈C, σ′, δ′〉−→∗〈σ′′, δ′′〉, ∀ ecmp ∈ marked(σ′′,end(C)) . σ′′(ecmp) = 1,

isZero(C, σ′′), and ∀m ∈M . δ′′(m) = 0.

By contradiction, suppose 〈C,L,→〉 is unsound, then ∀〈C, σ′′, δ′′〉 ∈ C such
that:

• (〈C, σ′′, δ′′〉, l, 〈C, σ′′′, δ′′′〉) ∈→. In this case each configuration of C can
perform an action l : σ′′(l) > 0 if l ∈ E or δ′′(l) > 0 if l ∈ M. Conse-
quently each state shows either σ′′(l) > 0, contradicting isZero(〈C, σ′′, δ′′〉)
that become false, or δ′′(l) > 0. Hence, by Def. 4, C is unsound, which
is a contradiction.

• isNotDuplicated(〈C,L,→〉, incoming(〈C, σ′′, δ′′〉)) is false. This means
that there exists l ∈ incoming(〈C, σ′′, δ′′〉) and 〈C, σ1, δ1〉, 〈C, σ2, δ2〉 and

〈C, σ3, δ3〉 ∈ C such that 〈C, σ1, δ1〉
li==⇒ 〈C, σ2, δ2〉

li==⇒ 〈C, σ3, δ3〉
holds. By hypothesis, incoming(〈C, σ′′, δ′′〉) = endInput(C) so that
l ∈ endInput(C), but more precisely l is an incoming edge of and end
event. Having a repetition of this label in a sequence of execution means
that the related end event is reached by more than one token and that
σ′′(ecmp) > 1. Hence, by Def. 4, C is unsound, which is a contradiction.

• incoming(〈C, σ′′, δ′′〉) 6= endInput(C). Let l be a sequence flow label
such that l ∈ endInput(C), then l is an incoming of an end event. On
the contrary, l 6∈ incoming(〈C, σ′′, δ′′〉), then @〈C, σ′′, δ′′〉 in which this
end event is reached, so that σ′′(ecmp) > 1. Hence, by Def. 4, C is
unsound, which is a contradiction.

• ∃ e ∈ E . σ′′(e) 6= 0. Hence, there exists an element of the collaboration
with a token in the incoming sequence flow, so that isZero(〈C, σ′′, δ′′〉)
is false. Hence, by Def. 4, C is unsound, which is a contradiction.

• ∃ m ∈ M : δ′′(m) 6= 0. Hence, by Def. 4, C is unsound, which is a
contradiction.

ut

11

Theorem 3 (Message-Disregarding Soundness Correspondence). Let C
be a collaboration and 〈C,L,→〉 its LTS, then C is message-disregarding sound
if and only if 〈C,L,→〉 is message-disregarding sound.

Proof. The proof proceeds similar to that of Theorem 2. ut

References

1. OMG: Business Process Model and Notation (BPMN V 2.0) (2011)

12

