Well-structuredness, Safeness and Soundness:
A Formal Classification of BPMN (Collaborations)

Flavio Corradini, Chiara Muzi, Andrea Morichetta, Barbara Re, Francesco Tiezzi

School of Science and Technology, University of Camerino, Italy

Abstract

The BPMN standard has a huge uptake in modelling business processes within the
same organisation or collaborations involving multiple interacting participants. It
is widely accepted by the Business Process Management community that a solid
formal framework for the notation can help designers to properly understand their
BPMN models as well as to state and verify model properties. With this aim in
mind, we provide a formal characterisation of BPMN collaborations and some
of the most significant ‘correctness’ properties in the business process domain;
namely, well-structuredness, safeness and soundness. We exploit this formalisa-
tion to classify BPMN models according to the properties they satisfy and their
compositionality, resulting in a systematic study that gives evidence of expected
results, closes conjectures and provides novel results. An experimentation to as-
sess the impact of the considered properties on the practice of modelling is carried
out on the BPMN models available in a public and populated repository.

Keywords: Business Process Modelling, BPMN Collaboration, Operational
Semantics, Safeness, Soundness, Classification.

1. Introduction

Modern organisations recognise the importance of having tools to support and
achieve their own objectives. This is properly reflected in a business process
model, that is characterised as “a collection of related and structured activities
undertaken by one or more organisations in order to pursue some particular goal.
[. ..] Business processes are often interrelated, since the execution of a business
process often results in the activation of related business processes within the
same or other organisations” [1]].

April 15, 2020

Several languages have been proposed to model business processes and col-
laborations. The Object Management Group (OMG) standard Business Process
Model and Notation (BPMN) [2] is the most prominent language. In particular,
BPMN collaboration models are used to describe distributed and complex scenar-
10s, where multiple participants interact each other via the exchange of messages.

Even though it is widely accepted in both academia and industry, BPMN’s ma-
jor drawback is due to possible misunderstanding of its semantics. It is described
in natural language, often ambiguous and sometimes containing misleading in-
formation [3]. Much effort has been devoted to formalise BPMN semantics by
mapping business processes and collaborations into formal notations (e.g., see [4]
for an approach based on Petri Nets). Of course, the resulting models inherit con-
straints proper of the target language the mapping considers. Consequently, none
of them takes into account BPMN features such as: different abstraction levels
(i.e., sub-processes, processes and collaborations), asynchronous communication
paradigms, notions of completion due to different types of ‘end event’ (i.e., sim-
ple, message throwing and terminate).

In this paper, we provide a formal characterisation of BPMN collaborations
and of some structural and behavioural properties. It allows BPMN designers to
properly understand their models and their expressiveness, and turns out to be a
formal framework supporting the modelling and analysis of BPMN collaborations
within their lifecycle.

The formalisation of the BPMN collaborations follows a process description
language paradigm, with a formal syntax and an operational semantics describing
the step-by-step behaviour of the collaborations. It faithfully extends [S] with a
textual notation (instead of a graphical one) and takes into account a larger lan-
guage (including, e.g., sub-processes).

The formalisation of BPMN model properties takes into account well-known
‘correctness’ properties in the domain of Business Process Management; namely
well-structuredness [6], safeness [7, 18] and soundness [9, [10]. Despite the large
body of work on this topic, no formal definition of these properties directly given
on BPMN was provided yet, being instead proposed on different notations (as,
for instance, Petri Nets [11, 8], Workflow Nets [6, [8, [10] and Elementary Nets
[7]). Having a uniform formal framework allowed us to study the relationships
between the considered properties and to classify BPMN models according to the
properties they satisfy. It turns out that a well-structured collaboration is always
safe, but not the vice versa. Well-structuredness implies soundness only at the
process level, while this implication does not scale to collaborations (i.e., there are
well-structured collaborations that are not sound). Moreover, soundness does not

2

imply safeness and safe models are not necessarily sound. Some of the elements of
BPMN collaborations, i.e. sub-processes, message passing and terminate events,
have a specific impact on the classification of BPMN collaborations, as their usage
can move some models from one class to another.

It is also worth noticing that our framework supports models with arbitrary
topology, to enable the management and classification of both well-structured
but also unstructured models. Unstructured models can be in some cases studied
through their transformation into their structured versions, at the cost of increas-
ing the model size [12]. However, this transformation can either be too large in
size, or not possible at all [13}14].

The relevance of the properties we consider on BPMN collaborations has been
empirically studied by looking at their impact on the practice of the real-world
modelling. We have analysed the BPMN 2.0 processes and collaborations mod-
els available in a well-known, public, well-populated repository provided by the
PROSLab, named RePROSitory [[15]. The verification of the properties on these
models was carried out using the S too][] [16], which implements in Java the
BPMN operational semantics considered here and uses it for performing proper-
ties verification. Notably, as a further contribution of this paper we have extended
83 in order to include well-structuredness checking. As a result of this empirical
study, for instance, it turns out that BPMN models starts to become unstructured
when their size grows. Hence, even if well-structuredness is considered as a good
modelling practice in the BPMN guidelines, designers tend to deviate by it when
modelling complex scenarios.

The rest of the paper is organised as follows. Sec. [2] provides background
notions on BPMN and the considered properties. Sec. [3]introduces a first insight
into the obtained results. Sec.[d]introduces the proposed formal framework. Sec.[5]
provides the definition of properties, while Sec. [fl makes it clear the relationships
between these properties. Sec. [/| presents the study on safeness and soundness
compositionality. Sec. [8| presents the S? tool and provides a clearer idea of the
impact of well-structuredness, safeness, and soundness on the real-world mod-
elling practice. Finally, Sec. [9]discusses related works, and Sec. [I0] concludes the

paper.

'http://pros.unicam.it/s3/

http://pros.unicam.it/s3/

2. Basic Notions on BPMN Collaborations

In this section we introduce the considered elements of BPMN collabora-
tions [2]. We provide here a detailed explanation of the elements, jointly with
their correspondent textual representation that will be part of the process descrip-
tion language we take into account. Still, we present only the intended meaning
of the elements, because the formal semantics will be given at Sec. 4]

This section is also the occasion to present our running example, taken from a
travel agency scenario.

2.1. Pools

Pools (see Table (1)) are used to represent participants or organisations involved
in a collaboration. They are drawn as rectangles and include a unique name p for
the Pool and a process specification P. The corresponding textual description
is pool(p, P), meaning that, when activated, p behaves according to the process
specification P.

Pool - Pool -
Graphical Representation | Textual Notation

al P pool(p, P)

Table 1: Graphical and textual description of Pools.

2.2. Activities

Activities (see Table [2) are used to represent specific works to perform within
a process. A fask is an atomic activity, which cannot be interrupted during its
execution. Tasks can also send and receive messages. A sub-process, instead,
represents a work that brokes down into a finer level of detail. Activities are
drawn as rectangles with rounded corners. The corresponding textual notation is
as follows.

- task(e, ¢’) denotes the task with incoming edge e and outgoing edge €',
- taskRcv(e, m, €’), denotes the task receiving a message m,
- taskSnd(e, m, e'), denotes the task sending a message m,

- subProc(e, P, ¢’) denotes the sub-process activity with incoming edge e and
outgoing edge ¢/. When activated, the (sub-)process P behaves according
to its specification (it can include nested sub-process activities, of course).

Activities - Activities -
Graphical Representation | Textual Notation

task(e, €)

taskRcv(e, m, ¢')

taskSnd(e, m, ¢’)

subProc(e, P, ¢)

@
®
o o
3 3
> -0
@,
° @, N @,

Table 2: Graphical and textual description of Activities.

2.3. Gateways

Gateways (see Table [3]) are used to manage the flow of a process both for par-
allel activities and choices. Gateways act as either join nodes - merging incoming
sequence edges - or split nodes - forking into outgoing sequence edges. Different
types of gateways are available.

An AND gateway enables parallel execution flows. In particular, an AND-
split gateway is used to model the parallel execution of two or more branches, as
all outgoing sequence edges are activated simultaneously. An AND-join gateway
synchronises the execution of two or more parallel branches, as it waits for all
incoming sequence edges to complete before triggering the outgoing flow. The
corresponding textual notation is as follows.

- andSplit(e, {€], ..., e}) denotes an AND split gateway with incoming edge
e and outgoing edges €/, ..., €

yvnt

- andJoin({e1,...,e,},€) denotes an AND join gateway with incoming
edges ey, ..., e, and outgoing edge €.

A XOR gateway gives the possibility to describe choices. In particular, a XOR-
split gateway is used after a decision to fork the flow into branches. When ex-
ecuted, it activates exactly one outgoing edge. A XOR-join gateway acts as a
pass-through, meaning that it is activated each time the gateway is reached. The
corresponding textual notation is as follows.

5

Gateways - Gateways -
Graphical Representation Textual Notation

andSplit(e, {e},...,e.})

andJoin({ey,...,e,},€)

xorSplit(e, {€},...,e.})

rTn

xorJoin({ei,...,e,}, €)

eventBased(e, (my,€}),...,,(m,,€.))

n

Table 3: Graphical and textual description of Gateways.

- xorSplit(e, {€}, ..., €, }) denotes a XOR split gateway with incoming edge
e and outgoing edges €/, ..., €

r Nt

- xorJoin({ey,...,e,},€’) denotes a XOR join gateway with incoming edges
e, ...,e, and outgoing edge €.

An Event-Based gateway is used after a decision to fork the flow into branches
according to external choices. Its outgoing branches activation depends on taking
place of catching events. Basically, such events are in a race condition, where the
first event that is triggered wins and disables the other ones.

- eventBased(e, (my,€}),...,,(m,, e)) represents an event based gateway

6

with incoming edge e and a list of (at least two) message edges, with the
related outgoing edges that are enabled by message reception.

2.4. Events

Events (see Table are used to represent something that can happen. An
event can be a Start Event representing the point from which a process starts. A
Start Message Event is a start event with an incoming message edge; the event
element catches a message and starts a process. An event can be an Intermediate
Event if it happens during a process execution. If it receives a message it is called
Intermediate Receiving Events, while if it sends a message it is called Intermediate
Sending Events. An End Event represents process termination. There are other
different forms for termination. An End Message Event is an end event with
an outgoing message edge; it sends a message before ending the process. The
Terminate End Event, instead, stops and aborts the running process.

Events are drawn as circles and the corresponding textual notation is as fol-
lows.

- start(e,€’) represents a start event that can be activated by means of the
enabling edge e and that has an outgoing edge ¢’.

- startRcv(e, m, €’) represents a start message event that can be activated by
means of the enabling edge e as soon as a message m is received and it has
outgoing edge €'.

- interRcv(e, m, €’) represents an intermediate receiving event with an incom-
ing edge e and an outgoing edge €’ that are able to receive a message m.

- interSnd(e, m, €’) represents an intermediate sending event with an incom-
ing edge e and an outgoing edge €’ that are able to send a message m.

- end(e, ¢’) represents an end event with an incoming edge e and a completing
edge €.

- endSnd(e, m, ') represents an end message event with incoming edge e, a
message m to be sent, and a completing edge €'.

- terminate(e) represents a terminate end event with incoming edge e.

Events - Events -
Graphical Representation | Textual Notation

Oe—> start(e, €)
-9
i o startRcv(e, m, ¢’)
o ®
: interRev(e, m, e)
m A

interSnd(e, m, €’)

endSnd(e, m, ¢)

terminate(e)

o @ o
_e>o end(e, ¢)
m?
_e>©

Table 4: Graphical and textual description of Events.

2.5. Tokens

A key concept related to the BPMN process execution refers to the notion of
token. The BPMN standard states that “a token is a theoretical concept that is
used as an aid to define the behaviour of a process that is being performed” [2,
Sec. 7.1.1]. A token is commonly generated by a start event, traverses the se-
quence edges of the process and passes through its elements enabling their execu-
tion, and it is consumed by an end event when process completes. The distribution
of tokens in the process elements is called marking, therefore the process execu-
tion is defined in terms of marking evolution. In the collaboration, the process
execution also triggers message flow able to generate messages. We will refer
them as message flow token.

Check
Travel Offer gg B°°k Travel PBV Travel @ .
Offer Bo ing TidRet Transaction

Is the offer
Management interesting? Confi’rmsd Recgived Completed

Customer

Offer Travel Conﬁrmatlon Payment Tlcket

Make Travel Conflrm Order
Offer Booklng T|cke1
Offer Booklng ayment Offer

Needed Received Received Completed

Travel Agency

Figure 1: BPMN collaboration model of a travel agency scenario.
2.6. Travel Agency Collaboration Scenario

We introduce here a BPMN collaboration model of a travel agency scenario to
be used throughout the paper as a running example.

In this scenario, a Travel Agency continuously offers travels to a Customer,
until an offer is accepted. If the Customer is interested in one offer, he/she de-
cides to book the travel and refuses all the others already offered. As soon as the
booking is received by the Travel Agency, it sends back a confirmation message,
and asks for the payment of the travel. When this is completed the ticket is sent to
the Customer, and the Travel Agency activities end.

Running Example (1/9). We design the travel agency scenario as a collaboration
model composed by two pools; namely, the Travel Agency and the Customer, as
reported in Fig. [I] Let us concentrate on the Customer pool. As soon as the pro-
cess starts, due to the presence of a start event, the Customer checks for the travel
offer. This is done by executing a receiving task. Then, he/she decides either
to book the travel or to wait for other offers, by cycling on two XOR gateways.
After the Customer finds the interesting offer, he/she books the travel, by sending
a message to the Travel Agency by executing a sending task, and waits for the
booking confirmation. As soon as the Customer receives the booking confirma-
tion, through an intermediate receiving event, he/she pays the travel, receives the
ticket from the Agency and the process terminates by means of an end event. Sym-
metrically, the Travel Agency, as soon as its process starts, it makes travel offers
to the Customer, by means of a sending task, until an offer is accepted. Thanks to
an AND-split combined with a XOR-join in a cycle, it continuously makes offers.
At the same time, it proceeds in order to receive a booking via an intermediate
receiving event. Then, it confirms the booking and sends a notification to the Cus-
tomer. Finally, after receiving the payment, it orders and sends the ticket, thus
completing its activities by means of a ferminate event which stops and aborts the
running process, including the offering of travels.

9

53
Figure 2: A non WS process model. Figure 3: A WS process model.

3. Classification Results

In this section, we informally introduce the properties we consider and provide
an explanation of our main results. We also discuss how our framework enables
a more precise classification of the BPMN models with respect to others in the
literature.

3.1. Well-structuredness, Safeness and Soundness for BPMN

We take into account three well-known classes of ‘correctness’ properties in
the domain of business process management; namely well-structuredness [6],
safeness [7, 8] and soundness [9, [10]. Their formal definitions will be given in
Section [5 Intuitively, well-structuredness relates to the way the model elements
are connected with each other, while safeness and soundness have to do with the
process behaviour, i.e. to the way processes can be executed.

A BPMN process model is well-structured (WS) if for every split gateway
there is a corresponding join gateway such that the fragment of the model be-
tween the split and the join forms a single-entry-single-exit process fragment (see
Def.). The notion is inspired by the one defined on WF-Nets [6]. As an exam-
ple, the process in Fig. [3]is the well-structured version of the unstructured process
in Fig. 2] The notion of well-structuredness is extended from process to collabo-
rations (see Def. [5)), requiring well-structuredness to all the processes involved in
the organisation.

A BPMN process model is saf if during its execution no more than one
token occurs along the same sequence edge (see Def. [7)). This definition is inspired
by the Petri Net formalism, where safeness means that a Petri Net does not have
more than one token at each place in all reachable markings [8]. Safeness of
processes scales to process collaborations, saying that no more than one token
occurs on the same sequence edge during a collaboration execution (see Def. [g).

ZNotably, the notion of safeness is different from that of safety, and is a specific and standard
concept in the BPMN literature.

10

A BPMN process model is sound whenever, during its execution, it is always
possible to reach a marking where either (i) each marked end event is marked by at
most one token and there is no other token around, or (ii) all edges are unmarked
(see Def. [10). Soundness is also inspired by the literature that presents several
versions on different modelling languages [8] [10] [9] [17]. It is extended to
process collaborations (see Def. [T1]), involving the whole collaboration execution
and requiring that all sent messages are properly received. We also consider a
variant of this property at collaboration level, which is a message-relaxed version,
inspired by [18], that allows pending messages (see Def. [I2).

3.2. Advances with respect to already available classifications.

Differently from other classification works in the literature (at the process level
and) relying on different notations (as, for instance, Workflow Nets [[19} 20] and
m-calculus [21]), our study directly addresses BPMN collaboration models. By re-
lying on a uniform formal framework, we properly study the relationships among
the considered properties. Fig. | summarizes the obtained results. It shows that:

(i) all well-structured collaborations are safe, but the reverse does not hold;

(ii) there are well-structured collaborations that are neither sound nor message-
relaxed sound;

(iii) there are sound and message-relaxed sound collaborations that are not safe.

Message-Relaxed

Well - Structured

Figure 4: Classification of BPMN collaborations.

Item (i) states that well-structured collaborations represent a proper subclass
of safe collaborations. We show that such an inclusion is valid at process level.
On Workflow Nets, instead, a process model, to be safe, has to be well-structured
and sound [20].

Item (ii) states that there are well-structured collaborations that are not sound.
Well-structuredness, instead, implies soundness at the process level. This con-
firms the results provided on Workflow Nets, where well-structuredness implies

11

soundness [22], and relaxes the one obtained in Petri Nets [19], where relaxed
soundness and well-structuredness together imply soundness.

(i) and (ii) confirm the limits of well-structuredness. It turns out to be a very
strict correctness criterion, as some safe and sound models that are not well-
structured are taken a part.

Item (iii) shows that there are sound and message-relaxed sound collabora-
tions that are not safe. This can also be observed at process level resulting in a
novel contribution strictly related to the expressiveness of BPMN and its differ-
ences with respect to other workflow languages. In fact, Van der Aalst shows that
soundness of a Workflow Net is equivalent to liveness and boundedness of the
corresponding short-circuited Petri Net [23]. Similarly, in workflow graphs and,
equivalently, free-choice Petri Nets, soundness can be characterized in terms of
two types of local errors, viz. deadlock and lack of synchronization: a workflow
graph is sound if it contains neither a deadlock nor a lack of synchronization [24]]
[25]. Thus, a sound workflow is always safe. In BPMN instead there are unsafe
processes that are sound.

Summing up, item (i) together with (ii) and (iii), are novel results, also at
process level. As clarified below, this is mainly due to the effects of the behaviour
of the terminate event and sub-processes, that have an impact on the classification
of the models, both at the process and collaboration level.

3.3. Advances in Classifying BPMN Models

Our formalisation focusses on the following BPMN features: different ab-
straction levels (i.e., sub-processes, processes and collaborations), asynchronous
communication paradigm between pools, and different types of process/collabo-
ration completion.

Our formalisation of collaboration models allows to observe both the execu-
tion of the processes involved in the collaboration, through the flow of tokens
along sequence edges, and the exchange of messages between pools, through the
flow of messages along message edges. There is a clear difference between the
notion of safeness directly defined on BPMN collaborations with respect to that
defined on Petri Nets and applied to the Petri Nets resulting from the translation
of BPMN collaborations. Safeness of a BPMN collaboration only refers to tokens
on the sequence edges of the involved processes, while in its Petri Nets translation
it refers to tokens both on message and sequence edges. Indeed, such distinction
is not considered in the available mappings [4] [26], because a message is ren-
dered as a (standard) token in a place. Hence, a safe BPMN collaboration, where

12

sub-process

Sound-Safe Message-Relaxed

Sound

sub-process

sub-process

sub-process

(b)

Figure 5: Reasoning at process level (a) and collaboration level (b).

the same message is sent more than once (e.g., via a loop), is erroneously con-
sidered unsafe by relying on the Petri Nets notion (i.e., 1-boundedness), because
enqueued messages are rendered as a place with more than one token. Therefore,
the notion of safeness defined for Petri Nets cannot be directly applied as it is to
BPMN collaboration models. Similarly, regarding to the soundness property, we
are able to consider different notions of soundness according to the requirements
we impose on message queues (e.g., ignoring or not pending messages). Again,
due to lack of distinction between message and sequence edges, these fine-grained
reasonings are precluded using the current translations from BPMN to Petri Nets.

The study of BPMN models via the frameworks based on Petri Nets has an-
other limitation concerning the management of the terminate event. Most of the
available mappings, such as the ones in [26] and [27]], do not consider the ter-
minate event, while in the one provided in [4], terminate events are treated as
a special type of error events which, however, occur mainly on sub-processes,
whose translation assumes safeness. This does not allow reasoning on most of
the models including the terminate event and, more in general, on all models in-
cluding unsafe sub-processes. Nevertheless, given the local nature of Petri Nets
transitions, such cancellation patterns are difficult to handle. This is confirmed in
[28]], stating that modelling a vacuum cleaner, (i.e., a construct to remove all the
tokens from a given fragment of a net) it is possible but results in a spaghetti-like
model.

The ability of our formal framework to properly distinguish sequence flow
tokens and message flow tokens, jointly with our management of the terminate
event and sub-processes, without any of the above mentioned restrictions, allowed
us to provide a more precise classification of the BPMN models as summarized in
Fig.[5(a) and Fig. [5(b).

In particular, Fig. [5(a) underlines reasonings that can be done at process level
on soundness (independently from safeness and well-structureness). It clearly
emerges the impact of the terminate event on the soundness of models, as using a

13

ot

Figure 6: Unsound process. Figure 7: Sound process with an unsound sub-process.

ko

terminate event in place of an end event might let sound an unsound model. For
example, let us consider the process in Fig. [0} it is a simple process that first runs
in parallel Task A and Task B, then performs two times Task C. According to the
proposed classification the model is unsound. In fact, there is a marking where the
end event has two tokens. Now, let us consider the model obatined by replacing
the end event in Fig. [6| with a terminate event. The resulting model is sound and
this is due to the behaviour of the terminate event that, when reached, removes all
tokens in a process. It is worth noticing that, although the two models are quite
similar, in terms of our classification they result to be significantly different.

Also the use of sub-processes can impact on the satisfaction of the soundness
property. Fig.[7]shows a simple process model where the unsound process in Fig. [6]
is included in the sub-process. According to the BPMN standard, a sub-process
completes only when all the internal tokens are consumed, and then just one to-
ken is propagated along the including process. Thus, it results that the model in
Fig. [7| is sound. Its behaviour would not correspond to that of the process ob-
tained by flattening it, as the resulting model is unsound. Notice, this reasoning
is not affected by safeness and, in particular, it cannot be extended to collabora-
tions since, as we will show in Sec. [/, soundness is not compositional; namely,
the composition of two sound processes not necessarily turns out to be sound.

Interesting situations also arise when focussing on the collaboration level, as
highlighted in Fig. [5(b). Worth to notice is the possibility to transform, with a
small change, an unsound collaboration into a sound one.

In Fig. [8] Fig. [0 and Fig. [I0] we report a simple example showing the impact
of sub-processes. Also in this case the models are rather similar, but according
to our classification the result is completely different. The collaboration model
in Fig. [§] is neither sound nor message-relaxed sound, since on ORG A there is
a configuration with two tokens on the end event and a pending message. Now
let us consider another model obtained from that in Fig. [§ by introducing a sub-
process. The resulting collaboration is as in Fig. [9] and turns out to be unsound
and message-relaxed sound, since the use of the sub-process mitigates the causes
of message-relaxed unsoundness. In fact there will be only the issue of a pending
message, since Task C sends two messages and only one will be consumed by Task

14

ORG A
ORGA

Q‘{ &+ O .g}”’
Task B

[ia] [a1]
e O 2 OGO
(e}
Figure 8: An example of unsound and Figure 9: An example of message-relaxed sound
message-relaxed unsound collaboration. and unsound collaboration.

ORGA

00”:»00

o
2| Ok)+O

o
Figure 10: An example of message-relaxed
sound and sound collaboration.

D. Differently, Fig. [I0] shows that enclosing within a sub-process only the part of
the model generating multiple tokens leads to a positive effect on the soundness
of the model. The collaboration is both sound and message-relaxed sound.

4. Formal Framework

This section presents our BPMN formalisation. Specifically, we first present
the syntax and operational semantics we defined for a relevant subset of BPMN
elements. The direct semantics proposed in this paper is inspired by [29], but
its technical definition is significantly different. In particular, configuration states
are here defined according to a global perspective, and the formalisation now in-
cludes sub-process elements, which were overlooked in the previous semantics
definition.

4.1. Syntax of BPMN Collaborations

To enable the formal treatment of collaborations’ semantics, we defined a
BNF syntax of their model structure (Fig. [II). In the proposed grammar, the
non-terminal symbols C' and P represent Collaborations Structure and Processes
Structure, respectively. The two syntactic categories directly refer to the corre-
sponding notions in BPMN. The terminal symbols, denoted by the sans serif font,
are the typical elements of a BPMN model, i.e. pools, events, tasks, sub-processes
and gateways.

15

C == poolp,P) | C|C
P = start(ecnp, o) | end(e;, ecmp) | startRev(eens, m,e,) | endSnd(e;, m, ecmp)
| terminate(e;) | eventBased(e;, (m1,€01),..., (Mn,€0n))
| andSplit(e;, E,) | xorSplit(e;, E,) | andJoin(E;,e,) | xorJoin(E;, e,)
| task(ej,e,) | taskRcv(e;, m,e,) | taskSnd(e;,m,e,) | empty(e;,e,)
| interRcv(e;, m,e,) | interSnd(e;, m,e,) | subProc(e;, P,e,) | P|P

Figure 11: Syntax of BPMN Collaboration Structures.

It is worth noticing that our syntax is too permissive with respect to the BPMN
notation, as it allows to write collaborations that cannot be expressed in BPMN.
Limiting such expressive power would require to extend the syntax (e.g., by im-
posing processes having at least one end event), thus complicating the definition
of the formal semantics. However, this is not necessary in our work, as we are not
proposing an alternative modelling notation, but we are only using a textual rep-
resentation of BPMN models, which is more manageable for writing operational
rules than the graphical notation. Therefore, in our analysis we will only consider
terms of the syntax that are derived from BPMN models.

Intuitively, a BPMN collaboration model is rendered in our syntax as a collec-
tion of pools and each pool contains a process. More formally, a Collaboration C
is a composition, by means of operator | of pools of the form pool(p, P), where: p
is the name that uniquely identifies the Pool; P is the Process included in the spe-
cific pool, respectively. Similarly, operator | at process level permits to compose
process elements in order to render a process structure in terms of a collection of
elements. Notably, in the considered formal framework it is not possible to dis-
tinguish the difference between communicative tasks and intermediate events (see
Fig. [12).

In the following, m € M denotes a message edge, enabling message exchanges
between pairs of participants in the collaboration, while M € 2". Moreover, m
denotes names uniquely identifying a message edge. We also observe e € K
denoting a sequence edge, while E € 2% a set of edges; we require |E| > 1 when
it is used in joining and splitting gateways. Similarly, we require that an event-
based gateway should contain at least two message events, i.e. A > 1 in each
eventBased term. For the convenience of the reader, we refer with e; to the edge
incoming in an element and with e, to the edge outgoing from an element. In
the edge set [£ we also include spurious edges denoting the enabled status of start
events and the completed status of end events, named enabling and completing

16

edges, respectively. In particular, we use edge e.,;, incoming to a start event,
to enable the activation of the process, while e, is an edge outgoing from the
end events suitable to check the completeness of the process. They are needed to
activate sub-processes as well as to check their completion. Moreover, we have
that e denotes names uniquely identifying a sequence edge.

The one-to-one correspondence between the syntax used here to represent Pro-
cess/Collaboration Structures and the graphical notation of BPMN has been al-
ready illustrated in Sec. 2] To simplify the definition of well-structured processes
(given later), we include an empty task in our syntax. It permits to connect two
gateways with a sequence flow without activities in the middle.

To achieve a compositional definition, each sequence (resp. message) edge of
the BPMN model is split in two parts: the part outgoing from the source element
and the part incoming into the target element. The two parts are correlated since
edge names in the BPMN model are unique. To avoid malformed structure mod-
els, we only consider structures in which for each edge labeled by e (resp. m)
outgoing from an element, there exists only one corresponding edge labeled by e
(resp. m) incoming into another element, and vice versa.

Here in the following we define some auxiliary functions defined on the col-
laboration and the process structure. Considering BPMN collaborations they may
include one or more participants; function participant(C) returns the process
structures included in a given collaboration structure. Formally, it is defined as
follows.

participant(Cy | Cy) = participant(Cy) U participant(Ch)
participant(pool(p, P)) = P

Since we also consider process including nested sub-processes, to refer to the en-
abling edges of the start events of the current level we resort to functions start(P).

start(Py | Py) = start(Py) v start(Py)
start(start(e, €')) = {e} start(startRecv(e, m,€’)) = {e}
start(P) = ¢4 for any element P # start(e,e’) or P # startRcv(e, m, €’)

Notably, we assume that each process/sub-process in the collaboration has only
one start event. Function start(-) applied to C' will return as many enabling edges
as the number of involved participants.

start(Cy | Cs) = start(participant(Ch)) U start(participant(Cs))
start(pool(p, P)) = start(P)

17

We similarly define functions end(P) and end(C') on the structure of processes
and collaborations in order to refer to end events in the current layer.
end(Py | Py) = end(Py) U end(P,)
end(endSnd(e, m,¢’)) = {€'} end(end(e,€’)) = {e'}
end(P) = & for any element P # end(e,e’) or P # endSnd(e, m, ¢)

Function end(C') on the collaboration structure is defined as follow.

end(Cy | C) = end(participant(Ch)) U end(participant(Csy))
end(pool(p, P)) = end(P)

We also define function edges(P) to refer the edges in the scope of P and
edgesEl(P) to indicate the edges in the scope of P without considering the spu-
rious edges (the complete definitions can be found in|[Appendix Al).

Running Example (2/9). The BPMN model in Fig. [I]is expressed in our syntax as
the following collaboration structure (at an unspecified step of execution):

pool(Customer, P¢) | pool(TravelAgency, Pra)

with Ps and Pr, are expressed as follows (where for simplicity we identify the
edges in progressive order e; (with ¢ = 0...20):

Po = start(ep,e;1) | xorJoin({e1, e3},es) | taskRev(ey, Offer, ey) |
xorSplit(ey, {es, e5}) | taskSnd(es, Travel, es) |
interRcv(eg, Confirmation, e7) | taskSnd(e;, Payment, eg) |
interRev(eg, Ticket, eg) | end(eg, e19)

Prao = start(ej,e12) | xorJoin({ei2, €13}, e14) | taskSnd(ey4, Offer, e15) |
andSplit(eys, {€13,e16}) | interRev(esq, Travel, ei7) |
taskSnd(e;7, Confirmation, e1g) | interRecv(e;s, Payment, eo) |
taskSnd(e9, Ticket, eg) | terminate(es)

Moreover, considering functions we defined on the structure we have:
participant (pool(Customer, Po) | pool(TravelAgency, Pra)) = {Pc,Pra},
start(Pe) = {eo}, start(Pra) = {e11}, and end(Pc) = {ei}, end(Pra) = &.
Finally, edges(P¢) = {eq, ..., €10}, edges(Pra) = {e11, ..., €20} O

18

4.2. Semantics of BPMN Collaborations

The syntax presented so far permits to describe the mere structure of a col-
laboration and a process. To describe their semantics we need to enrich it with a
notion of execution state, defining the current marking of sequence and message
edges. We use collaboration configuration and process configuration to indicate
these stateful descriptions.

Formally, a collaboration configuration has the form (C, o, ¢), where: C is a
collaboration structure; o is the part of the execution state at process level, storing
for each sequence edge the current number of tokens marking it (notice it refers to
the edges included in all the processes of the collaboration), and ¢ is the part of the
execution state at collaboration level, storing for each message edge the current
number of message tokens marking it. Moreover, a process configuration has the
form (P, o), where: P is a process structure; and o is the execution state at process
level. Specifically, a state o : E — N is a function mapping edges to a number of
tokens. The state obtained by updating in the state o the number of tokens of the
edge e to n, written as o - {e — n}, is defined as follows: (o - {€ — n})(¢€’) returns
nif ¢ = e, otherwise it returns o(e’). Moreover, a state 6 : Ml — N is a function
mapping message edges to a number of message tokens; so that §(m) = n means
that there are n messages of type m sent by a participant to another that have not
been received yet. Update for 0 is defined in a way similar to ¢’s definitions.

Given the notion of configuration, a collaboration is in the initial state when
each process it includes is in the initial state, meaning that the start event of
each process must be enabled, i.e. it has a token in its enabling edge, while all
other sequence edges (included the enabling edges for the activation of nested
sub-processes), and messages edges must be unmarked.

Definition 1 (Initial state of process). Let (P,0) be a process configuration,
then, the process configuration is initial if isInit(P,c) holds. Predicate

isInit(P, o) holds, if o(start(P)) = 1, and V e € edges(P)\start(P) . o(e) = 0.

Definition 2 (Initial state of collaboration). Let {C,0,0) be a collaboration
configuration, then, a collaboration configuration is initial if isInit(C, o, d) holds.
Predicate isInit(C, 0,0) holds, if ¥ P € participant(C') we have that isInit(P, o),
and ¥ me M . §(m) = 0.

Running Example (3/9). The initial configuration of the collaboration in
Fig. is as follows. Given participant(C) = {Pc, Pra}, we have that
<P0,U>, O'(E()) = 1 a(ei) = 0 Vei with ¢ = 1... 10, and <PTA,U>,

19

o(e;1) = 1 and o(e;) = 0 Ve, with j = 12...20. We also have that
d(Offer, Confirmation, Ticket, Travel, Payment) = 0.]

The operational semantics is defined by means of a labelled transition sys-
tem (LTS) on collaboration configuration and formalises the execution of message
marking evolution according to the process evolution. Its definition relies on an
auxiliary transition relation on the behaviour of process.

The auxiliary transition relation is a triple (P, A,—) where: P, ranged
over by (P, o), is a set of process configurations; A, ranged over by «, is a
set of labels (of transitions that process configurations can perform); and —<
P x A x P is a transition relation. We will write (P,c) % (P, ¢’) to indicate

that ((P,0),a,(P,0’)) €— and say that process configuration (P, o) performs
a transition labelled by « to become process configuration { P, ¢’). Since process
execution only affects the current states, and not the process structure, for the sake
of readability we omit the structure from the target configuration of the transition.
Thus, a transition (P, o) = (P, ¢’ is written as (P,) > ¢’. The labels used by
this transition relation are generated by the following production rules.

(Actions) « == 7 | Im | ?m (Internal Actions) T == e| kill

The meaning of labels is as follows. Label 7 denotes an action internal to
the process, while !m and ?m denote sending and receiving actions, respectively.
The meaning of internal actions is as follows: € denotes the movement of a token
through the process, while kill denotes the termination action.

The transition relation over process configurations formalises the execution of
a process; it is defined by the rules in Fig. Before commenting on the rules, we
introduce the auxiliary functions they exploit. Specifically, function inc : SxE —
S (resp. dec : S x E — S), where S is the set of states, allows updating a state by
incrementing (resp. decrementing) by one the number of tokens marking an edge
in the state. Formally, they are defined as follows: inc(o,e) = o - {e — o(e) + 1}
and dec(o,e) = o - {e — o(e) — 1}. These functions extend in a natural ways to
sets of edges as follows: inc(o, &) = o and inc(o, {e} U E)) = inc(inc(o, e), E);
the cases for dec are similar. As usual, the update function for ¢ are defined in a
way similar to ¢’s definitions. We also use the function zero : S x E — S that
allows updating a state by setting to zero the number of tokens marking an edge
in the state. Formally, it is defined as follows: zero(o,e) = o - {e — 0}. Also
in this case the function extends in a natural ways to sets of edges as follows:
zero(o,) = o and zero(o,{e} U E)) = zero(zero(o,e), E).

20

To check the completion of a sub-process we exploit the boolean predicate
completed (P, o). Tt is defined according to the prescriptions of the BPMN stan-
dard, which states that “a sub-process instance completes when there are no
more tokens in the Sub-Process and none of its Activities is still active” [2,
pp. 426, 431]. The definition of the completed predicate relies on the function
marked(o, E), used to refer to the set of edges in £ with at least one token:

ked(o e} U E) {e} Umarked(o, E) ifo(e) > 0;
marked(o, {e} U E) = ,
marked(o, E) otherwise.

marked(o, &) = &

Now, the sub-process completion can be formalised as follows.

Definition 3. Let P be a process included in a sub-process, the predicate
completed (P, o) holds if the following condition is satisfied:

Je € end(P).e € marked(o,end(P)) A Ye € edges(P)\end(P).o(e) =0

Notably, the completion of a sub-process does not depend on the exchanged
messages, and it is defined considering the arbitrary topology of the model, which
hence may have one or more end events with possibly more than one token in the
completing edges.

We now briefly comment on the operational rules in Fig. [I2] Rule P-Start
starts the execution of a process/(sub-)process when it has been activated (i.e., the
enabling edge e is marked). The effect of the rule is to increment the number of to-
kens in the edge outgoing from the start event. Rule P-End is enabled when there
is at least one token in the incoming edge of the end event, which is then moved
to the completing edge. Rule P-StartRcv start the execution of a process when
it is in its initial state. The effect of the rule is to increment the number of tokens
in the edge outgoing from the start event and remove the token from the enabling
edge. A label corresponding to the consumption of a message is observed. Rule
P-EndSnd is enabled when there is at least a token in the incoming edge of the
end event, which is then moved to the completing edge. At the same time a label
corresponding to the production of a message is observed. Rule P-Terminate
starts when there is at least one token in the incoming edge of the terminate event,
which is then removed. Rule P-FEventG is activated when there is a token in the
incoming edge and there is a message m; to be consumed, so that the application

21

(start(e,e'),0) S inc(dec(o,e),e') o(e) >0 (P-Start)

(end(e,€'),0) < inc(dec(o,e),e') o(e) >0 (P-End)
(startRcv(e,m,€), o) M, ine c(dec(o,e),€e') o(e) >0 (P-StartRev)
{endSnd(e, m,€’), o) m, inc(dec(o,e),e’) o(e) >0 (P-EndSnd)

(terminate(e), o) LN dec(o,e) o(e) >0 (P-Terminate)
(eventBased(e, (m1,€}),...,(my,€};)), 0 BLER oe)>0,1<j<h (P-EventG)
inc(dec(o, e), €’)

(andSplit(e, E), o) 5 inc(dec(a,e), E) o(e) >0 (P-AndSplit)
(xorSplit(e, {¢'} U E),0) 5 inc(dec(o,e),e’) o(e) >0 (P-XorSplit)
(andJoin(E,e),0) 5 inc(dec(o, E),e) Ve'e E.o(e/) >0 (P-AndJoin)
{xorJoin({e} U E,¢'),0) < inc(dec(o,e),e') o(e) >0 (P-XorJoin)

(task(e, &), o) < inc(dec(o,e),e) o(e) >0 (P-Task)
(taskRev(e, m, &), o) ~ inc(dec(o,e),¢’) o(e) >0 (P-TaskRcv)
(taskSnd(e, m,¢'), o) - inc(dec(o,e),¢) o(e) >0 (P-TaskSnd)
(interRev(e, m,e'), o) ~% inc(dec(a,e),e') o(e) >0 (P-InterRcv)
{interSnd(e, m,¢’), o) LR inc(dec(o,e),e’) o(e) >0 (P-InterSnd)

(empty(e,€'), o) = inc(dec(a,e),e') o(e) >0 (P-Empty)
(subProc(e, P,e'),0) 5 inc(dec(a, e), start(P)) giﬁ)e:dg’es(P) o(e") = 0 (P-SubProcStart)
(P,oy % o
(P-SubProcEvolution)
(subProc(e, P,e'),0) % o’
{subProc(e, P,e'), o) < inc(zero(o, end(P)),e') completed(P, o) (P-SubProcEnd)
(P, o> Kill,

(P-SubProcKill)
{subProc(e, P,€'), o) Kill, inc(zero(o’, edges(P)),€’)

kill @ :
P170' L (P1,0) > 0o a#kill
< 4 (P-Kill) o (P-Int)
(P | Pa,0) Kill, zero(a’',edges(Py | P2)) (Pr| Pyyo)—o

Figure 12: BPMN Semantics - Process Level.
22

of the rule moves the token from the incoming edge to the outgoing edge corre-
sponding to the received message. A label corresponding to the consumption of a
message is observed. Rule P-AndSplit is applied when there is at least one token
in the incoming edge of an AND split gateway; as result of its application the rule
decrements the number of tokens in the incoming edge and increments that in each
outgoing edge. Rule P-XorSplit is applied when a token is available in the incom-
ing edge of a XOR split gateway, the rule decrements the token in the incoming
edge and increments the token in one of the outgoing edges, non-deterministically
chosen. Rule P-AndJoin decrements the tokens in each incoming edge and in-
crements the number of tokens of the outgoing edge, when each incoming edge
has at least one token. Rule P-XorJoin is activated every time there is a token
in one of the incoming edges, which is then moved to the outgoing edge. Rule
P-Task deals with simple tasks, acting as a pass through. It is activated only
when there is a token in the incoming edge, which is then moved to the outgoing
edge. Rule P-TaskRcv is activated when there is a token in the incoming edge
and a label corresponding to the consumption of a message is observed. Similarly,
rule P-TaskSnd, instead of consuming, send a message before moving the token
to the outgoing edge. A label corresponding to the production of a message is ob-
served. Rule P-InterRcv (resp. P-InterSnd) follows the same behaviour of rule
P-TaskRcv (resp. P-TaskSnd). Rule P- Empty simply propagates tokens, it acts
as a pass through. Rules P-SubProcStart, P-SubProcEvolution, P-SubProcEnd
and P-SubProcKill deal with the behaviour of a sub-process element. The for-
mer rule is activated only when (i) there is a token in the incoming edge of the
sub-process, which is then moved to the enabling edge of the start event in the
sub-process body, and (ii) all edges of the sub-process are unmarked. Then, the
sub-process behaves according to the behaviour of the elements it contains accord-
ing to the rule P-SubProcEvolution. When the sub-process completes the rule
P-SubProcEnd is activated. It removes all the tokens from the sequence edges of
the sub-process bodyﬂ, and adds a token to the outgoing edge of the sub-process.
Rule P-SubProcKill deals with a sub-process element observing a killing action
in its behaviour due to an occurrence of a terminate event. The sub-process stops
its internal behaviours and passes the control to the upper layer: all the tokens
in the sub-process are removed and a token is added to the outgoing edge of the
sub-process element. Rule P-Kill deal with the propagation of killing action in

3 Actually, due to the completion definition, only the completing edges of the end events within
the sub-process body need to be set to zero.

23

the scope of P and rule P-Int deal with interleaving in a standard way for process
elements. Notice that we do not need symmetric versions of the last two rules, as
we identify processes up to commutativity and associativity of process collection.

Now, the labelled transition relation on collaboration configurations formalises
the execution of message marking evolution according to process evolution. In
the case of collaborations, this is a triple (C, .4, —) where: C, ranged over by
(C,0,9), is a set of collaboration configurations; A, ranged over by «, is a set of
labels (of transitions that collaboration configurations can perform as well as the

process configuration); and —< C x A x C is a transition relation. We will write
(C,0,8) = (C,d’,§") to indicate that ((C,0,6),a,(C,d’,§")) e— and say that

collaboration configuration (C, o, §) performs transition labelled by o to become
collaboration configuration (C, ¢/, §"). Since collaboration execution only affects
the current states, and not the collaboration structure, for the sake of readability we
omit the structure from the target configuration of the transition. Thus, a transition
(C,0,0) = {(C, o', 8" is written as (C, 0,5y = (o', §"). The rules related to the
collaboration level are defined in Fig. 13|

(P,oy 5 o
{pool(p, P), 0,0 = (o', 6)

(C-Internal)

(P,oy ™ o' §(m) >0

- (C-Receive)
{pool(p, P),,3) == (o, dec(d, m))

(P,o) m, 5

' (C-Deliver)
{pool(p, P),,8) = (o’ inc(s, m))

(Cy,0,6) % (d’, 0"
(Cy | Co,0,8) % (o', 6"

(C-Int)

Figure 13: BPMN Semantics - Collaboration Level.

The first three rules allow a single pool, representing organisation p, to evolve
according to the evolution of its enclosed process P. In particular, if P per-
forms an internal action, rule C-Internal, or a receiving/delivery action, rule C-
Receive/C-Deliver, the pool performs the corresponding action at collaboration
level. Notably, rule C-Receive can be applied only if there is at least one message

24

available (premise 6(m) > 0); of course, one token is consumed by this transition.
Recall indeed that at process level, label ?m just indicates the willingness of a pro-
cess to consume a received message, regardless the actual presence of messages.
Moreover, when a process performs a sending action, represented by a transition
labelled by !m, such message is delivered to the receiving organization by apply-
ing rule C-Deliver. The resulting transition has the effect of increasing the number
of tokens in the message edge m. Rule C-Int permits to interleave the execution of
actions performed by pools of the same collaboration, so that if a part of a larger
collaboration evolves, the whole collaboration evolves accordingly. Notice that
we do not need symmetric versions of rule C-Int, as we identify collaborations up
to commutativity and associativity of pools collection.

5. Properties of BPMN Collaborations

In this section we provide a rigorous characterisation, with respect to the
BPMN formalisation presented so far, of the key properties studied in this work:
well-structuredness, safeness and soundness. We characterise these properties
both at process and collaboration levels.

5.1. Well-Structured BPMN Collaborations

The standard BPMN allows process models to have almost any topology.
However, it is often desirable that models abide some structural rules. In this re-
spect, a well-known property of a process model is that of well-structuredness. In
this paper we have been inspired by the definition of well-structuredness given by
Kiepuszewski et al. [6]]. Such a definition was given on workflow models and it is
not expressive enough for BPMN, so we extend it to well-structured collaborations
including all the elements defined in our semantics (i.e. not only basic element in-
cluded in workflow models but also event-based gateway and sub-processes).

Before providing a formal characterisation of well-structured BPMN pro-
cesses and collaborations, we need to introduce some auxiliary functions: in(P)
and out(P) determine, respectively, the incoming and outgoing sequence edges
of a process element P (the full definition is relegated to[Appendix A]). Moreover,
to simplify the definition of well-structuredness for processes, we also provide the
definition of well-structured core by means of the boolean predicate is W.SCore(-).

25

Definition 4 (Well-structured processes). A process P is well-structured (writ-
ten isWS(P)) if P has one of the following forms:

start(e,€) | P'| end(e”,e") (D
start(e,e’) | P’'| terminate(e”) ()
start(e,e’) | P'| endSnd(e”, m,e") (€))
startRcv(e,m,e’) | P’ | end(e”,€e") 4)
startRev(e,m,€’) | P’ | terminate(e”) (5)
startRcv(e,m,€’) | P’ | endSnd(e”,m,e") (6)

where in(P') = {€'}, out(P’) = {€"}, and isWSCore(P’).

isWSCore(-) is inductively defined on the structure of its first argument as fol-
lows:

isWSCore(task(e, €));
isWSCore(taskRev(e, m, €’));
isWSCore(taskSnd(e, m,¢’));
isWSCore(empty(e, €));
isWSCore(interRev(e, m, €'));
isWSCore(interSnd(e, m, €'));

A A~

Vj e [L.n] isWSCore(F;), in(P;) < E, out(P;) < E'

7. isWSCore(andSplit(e, E) | Py | ... | P, | andJoin(E’,€"))
8. isWSCore(xorSplit(e, E) | Py | ... | P, | xorJoin(E',€"))

Vj € [l..n] isWSCore(F;), in(P;) =¢€;, out(P;) < E

=€,

isWSCore(eventBased(e, {(mj,e})|j € [L.n]}) | P | ... | P, | xorJoin(E,e"))

isWSCore(Py), isWSCore(Py),

in(Pr) = {e'}, out(Pr) = {eV},

in(Py) = e}, out(P,) = {¢/)
isWSCore(xorJoin({e",€"},&) | P, | P, | xorSplit(e", {e',e"}))

10.

26

isWSCore(Py),in(P]) = {€"}, out(P]) = {€"}

11(a). isWSCore(subProc(e,start(e’,€") | P| | end(e”,e"),e"))

11(b). isWSCore(subProc(e, start(e’,e") | P’ | termmate("), eVv))

11(c). isWSCore(subProc(e,start(e’,e”) | P| | endSnd(e”, m e"),e"))

11(d). isWSCore(subProc(e, startRev(e’, m, e”) | P/ | end(" eV, ev))

11(6) isWSCore(subProc(e, startRev(e’, m, e”) | P’ I termlnate(e” ,ev))
11(f). isWSCore(subProc(e, startRcv(e’, m, e”) | P’ | endSnd(e”, m,e"),e"))

isWSCore(Py), isWSCore(Py), out(Py) = in(P;)
isWSCore(Py | P)

12.

According to the definition[4] well-structured processes are given in the forms
(1-6), that is as a (core) process included between any possible combination of
different types of the start and end events included in the semantics. We allow a
start event or a start message event and one simple end event or terminate event
or end messege event. The (core) process between the start and end events can
be composed by any element up to the well-structured core definition. Any sin-
gle task or intermediate event is a well-structured core (cases 1-6); a composite
process starting with an AND (resp. XOR, resp. Event-based) split and closing
with an AND (resp. XOR, resp. XOR) join is well-structured core if each edge
of the split is connected to a given edge of the join by means of a well-structured
core processes (cases 7-9); a loop of sequence edges (e; — ¢4 — €5 — €3 — €1)
formed by means of a XOR split and a XOR join is well-structured core if the
body of the loop consists of well-structured core processes (case 10). Notably,
only loops formed by XOR gateways are well-structured. For a better understand-
ing, cases 7 - 10 are graphically depicted in Fig. [I4] A subprocess is well structure
core if it includes a well-structured core process (case 11). A process element col-
lection is well-structured core if its processes are well-structured and sequentially
composed (case 12).

Well-structuredness can be also extended to collaborations, by requiring each
process involved in a collaboration to be well-structured.

Definition 5 (Well-structured collaborations). Letr C be a collaboration,
isWS(C) is inductively defined as follows:

 isWS(pool(p, P)) if P is well-structured;
o isWS(Cy | Co) if isWS(C4) and isWS(Cy).

27

€2 = €6
e5
€3 e1 P4 €4
_Case9 - - Case 10 -

Figure 14: Well-structured nodes (cases 7-10).

Running Example (4/9). Considering the proposed running example and ac-
cording to the above definitions, process P is well-structured, while process Pr 4
is not well-structured, due to the presence of the unstructured loop formed by the
XOR join and an AND split. Thus, the overall collaboration is not well-structured.

]

5.2. Safe BPMN Collaborations

A relevant property in business process domain is safeness, i.e the occurrence
of no more than one token along the same sequence edge during the process exe-
cution.

Before providing a formal characterisation of safe BPMN processes and col-
laborations, we need to introduce the following definition determining the safe-
ness of a process in a given state.

Definition 6 (Current state safe process). A process configuration (P, o) is cur-
rent state safe (cs-safe) if and only if Ve € edgesEIl(P) .o(e) < 1.

We can finally conclude with the definition of safe processes and collaborations
which requires that cs-safeness is preserved along the computations. Now, a pro-
cess (collaboration) is defined to be safe if it is preserved that the maximum mark-
ing does not exceed one along the process (collaboration) execution. We use —*

to denote the reflexive and transitive closure of —.

Definition 7 (Safe processes). A process P is safe if and only if, given o such
that isInit(P, o), for all o' such that { P, 0)y—*c' we have that (P, c") is cs-safe.

28

Definition 8 (Safe collaborations). A collaboration C' is safe if and only if, given
o and § such that isInit(C, 0,0), for all o’ and §' such that {C, o,)—*(d’, ") we

have that ¥ P € participant(C), (P, c") is cs-safe.

Running Example (5/9). Let us consider again our running example depicted
in Fig. |1} Process P is safe since there is not any process fragment capable of
producing more than one token. Process Pr4 instead is not safe. In fact, if task
Make Travel Offer is executed more than once, we would have that the AND split
gateway will produce more than one token in the sequence flow connected to the
Booking Received event. Thus, also the resulting collaboration is not safe.]

5.3. Sound BPMN Collaborations

Another relevant property for the business process domain is soundness. As
usual, we define it both at the process and collaboration level. In a process it
ensures that, once its execution starts with a token in the start event, it is always
possible to reach one of these scenarios: (i) all marked end events are marked ex-
actly by a single token and all sequence edges are unmarked; (ii) no token is ob-
served in the configuration (meaning that a token has reached a terminate event).
The definition extends to collaboration by considering the combined execution of
the included processes and taking into account that all the messages are handled
during the execution (i.e. no pending message tokens are observed).

Definition 9 (Current state sound process). A process configuration {(P,c) is
current state sound (cs-sound) if and only if one of the following hold:

(i) Ve e marked(o,end(P)).o(e) =1 A Ve € edges(P)\end(P).o(e) = 0.
(ii) Ve € edges(P) . o(e) = 0.

Definition 10 (Sound process). A process P is sound if and only if, given o such
that isInit(P, o), for all o' such that { P, 0)—*0’ we have that there exists o” such

that {P,c")y—*c", and { P, 0" is cs-sound.

Definition 11 (Sound collaboration). A collaboration C' is sound if and only
if, given o and § such that islnit(C,0,9), for all o' and & such
that {C,o,6)—*(c’,8') we have that there exist o" and ¢" such that

(C,a',§)—*(c",8"), ¥V P € participant(C) we have that {P,c") is cs-sound,
and ¥V me M. 6" (m) = 0.

29

Thanks to the expressibility of our formalisation to distinguish sequence to-
kens from message tokens we relax the soundness property by defining message-
relaxed soundness. It extends the usual soundness notion by considering sound
also those collaborations in which asynchronously sent messages are not handled
by the receiver.

Definition 12 (Message-relaxed sound collaboration). A collaboration C' is
Message-relaxed sound if and only if, given o and § such that isInit(C, o, 9),
for all o' and §' such that {C,c,0)—*(c’,0") we have that there exist ¢ and "

such that {C,o’',0"y—*(c",§"), and ¥ P € participant(C) we have that (P,c")

is cs-sound.

Running Example (6/9). Let us consider again our running example. It is easily
to see that process P is sound, since it is always possible to reach the end event
and when reached there is no token marking the sequence flows. Also process
Pr 4 is sound, since when a token reaches the terminate event, all the other tokens
are removed from the edges by means of the killing effect. However, the resulting
collaboration is not sound. In fact, when a travel offer is accepted by the customer,
we would have that the AND-Split gateway will produce two tokens, one of which
re-activates the task Make Travel Offer. Thus, even if the process completes, the
message lists are not empty. However, the collaboration satisfied the message-
relaxed soundness property. []

6. Relationships among Properties

In this section we study the relationships among the considered properties both
at the process and collaboration level. In particular we investigate the relationship
between (i) well-structuredness and safeness, (ii) well-structuredness and sound-
ness, and (iii) safeness and soundness. The proofs of these results are reported in

the [Appendix B}

6.1. Well-structuredness vs. Safeness in BPMN

Considering well-structuredness and safeness we demonstrate that all well-
structured models are safe (Theorem [I]), and that the reverse does not hold. To
this aim, first we show that a process in the initial state is cs-safe (Lemma [1)).
Then, we show that cs-safeness is preserved by the evolution of well-structured
core process elements (Lemma [2)) and processes (Lemma [3). These latter two
lemmas rely on the notion of reachable processes/core elements of processes (that

30

is process elements different from start, end, and terminate events). In fact, the
syntax in Fig. [T1] is too liberal, as it allows terms that cannot be obtained (by
means of transitions) from a process in its initial state. This last notion, in its own
turn, needs the definition of initial state for a core process element (isInitEl(P, o),

see [Appendix Al).

Definition 13 (Reachable processes). A process configuration (P, o) is reach-
able if there exists a configuration (P, 0" such that isInit(P, o") and (P, 0"y —"o.

Definition 14 (Reachable core process element). A process configuration
(P,o) is core reachable if there exists a configuration {P,c’) such that
isInitEl(P, o) and (P, "y —"o.

Lemma 1. Let P be a process, if isInit(P, o) then (P, o) is cs-safe.
Proof (sketch). Trivially, from definition of isInit(P, o).]

Lemma 2. Let isWSCore(P), and let {P,c) be a core reachable and cs-safe
process configuration, if (P, o) = o' then (P, ") is cs-safe.

Proof (sketch). We proceed by induction on the structure of well-structured core
process elements. [

Lemma 3. Let P be WS, and let (P, o) be a process configuration reachable and
cs-safe, if (P,0) <> o' then { P, 0"} is cs-safe.

Proof (sketch). We proceed by case analysis on the structure of P, which is a WS
process (see Definition [)).]

Theorem 1. Let P be a process, if P is well-structured then P is safe.

Proof (sketch). We show that if (P, o) —*¢’ then (P, ¢") is cs-safe, by induction
on the length n of the sequence of transitions from (P, o) to (P, o’). O

The reverse implication of Theorem || is not true. In fact there are safe pro-
cesses that are not well-structured. The collaboration diagram represented in
Fig. [I5]is an example. The involved processes are trivially safe, since there are
not fragments capable of generating multiple tokens; however they are not well-
structured.

We now extend the previous results to collaborations.

Theorem 2. Let C be a collaboration, if C' is well-structured then C'is safe.

31

ORGA
&
~
>

m : 0—0
Q i
x -0

Figure 15: A safe BPMN collaboration not well-structured.

Proof (sketch). We proceed by contradiction.]

6.2. Well-structuredness vs. Soundness in BPMN

Considering the relationship between well-structuredness and soundness we
prove that a well-structured process is always sound (Theorem [3), but there are
sound processes that are not well-structured. To this aim, first we show that a
reachable well-structured core process element can always complete its execution
(Lemma()). This latter result is based on the auxiliary definition of the final state
of core elements in a process, given for all elements with the exception of start

and end events (isCompleteEl(P, c)); we refer to |Appendix Alfor the complete
account of the definition.

Lemma 4. Let isWSCore(P) and let {P,c) be core reachable, then there exists
o’ such that {P,o) —*o’ and isCompleteEl(P, o").

Proof (sketch). We proceed by induction on the structure of well-structured core
process. []

Theorem 3. Let isWS(P), then P is sound.

Proof (sketch). We proceed by case analysis.]

The reverse implication of Theorem [3] is not true. In fact there are sound
processes that are not well-structured; see for example the process represented in
Fig.[16] This process is surely unstructured, and it is also trivially sound, since
it is always possible to reach an end event without leaving tokens marking the
sequence flows.

However, Theorem [3] does not extend to the collaboration level. In fact, when
we put well-structured processes together in a collaboration, this could be either
sound or unsound. This is also valid for message-relaxed soundness.

Theorem 4. Let C be a collaboration, isWS(C') does not imply C' is sound.

32

Figure 16: An example of sound process not Well-Structured.

Proof (sketch). We proceed by contradiction.]

Theorem 5. Let C' be a collaboration, isWS(C') does not imply C' is message-
relaxed sound.

Proof (sketch). We proceed by contradiction.]

6.3. Safeness vs. Soundness in BPMN

Considering the relationship between safeness and soundness we demonstrate
that there are unsafe models that are sound. This is a peculiarity of BPMN, faith-
fully implemented in our semantics, thank to its capability to support the terminate
event and (unsafe) sub-processes. Let us first reason at process level considering
some examples.

Theorem 6. Let P be a process, P is unsafe does not imply P is unsound.

Proof (sketch). We proceed by contradiction.]
Let us consider now the collaboration level. We have that unsafe collabora-
tions could either sound or unsound, as proved by the following Theorem.

Theorem 7. Let C' be a collaboration, C'is unsafe does not imply C' is unsound.

Proof (sketch). We proceed by contradiction.]

Running Example (7/9). Considering the collaboration in our running example,
Customer is both safe and sound, while the process of the Travel Agency is unsafe
but sound, since the terminate event permits a to reach a marking where all edges
are umarked. The collaboration is not safe, and it is also unsound but message-
relaxed sound, since there could be messages in the message lists.

7. Compositionality of Safeness and Soundness

In this section we study safeness and soundness compositionality, i.e. how the
behaviour of processes affects that of the entire resulting collaboration. In particu-
lar, we show the interrelationships between the studied properties at collaboration
and at process level. At process level we also consider the compositionality of sub-
processes, investigating how sub-processes behaviour impacts on the safeness and
soundness of process including them.

33

7.1. On Compositionality of Safeness

We show here that safeness is compositional, that is the composition of safe
processes always results in a safe collaboration.

Theorem 8. Let C be a collaboration, if all processes in C are safe then C' is
safe.

Proof (sketch). We proceed by contradiction (see [Appendix B).]

We also show that the unsafeness of a collaboration cannot be in general
determined by information about the unsafeness of the processes that compose it.
Indeed, putting together an unsafe process with a safe or unsafe one, the obtained
collaboration could be either safe or unsafe. Let us consider now some cases.

Running Example (8/9). In our example, the collaboration is composed by a safe
process and an unsafe one. In fact, focussing on the process of the Travel Agency,
we can immediately see that it is not safe: the loop given by a XOR join and an
AND split produces multiple tokens on one of the outgoing edges of the AND
split. Now, if we consider this process together with the safe process of Cus-
tomer, the resulting collaboration is not safe. Indeed, the XOR split gateway,
which checks if the offer is interesting, forwards only one token on one of the two
paths. As soon as a received offer is considered interesting, the Customer process
proceeds and completes. Thus, due to the lack of safeness, the travel agency will
continue to make offers to the customer, but no more offer messages arriving from
the Travel Agency will be considered by the customer. O

Example 1. Another example refers to the case in which a collaboration com-
posed by a safe process and an unsafe one results in a safe collaboration, as
shown in Fig. If we focus only on the process in ORG B we can immediately
notice that it is not safe: again the loop given by a XOR join and an AND split
produces multiple tokens on the same edge. However, if we consider this process
together with the safe process of ORG A, the resulting collaboration is safe. In
fact, task D receives only one message, producing a token that is successively split
by the AND gateway. No more message arrives from the send task, so, although
there is a token is blocked, we have no problem of safeness. O

Example 2. In Fig.[I8we have two unsafe processes, since each of them contains
a loop capable of generating an unbounded number of tokens. However, if we

34

ORGA

S
oy 90

Figure 17: Safe collaboration with safe and unsafe processes.

ORG B

ORGA

O b)40
O e J+ @0 O

Figure 18: Safe collaboration with unsafe processes.

ORGB

consider the collaboration obtained by the combination of these processes, it turns
out to be safe. Indeed, as in the previous example, tasks C and B are executed
only once, as they receive only one message. Thus, the two loops are blocked and
cannot effectively generate multiple tokens.]

Example 3. Also the collaboration in Fig. is composed by two unsafe pro-
cesses: process in ORG A contains an AND split followed by a XOR join that
produces two tokens on the outgoing edge of the XOR gateway, process in ORG
B contains the same loop as in the previous examples. In this case the collabora-
tion composed by these two processes is unsafe. Indeed, the XOR join in ORG A
will effectively produce two tokens since the sending of task B is not blocking. []

Let us now to consider processes including sub-processes. We show that the
composition of unsafe sub-processes always results in un-safe processes, but the

04 40

O-@ e J-6-O

ORGA

ORG B

Figure 19: Unsafe collaboration with unsafe processes.

35

vice versa does not hold. There are also un-safe processes including safe sub-
process when the unsafeness does not depend from the behaviour of the sub-
process.

Theorem 9. Let P be a process including a sub-process subProc(e;, Py, e,), if P
is unsafe then P is unsafe.

Proof (sketch). We proceed by contradiction (see [Appendix Bj). O]

7.2. On Compositionality of Soundness

As well as for the safeness property, we show now that it is not feasible to de-
tect the soundness of a collaboration by relying only on information about sound-
ness of processes that compose it. However, the unsoundness of processes implies
the unsoundness of the resulting collaboration.

Theorem 10. Let C be a collaboration, if some processes in C' are unsound then
C is unsound.

Proof (sketch). We proceed by contradiction (see [Appendix B).]

On the other hand, when we put together sound processes, the obtained col-
laboration could be either sound or unsound, since we have also to consider mes-
sages. It can happen that either a process waits for a message that will never be
received or it receive more than the number of messages it is able to process. Let
us consider some examples.

Running Example (9/9). In our running example, the collaboration is composed
by two sound processes. In fact, the Customer process is well-structured, thus
sound. Focussing on the process of the Travel Agency, it is also sound since when
it completes the terminate end event aborts all the running activities and removes
all the tokens still present. However, the resulting collaboration is not sound, since
the message lists could not be empty. O

Example 4. In Fig.[20\we have a collaboration resulting from the composition of
two sound processes. If we focus only on the processes in ORG A and ORG B we
can immediately note that they are sound. However, the resulting collaboration
is not sound. In fact, for instance, if Task A is executed, Task C in ORG B will
never receive the message and the AND join gateway cannot be activated, thus
the process of ORG B cannot complete its execution.]

36

ORGA

-
¢ %

Figure 20: An example of unsound collaboration with sound processes.

ORG B

Example 5. Also the collaboration in Fig.|21|is trivially composed by two sound
processes. However, in this case also the resulting collaboration is sound. In fact,
Task E will always receive the message by Task B and the processes of ORG A
and ORG B can correctly complete. O]

ORGA

ORG B

Figure 21: Sound collaboration with sound processes.

Let’s now to consider soundness in a multi-layer structure. We show that the
composition of unsound sub-processes does not results in un-sound processes.
There are also sound processes including unsound sub-process. In fact, when
we put unsound sub-process together in a process, this could be either sound or
unsound.

Theorem 11. Let P be a process including a sub-process subProc(e;, Py, e,), if
Py is unsound does not imply P is unsound.

Proof (sketch). We proceed by contradiction (see[Appendix B). O

37

Remark 1. We do not consider well-structuredness and message-relaxed sound-
ness compositionality. In fact, the compositionaly of well-structuredness is im-
plied by the property definition, while it is not possible to study the message-
relaxed soundness compositionality since this property cannot be defined at the
process level (where enqueuing of messages is not considered).

8. Relevance into Practice the S3 tool

To get a clearer idea of the impact of well-structuredness, safeness, and sound-
ness on the real-world modelling practice, we have analysed the BPMN 2.0 pro-
cess and collaboration models available in a well-known, public, well-populated
repository provided by the PROS LabE] namely RePROSitory [15]. It includes
164 model{] that has been retrieved by research papers accepted from the BPM
conference, starting from 2011 that is the year when the BPMN standard has been
released. Thus, the repository is particularly suitable to investigate real modelling
practice, modelling styles and the relevance of modelling constructs.

From the technical point of view, well-structuredness, safeness and soundness
have been checked using the S? too]ﬂ In this regards, an additional contribution
we provide in the paper is the extension of the S® Java stand-alone application
with a new verification component for checking well-structurednesﬂ The appli-
cation allows the user to load a .bpmn file to be checked, and hence to verify the
considered properties. The graphical interface provides a text area reporting the
verification results, and a button to visualise in a separate window the generated
LTS.

Running a massive verification we obtained the results reported in Table [5]
The models are grouped in classes depending on their size. Notably, given the
number of models that are included in the classes with size 40-49, 50-59 and 60-
69, we do not consider these classes in our reasoning below, even if also in these
cases the theoretical results are confirmed by the empirical study.

Let us focus on the well-structuredness; 49% of models in the repository sat-
isfy it. Anyway, more interesting is the trend of the number of well-structured
models with respect to their size. It shows that in practice BPMN models starts

Yhttps://pros.unicam.it/reprository

Shttps://pros.unicam.it:4200/guest/collection/a.m1903202001038

Shttp://pros.unicam.it/s3/

"The updated stand-alone application of S® is available at jhttp://pros.unicam.it:
8080/S3Stand-alone/S3.zip

38

https://pros.unicam.it/reprository
https://pros.unicam.it:4200/guest/collection/a.m1903202001038
http://pros.unicam.it/s3/
http://pros.unicam.it:8080/S3Stand-alone/S3.zip
http://pros.unicam.it:8080/S3Stand-alone/S3.zip

Figure 22: S Modelling Environment Interface.

Size Dataset WS Non-WS Safe MR-Sound Sound

0-9 59 34 (58%) 25(48%) 57 (97%) 44 (15%) 44 (75%)
10-19 77 39 (51%) 38 (49%) 72 (94%) 58 (75%) 58 (715%)
20-29 20 6 (30%) 14 (70%) 18 (90%) 14 (70%) 14 (70%)

30-39 5 0(0%) 5(100%) 4(80%) 3(60%) 3 (60%)
40 - 49 1 0(0%) 1(100%) 1(100%) 0 (0%) 0 (0%)
50 - 59 1 1100%) 0(0%) 1(100%) 1(100%) 1(100%)
60 - 69 1 0(0%) 1(100%) 1(100%) 0(0%) 0(0%)

164 80 (49%) 84 (51%) 154 (94%) 120(73%) 120 (73%)
Table 5: Classification of the models in RePROSitory.

to become unstructured when their size grows. This means that, even if struc-
turedness is a good property, it should be regarded as a general guideline; one
can deviate from it if necessary, especially in modelling complex scenarios. The
balancing between the two classes motivates, on the one hand, our design choice
of considering in our formalisation BPMN models with an arbitrary topology and,
on the other hand, the necessity of studying well-structuredness and the related
properties.

Concerning safeness, it results that 154 models are safe. The classes that
surely cannot be neglected in our study, as they are suitable to model realistic
scenarios, are those with size 0 - 9, 10 - 19, and 20-29 including 156 models, of
which only 9 are unsafe. This makes evident that modelling safe models is part of
the practice, and that imposing well-structuredness is sometimes too restrictive,
since there is a huge class of models that are safe even if with an unstructured
topology.

39

Concerning soundness, it results that there are 120 sound models. Mod-
elling in a sound way is a common practice, recognising soundness as one of
the most important correctness criteria. Moreover, the data shows that there are
well-structured models that are not sound, which confirms the limitation of well-
structuredness. Concerning message-relaxed soundness, it results that the number
of models satisfying this property are the same of the the sound ones. This could
be due to a limitation of the data-set for what concerns the presence of collabora-
tion diagrams, as it only includes 13 diagrams of this type.

9. Related Work

In this paper we provide a formal characterisation of well-structuredness for
BPMN models. To do that we have been inspired by the definition of well-
structuredness given in [[6]. Other attempts are also available in the literature. Van
der Aalst et al. [30] state that a workflow net is well-structured if the split/join
constructions are properly nested. El-Saber and Boronat [31] propose a formal
definition of well-structured processes, in terms of a rewriting logic, but they do
not extend this definition at collaboration level.

We then consider safeness, showing that this is a significant correctness prop-
erty. Dijkman et al. [4] discuss about safeness in Petri Nets resulting from the
translation of BPMN. In such work, safeness of BPMN terms means that no activ-
ity will ever be enabled or running more than once concurrently. This definition
is given using natural language, while in our work we give a precise characterisa-
tion of safeness for both BPMN processes and collaborations. Other approaches
introducing mapping from BPMN to formal languages, such as YAWL [32] and
COWS [33]], do not consider safeness, even if it is recognised as an important
characteristic [|34]].

Moreover, soundness is considered as one of the most important correctness
criteria. There is a jungle of other different notions of soundness in the literature,
referring to different process languages and even for the same process language,
e.g. for EPC a soundness definition is given by Mendling in [35], and for Work-
flow Nets by van der Aalst [10] provides two equivalent soundness definitions.
However, these definitions cannot be used directly for BPMN because of its pe-
culiarities. In fact, although the BPMN process flow resembles to some extent the
behaviour of Petri Nets, it is not the same. BPMN 2.0 provides a comprehensive
set of elements that go far beyond the definition of mere place/transition flows and
enable modelling at a higher level of abstraction.

40

Other studies try to characterize inter-organizational soundness are available.
A first attempt was done using a framework based on Petri Nets [9]. The authors
investigate 10-soundness presenting an analysis technique to verify the correct-
ness of an inter-organizational workflow. However, the study is restricted to struc-
tured models. Soundness regarding collaborative processes is also given in [36]
in the field of the Global Interaction Nets, in order to detect errors in technology-
independent collaborative business processes models. However, differently from
our work, this approach does not apply to BPMN, which is the modelling notation
aimed by our study. Concerning message-relaxed soundness, we have been moti-
vated by Puhlmann and Weske [18], who define interaction soundness, which in
turn is based on lazy soundness [21]. The use of a mapping into 7-calculus, rather
than of a direct semantics, bases the reasoning on constrains given by the target
language. In particular, the authors refer to a synchronous communication model
not compliant with the BPMN standard. Our framework instead natively imple-
ments the BPMN communication model via an asynchronous approach. More-
over, the interaction soundness assumes structural soundness as a necessary con-
dition that we relax.

Therefore, as also already discussed in Sec. [3.2] and Sec. [3.3] our investiga-
tion of properties at collaboration level provides novel insights with respect to the
state-of-the-art of BPMN formal studies.

10. Concluding Remarks

Our study formally defines some important correctness properties, namely
well-structuredness, safeness, and soundness, both at the process and collabo-
ration level of BPMN models. We demonstrate the relationships between the
studied properties, with the aim of classifying BPMN collaborations according
to the properties they satisfy. Rather than converting the BPMN models to Petri
or Workflow Nets and studying relevant properties on the models resulting from
the mapping, we directly define such properties on BPMN, thus dealing with its
complexity and specificities directly. Our approach is based on a uniform formal
framework and is not limited to models with a specific topology, i.e., models do
not need to be block-structured.

Specifically, we show that well-structured collaborations represent a subclass
of safe ones. In fact, there is a class of collaborations that are safe, even if with an
unstructured topology. These models are typically discarded by the modelling ap-
proaches in the literature, as they are over suspected of carrying bugs. However,
we have shown that some of these models can play a significant role in prac-

41

tice. We also show that there are well-structured collaborations that are neither
sound nor message-relaxed sound. Finally, we demonstrate there are sound and
message-relaxed sound collaborations that are not safe. The resulting classifica-
tion also provides a novel contribution by extending the reasoning from processes
to collaborations. Moreover, being close to the BPMN standard, it permits to
catch the language peculiarities, as the asynchronous communication model and
the completeness notion that distinguishes the effect of a terminate end event from
that of a classic end event. Finally, the empirical investigation we did by means of
the S? tool confirms our theoretical study, and makes evident its importance into
practice.

In the future, we plan to continue our programme to reason on the properties of
BPMN collaboration models, by considering variants of the correctness properties
and a larger set of BPMN elements. In particular, we would like to check if the
obtained results are still valid in an extended framework.

References

[1] Lindsay, A., Downs, D., Lunn, K.: Business processes—attempts to find a
definition. Information and Software Technology 45(15) (2003) 1015-1019

[2] OMG: Business Process Model and Notation (BPMN V 2.0) (2011)

[3] Suchenia, A., Potempa, T., Ligeza, A., Jobczyk, K., Kluza, K.: Selected Ap-
proaches Towards Taxonomy of Business Process Anomalies. In: Advances
in Business ICT: New Ideas from Ongoing Research. Volume 658 of SCI.
Springer (2017) 65-85

[4] Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business
process models in BPMN. Information and Software Technology 50(12)
(2008) 1281-1294

[5] Corradini, F.,, Fornari, F., Polini, A., Re, B., Tiezzi, F.: A formal approach to
modeling and verification of business process collaborations. Sci. Comput.
Program. 166 (2018) 35-70

[6] Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On structured work-
flow modelling. In: Seminal Contributions to Information Systems Engi-
neering, 25 Years of CAiSE. Volume 9539 of LNCS. Springer (2000) 431-
445

42

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Lectures on Petri
Nets I: Basic Models. Springer (1998) 12-121

van der Aalst, W.M.: Workflow Verification: Finding Control-Flow Er-
rors Using Petri-Net-Based Techniques. In: Business Process Manage-
ment, Models, Techniques, and Empirical Studies. Volume 1806 of LNCS.
Springer (2000) 161-183

van der Aalst, W.M.: Process-oriented architectures for electronic commerce
and interorganizational workflow. Information Systems 24(8) (December
1999) 639-671

van der Aalst, W., van Hee, K., ter Hofstede, A., Sidorova, N., Verbeek,
H., Voorhoeve, M., Wynn, M.: Soundness of workflow nets: classification,
decidability, and analysis. FAC 23(3) (2011) 333-363

Murata, T.: Petri nets: Properties, analysis and applications. IEEE Proceed-
ings 77(4) (1989) 541-580

Dumas, M., La Rosa, M., Mendling, J., Miesalu, R., Reijers, H.A., Seme-
nenko, N.: Understanding business process models: the costs and benefits of
structuredness. In: CAISE. Volume 7328 of LNCS. Springer (2012) 31-46

Polyvyanyy, A., Garcia-Bafiuelos, L., Dumas, M.: Structuring acyclic pro-
cess models. Information Systems 37(6) (2012) 518-538

Polyvyanyy, A., Garcia-Banuelos, L., Fahland, D., Weske, M.: Maximal
Structuring of Acyclic Process Models. The Computer Journal 57(1) (2014)
12-35

Corradini, F., Fornari, F,, Polini, A., Re, B., Tiezzi, F.: Reprository: a repos-
itory platform for sharing business process models. In: BPM (PhD/Demos).
Volume 2420 of CEUR Workshop Proceedings., CEUR-WS.org (2019) 149-
153

Corradini, F., Morichetta, A., Polini, A., Re, B., Rossi, L., Tiezzi, F.: Safe-
ness and soundness checking in multi-layer bpmn 2.0 collaborations. The
Journal of Systems & Software In press (2020)

El-Saber, N.: CMMI-CM compliance checking of formal BPMN models
using Maude. PhD thesis, University of Leicester - Department of Computer
Science (2015)

43

[18] Puhlmann, F., Weske, M.: Interaction soundness for service orchestrations.
In: Service-Oriented Computing. Volume 4294 of Lecture Notes in Com-
puter Science., Springer (2006) 302-313

[19] Dehnert, J., Zimmermann, A.: On the suitability of correctness criteria for
business process models. In: BPM. Volume 3649 of LNCS. Springer (2005)
386-391

[20] van der Aalst, W.M.: Structural characterizations of sound workflow nets.
Computing Science Reports 96(23) (1996) 18-22

[21] Puhlmann, F., Weske, M.: Investigations on soundness regarding lazy activ-
ities. In: Business Process Management. Volume 4102 of Lecture Notes in
Computer Science., Springer (2006) 145-160

[22] van Hee, K., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve, M.:
History-based joins: Semantics, soundness and implementation. In: In-

ternational Conference on Business Process Management, Springer (2006)
225-240

[23] Van der Aalst, W.M.: Verification of workflow nets. In: International Con-
ference on Application and Theory of Petri Nets, Springer (1997) 407-426

[24] Favre, C., Volzer, H.: Symbolic execution of acyclic workflow graphs. Busi-
ness Process Management (2010) 260-275

[25] Prinz, T.M.: Fast soundness verification of workflow graphs. In: ZEUS.
Volume 1029 of LNCS. Springer (2013) 31-38

[26] Kunze, M., Weske, M.: Behavioural Models - From Modelling Finite Au-
tomata to Analysing Business Processes. Springer (2016)

[27] Kheldoun, A., Barkaoui, K., Ioualalen, M.: Formal verification of complex
business processes based on high-level Petri nets. Information Sciences 385-
386 (April 2017) 39-54

[28] Ter Hofstede, A.: Workflow patterns: On the expressive power of (petri-net-
based) workflow languages. PhD thesis, University of Aarhus (2002)

[29] Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F.: A formal approach
to modeling and verification of business process collaborations. Science of
Computer Programming 166 (2018) 35-70

44

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Van Der Aalst, W.M.: The Application of Petri Nets to Workflow Manage-
ment. Journal of Circuits, Systems and Computers 08(01) (1998) 21-66

El-Saber, N., Boronat, A.: BPMN Formalization and Verification Using
Maude. In: Workshop on Behaviour Modelling-Foundations and Applica-
tions, ACM (2014) 1-12

Decker, G., Dijkman, R., Dumas, M., Garcia-Banuelos, L.: Transform-
ing BPMN diagrams into YAWL nets. In: BPM. Volume 5240 of LNCS.
Springer (2008) 386-389

Prandi, D., Quaglia, P., Zannone, N.: Formal Analysis of BPMN Via a
Translation into COWS. In: Coordination Models and Languages. Volume
5052 of LNCS. Springer (2008) 249-263

Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets.
In: Foundations of Software Technology and Theoretical Computer Science.
Volume 761 of LNCS. Springer (1993) 326-337

Mendling, J.: Detection and prediction of errors in EPC business process
models. PhD thesis, Wirtschaftsuniversitdt Wien Vienna (2007)

Roa, J., Chiotti, O., Villarreal, P.: A verification method for collaborative
business processes. In: International Conference on Business Process Man-
agement. Volume 99 of LNBIP. Springer (2011) 293-305

45

Appendix A. Definitions
Here we reported the complete definitions of some auxiliary notions used in the paper.
We define function edges(P) to refer the edges in the scope of P and edgesFEl(P) to
indicate the edges in the scope of P without considering the spurious edges.
edges(Py | Py) = edges(Py) U edges(Ps)
edges(start(e,€’)) = {e, €'}
edges(end(e,€’)) = {e, e’}
edges(startRev(e, m,e’)) = {e, €'}
edges(endSnd(e, m,¢e’)) = {e, €'}
edges(terminate(e)) = {e}
edges(eventBased(e, (my,€}),...,(mp,€}))) = {e,€],... e, }

edges(andSplit(e,e],...,e})) = {e,€e],... e}

edges(xorSplit(e, e}, ...,€})) = {e,e],... e}
edges(andJoin(ey, ..., ey, €e)) = {e1,...,ex, €}
edges(xorJoin(ey, ..., ep,€)) = {e1,...,ep, €'}

edges(task(e,€')) = {e, &'}
edges(taskRev(e,m,e")) = {e, &'}
edges(taskSnd(e, m,e’)) = {e, e’}
edges(empty(e,€')) = {e, e’}
edges(interRev(e, m,e’)) = {e, €'}
edges(interSnd(e, m, e’)) = {e, e’}
edges(subProc(e, P,e')) = {e, &'} U edges(P)

46

edgesEl(P; | P») = edgesEl(Py) u edgesEl(P,)
edgesFEl(start(e,e')) = {€'}
edgesFEl(end(e,€e’)) = {e}
edgesFEl(startRev(e,m,e’)) = {e, e’}
edgesEl(endSnd(e, m,¢’)) = {e, €'}
edgesEl(terminate(e)) = {e}

edgesEl(eventBased(e, (m1,€}),...,(mp,€)))) = {e, €],€e}}
edgesEl(andSplit(e, e}, ...,€})) = {e,e],...,¢e,}
edgesEl(xorSplit(e,e],...,¢e})) = {e,e],...,e}}
edgesEl(andJoin(eq, ..., ex,€)) = {e1,...,ep, €'}
edgesEl(xorJoin(ey, ..., ep, e)) = {e1,...,ep, €}

edgesEl(task(e,€e’)) = {e, &'}
edgesFEl(taskRev(e, m,e’)) = {e, €'}
edgesEl(taskSnd(e,m,€e’)) = {e, &'}

edgesEl(empty(e,€e’)) = {e, €'}
edgesEl(interRcv(e,m,e’)) = {e, e’}
edgesEl(interSnd(e, m,€’)) = {e, €'}

edgesEl(subProc(e, P,e")) = {e, &'} U edgesEl(P)

We inductively define functions in(P) and out(P), which determine the incoming

and outgoing sequence edges of a process element P.

47

in(start(e,e)) = & out(start(e,e’)) = {e'}

in(end(e,€’)) = {e} out(end(e,€')) = &

in(startRev(e,m,e’)) = & out(startRev(e, m, e’)) = {€'}

in(endSnd(e,m,¢e")) = {e} out(endSnd(e, m,¢’)) = &

in(terminate(e)) = {e} out(terminate(e)) =

in(andSplit(e, E)) = {e} out(andSplit(e, E)) = E

in(xorSplit(e, E)) = {e} out(xorSplit(e, E)) = E

in(andJoin(E,€')) = out(andJoin(E,e")) = {€'}

in(xorJoin(E,¢’)) = out(xorJoin(E,€)) = {e'}

in(eventBased(e, (ml, e),...,(mp,e,))) out(eventBased(e, (my,€)),..., (mp,€})))
= {e} ={e} with 1<j<h

in(task(e,e)) = {e} out(task(e,e’)) = {e'}

in(taskRev(e,m,¢e)) = {e} out(taskRev(e, m,e’)) = {€&'}

in(taskSnd(e, m,e)) = {e} out(taskSnd(e, m,¢’)) = {¢'}

in(empty(e, ¢)) = {e} out(empty(e, €')) = {e}

in(interRev(e, m,¢e’)) = {e} out(interRev(e, m,¢’)) = {€&'}

in(interSnd(e, m,€’)) = {e} out(interSnd(e,m,¢)) = {€&'}

in(subProc(e, P1,¢e")) = {e} out(subProc(e, P,¢€’)) = {€'}

in(Py | Py) = (in(Py) uin(P)) out(Py | P2) = (out(Py) U out(Py))

\ (out(Pr) v out(Py)) \ (in(P1) v in(P))
Definition 15 (Initial state of core elementsin P). Let P be a process, then
isInitEl(P,o) is inductively defined on the structure of process P as follows:
isInitEl(task(e,e'),0) ifo(e) = land o(e') = 0
isInitEl(taskRev(e, m,€’), o) if o(e) = 1 and o(€’)
isInitEl(taskSnd(e, m, '), o(e) =1lando(e)
isInitEl(empty(e,€’),0) i)=1lando(e') =0
isInitEl(interRev(e,m,€e'),0) ifo(e) = 1and o(e') =0
isInitEl(interSnd(e, m,¢e'),0) ifo(e) = 1 and o(¢') = 0
isInitEl(andSplit(e, E), o) ifo(e) = 1and Ve € E . o(¢) =
isInitEl(xorSplit(e, E),0) ifo(e) = land Ve € E . o(€') =
isInitEl(andJoin(E,e),0) if Ve’ € E . o(¢') = 1 and o (e)
isInitEl(xorJoin(E,e),0) if e e E.o(¢/) = 1 and o(e) = 0
isInitEl(eventBased(e, (m1,€01), ..., (Mg, €0k)),0) zfa(e) =
and Ve' € {es1,...,eo}.0(€e) =
isInitEl(subProc(e, P, €')) ifo(e) = 1, o(¢/) =0
and Ve" € edges(P) . (") =0
isInitEl(Py| P2, 0) if Ve € in(Py | P2) : isInitEl(getInEl(e, Py | P2))
and Ve € (edges(Py | Py)\in(Py | P2)) : o(e) =0

where getInEl(e, P) returns the element in P with incoming edge e:

0
0

I

o) i
if (e
o)

0
0
0

AN N N N N N N N N N

48

task(e’,e”) ife =¢

tl EI t k / 1/ —
getInEl(e, task(e’, ")) { € otherwise

taskRev(e/, m,e") ife = ¢

tInEl(e, taskRev(e/, m, e")) =
getInEl(e, taskRev(e’, m, e”)) { € otherwise

taskSnd(e/, m,e”) ife = ¢
€ otherwise

getInEl(e, taskSnd(e/, m, ")) = {

empty (e, €”) ife =¢

etInEl ty(e/,e")) =
getInEl(e, empty(e’,e")) { € otherwise

interRev(e’, m,e”) ife = ¢
€ otherwise

getInEl(e, interRev(e/, m,e")) = {
. / /AN —_ A
getinl(e, interSnd(¢/, m.) — interSnd(e/, m, e”) ife = ¢
€ otherwise

andSplit(¢/, E) ife = ¢

getInEl(e, andSplit(e/, E))
€ otherwise

tInEl dJoin(E,
getInEl(e, andJoin(E, &) e otherwise

xorSplit(e/, E) ife = €

getInEl(e, xorSplit(e’, £)))
€ otherwise

xorJoin(E,¢€’) ifee E
¢ otherwise

|
{ andJoin(E,¢') ifee E
g
-1

getInEl(e, xorJoin(FE, €’)

getInEl(e, eventBased(e’, (my,€]), ..., (my, €})))
eventBased(e’, (my,€f),...,(mg,¢e})) ife =¢
€ otherwise

getInEl(e, subProc(¢/, P,e")) =

subProc(e/, P,e") ife = €
€ otherwise

49

o getInEl(e, P, | P») = getInEl(e, P), getInEl(e, P»)

Definition 16 (Final state of core elements in P). Letr P be a process, then
isCompleteEl(P, o) is inductively defined on the structure of process P as follows:

isCompleteEl(task(e, €’),0) ifo(e) = 0and o(e/) = 1
isCompleteFEl(taskRev(e,m,€’), o) ifo(e) = 0 and o(e') = 1
isCompleteEl(taskSnd(e,m, €’),0) ifo(e) = 0and o(e') =1
isCompleteFEl(empty(e,e'),0) ifo(e) = 0and o(e) = 1
isCompleteEl(interRev(e, m,e’),0) ifo(e) = 0and o(e') =1
isCompleteEl(interSnd(e,m, &), 0) ifo(e) = 0and o(e') = 1
isCompleteEl(andSplit(e,) o)ifo(e) =0and¥e' e E . o(e) =1
isCompleteEl(xorSplit(e, E),0) ifo(e) = 0and Ie' e E . o(¢') = 1

and Ve" € E\e' . o(") =0
isCompleteEl(andJoin(E,e),0) if V' € E . o(e') =0and o(e) = 1
isCompleteEl(xorJoin(E,e),0) if V' € E . o(e') = 0and o(e) = 1
isCompleteFEl(eventBased(e, (M1, €01), ..., (Mg, e0k)),0) if o(e) =

and 3¢’ € {eo1, ..., €0k} - 0(e) =1

and Ve" € {es1,...,ex}\e . o(e") =0
isCompleteFEl(subProc(e, P,€’)) ifo(e) = 0, o(e) = 1

and Ve" € edges(P) . o(e") =0
isCompleteEl(Py| P2, 0) if Ve € out(Py | P2) : isCompleteEl(getOutEl(e, P | P2))

and Ve € (edges(Py | Py)\out(P; | P2)) : o(e) =0

where getOutEl(e, P) returns the element in P with outgoing edge e:

task(e/,e”) ife =¢"
€ otherwise

getOutEl(e, task(e/, ")) = {

taskRev(e/,m,e") ife = &”
€ otherwise

getOutEl(e, taskRev(e/, m,e")) = {

taskSnd(e/, m,e”) ife = ¢”
€ otherwise

getOutEl(e, taskSnd(e’, m, e”)) = {

empty(e/,e”) ife =¢"
€ otherwise

getOutEl(e, empty(e’,€”)) = {

interRev(e/,m, ") ife = ¢”
€ otherwise

getOutEl(e, interRev(e/, m,e”)) = {

50

interSnd(e/, m, e") ife = &”
€ otherwise

getOutEl(e, interSnd(e’, m,e”)) = {

andSplit(e/, E) ifee E

getOutEl(e, andSplit(¢/, E)) ¢ otherwise

getOutEl(e, andJoin(E, ¢) ¢ otherwise

xorSplit(¢/, E) ifee E

getOutEl(e, xorSplit(¢', E)) e otherwise

-{
{ andJoin(E,¢') ife = ¢
-{

xorJoin(E,¢') ife = ¢
€ otherwise

getOutEl(e, xorJoin(E, e')) = {

getOutEl(e, eventBased(e', (my,€]), ..., (my,€})))
eventBased(¢/, (my,€]), ..., (mg,e])) ifee {ef,... €}
e otherwise

subProc(e/, P,e") ife = ¢
e otherwise

getOutEl(e, subProc(e’, P,e")) = {

getOutEl(e, P | P») = getOutEl(e, P1), getOutEl(e, P»)

51

Appendix B. Proofs

In this appendix we report the proofs of the results presented in the paper.

Lemmal(ll Ler P be a process, if isInit(P, o) then { P, o) is cs-safe.

Proof. Trivially, from definition of isInit(P, o). By definition of isInit(P, o), we have
that o(e) = 1 where e € start(P) and V €’ € edges(P)\start(P) . o(¢') = 0, i.e. only
the start event has a marking and all the other edges are unmarked. Hence, we have that
Ve € edgesEIl(P) . o(e) < 1, which allows us to conclude. O

Lemma[l Let isWSCore(P), and let {P,c) be a core reachable and cs-safe process
configuration, if (P,c) <> o' then (P, ") is cs-safe.

Proof. We proceed by induction on the structure of WSCore process elements.
Base cases: since by hypothesis is W.SCore(P), it can only be either a task or an interme-
diate event.

» P =task(e,e’). By hypothesis (P,o) is cs-safe, then edgesEl(P) =
edgesEl(task(e,e’)) = {e,e'} is such that o(e) < 1 and o(¢’) < 1. The only
rule that can be applied to infer the transition (P,) <> ¢’ is P-Task. In order
to apply the rule there must be o(e) > 0; hence 0 < o(e) < 1, ie. o(e) = 1.
We can exploit the fact that (P, o) be is a core reachable configuration to prove
that o(e’) = 0. The application of the rule produces o’ = {inc(dec(o,e),¢€’)), i.e.
o'(e) = 0 and ¢’(¢’) = 1. Thus, ¢’(e) = 0 and o’(¢’) = 1. Hence, we have that
Ve"” € edgesEl(P) . o’'(e”) < 1, which allows us to conclude.

» P = taskRcv(e,m,€e’). By hypothesis (P, o) is cs-safe, then edgesEl(P) =
edgesEl(taskRev(e, m,e’)) = {e, e’} is such that o(e) < 1 and o(e’) < 1. The
only rule that can be applied to infer the transition (P, o) <> ¢’ is P-TaskRcv. In
order to apply the rule there must be o(e) > 0; hence 0 < o(e) < 1,i.e. o(e) = 1.
We can exploit the fact that (P, o) be is a core reachable configuration to prove
that o(e’) = 0. The application of the rule produces o’ = {(inc(dec(o,e),€')), i.e.
o'(e) = 0 and ¢’(¢’) = 1. Thus, ¢’(e) = 0 and o’(¢’) = 1. Hence, we have that
Ve"” € edgesEl(P) . o’'(e”) < 1, which allows us to conclude.

* P = taskSnd(e,m,€’). By hypothesis (P, o) is cs-safe, then edgesEl(P) =
edgesEl(taskSnd(e,m,e’)) = {e,e'} is such that o(e) < 1 and o(¢’) < 1. The
only rule that can be applied to infer the transition (P, o) % ¢’ is P-TaskSnd. In
order to apply the rule there must be o(e) > 0; hence 0 < o(e) < 1,i.e. o(e) = 1.
We can exploit the fact that (P, o) be is a core reachable configuration to prove
that o(e’) = 0. The application of the rule produces ¢’ = {(inc(dec(o,e),€')), i.e.
o'(e) = 0 and ¢’(¢’) = 1. Thus, ¢’(e) = 0 and o’(¢’) = 1. Hence, we have that
Ve"” € edgesEl(P) . o’'(e”) < 1, which allows us to conclude.

52

* P = interRev(e,m,e’). By hypothesis (P,o) is cs-safe, then edgesEl(P) =
edgesEl(interRev(e, m,e’)) = {e, €'} is such that o(e) < 1 and o(¢/) < 1. The
only rule that can be applied to infer the transition (P, 0y <> ¢’ is P-InterRcv. In
order to apply the rule there must be o(e) > 0; hence 0 < o(e) < 1,i.e. o(e) = 1.
We can exploit the fact that (P, o) be is a core reachable configuration to prove
that o(e’) = 0. The application of the rule produces o’ = {inc(dec(o,e),€')), i.e.
o'(e) = 0 and ¢’(¢’) = 1. Thus, ¢’(e) = 0 and o’(¢’) = 1. Hence, we have that
Ve"” € edgesEl(P) . o’'(e”) < 1, which allows us to conclude.

* P = interSnd(e,m,¢’). By hypothesis (P, o) is cs-safe, then edgesEl(P) =
edgesFEl(interSnd(e,m,e’)) = {e,e'} is such that o(e) < 1 and o(e’) < 1. The
only rule that can be applied to infer the transition (P, o) <> ¢’ is P-InterSnd. In
order to apply the rule there must be o(e) > 0; hence 0 < o(e) < 1,i.e. o(e) = 1.
We can exploit the fact that (P, o) be is a core reachable configuration to prove
that o(e’) = 0. The application of the rule produces o’ = (inc(dec(o,e),€’)), i.e.
o'(e) = 0 and ¢/(¢’) = 1. Thus, ¢’(e) = 0 and o’(¢’) = 1. Hence, we have that
Ve"” € edgesEI(P) . o'(e”) < 1, which allows us to conclude.

o P =empty(e,e’). By hypothesis (P,o) is cs-safe, then edgesEl(P) =
edgesEl(empty(e,e’)) = {e, e’} is such that o(e) < 1 and o(¢’) < 1. The only
rule that can be applied to infer the transition (P, o) > ¢’ is P-Empty. In order
to apply the rule there must be o(e) > 0; hence 0 < o(e) < 1, ie. o(e) = 1.
We can exploit the fact that (P, o) be is a core reachable configuration to prove
that o(e’) = 0. The application of the rule produces o’ = (inc(dec(o,e),€’)), i.e.
o'(e) = 0 and ¢’(¢’) = 1. Thus, o’(e) = 0 and ¢/(¢’) = 1. Hence, we have that
Ve"” € edgesEl(P) . o'(e”) < 1, which allows us to conclude.

Inductive cases:

o Let us consider (andSplit(e, E) | P, | ... | P, | andJoin(E’,¢'), o), with Vj €
[1.n] isWSCore(P;), in(P;) < E, out(P;) < E'. There are the following
possibilities:

- (andSplit(e, E'), o) evolves by means of rule P-AndSplit. We can exploit
the fact that this is a core reachable well-structured configuration to prove
that o(e) = 1 and Ve” € E .o(e”) = 0. Thus, (andSplit(e, E),s) = o’ with
o' = inc(dec(o,e), E). Hence, Ve"” € edgesEl(andSplit(e, E)) . (") <
1. By hypothesis (andSplit(e, E) | P1 | ... | P, | andJoin(E’,€’),0) is
cs-safe, i.e. if Ve’ € F .o’(e”) = 1, that is there is a token on the outgoing
edges of the AND-Split in the state (andSplit(e, E), o’), then all the other
edges are unmarked. This means that cs-safeness is not affected. Therefore,
the overall term (andSplit(E,e) | P1 | ... | P, | andJoin(E’,€’),0) is
cs-safe.

53

- Node Py | ... | P, evolves without affecting the split and join gateways. In
this case we can easily conclude by inductive hypothesis.

— Node Py | ... | P, evolves and affects the split and/or join gateways. In this
case we can reason like in the first case, by relying on inductive hypothesis.

- {andJoin(F’,€’),0) evolves by means of rule P-AndJoin. We can ex-
ploit the fact that this is a core reachable well-structured configura-
tion to prove that Ve’ € E’ .o(e”) = 1 and o(¢/) = 0. Thus
(andJoin(E',€'),0) 5 o' with o/ = inc(dec(o, E'),e’). Hence, Ve" €
edgesEl(andJoin(E’,€)) . o(e”) < 1. By hypothesis (andSplit(E,e) |
Py | ... | P, | andJoin(E’,€’),0) is cs-safe, i.e. if there is a token on the
outgoing edge of the AND-Join in the state (andJoin(E’,€’), ¢’ all the other
edges do not have tokens. This means that cs-safeness is not affected. There-
fore, the overall term (andSplit(E,e) | P | ... | P | andJoin(E’,€’), o)
is cs-safe.

| ... | Py | xorJoin(E',€"),0), with Vj €

* Let us consider (xorSplit(e, E) .
; E, out(P;) < E'. There are the following

[1.n] isWSCore(FPj), in(P;
possibilities:

| P
) €

- (xorSplit(e, E), o) evolves by means of rule P- XorSplit. We can exploit the
fact that this is a core reachable well-structured configuration to prove that
o(e) = landVe” € E .o(e”) = 0. Thus, xorSplit(e, {e'}UFE), o) = o', with
o' = inc(dec(o,e),€’). Hence, Ve” € edgesFEl(xorSplit(e, E)) . o(e”) < 1.
By hypothesis {(xorSplit(e, E) | P1 | ... | P, | xorJoin(E’,e"),0) is cs-
safe, i.e. if o/(¢’) = 1, that is there is a token on one of the outgoing edges
of the XOR-Split in the state (xorSplit(e, E), o’), then all the other edges are
unmarked. This means that cs-safeness is not affected. Therefore, the overall
term (xorSplit(e, E) | Py | ... | Py | xorJoin(E’,€"),0”) is cs-safe.

- Node P; | ... | P, evolves without affecting the split and join gateways. In
this case we can easily conclude by inductive hypothesis.

- Node Py | ... | P, evolves and affects the split and/or join gateways. In this
case we can reason like in the first case, by relying on inductive hypothesis.

- (xorJoin({e} U E,¢€’),0) evolves by means of rule P-XorJoin. We can
exploit the fact that this is a core reachable well-structured configuration
to prove that o(e) = 1,Ve” € E’ .o(e”’) = 0 and o(e’) = 0. Thus
{xorJoin({e} U E,¢),0) S o', with 0’ = inc(dec(o,e),e’). Hence, Ve €
edgesEl(xorJoin({e} U E,¢€’)) . o(¢”) < 1. By hypothesis (xorSplit(e, E) |
| Py | ... | Py | xordoin(E’,€"),0) is cs-safe, i.e. if there is a token on
the outgoing edge of the XOR-Join in the state (xorJoin({e} U E,¢€'),0")

54

all the other edges do not have tokens. This means that cs-safeness is not
affected. Therefore, the overall term (xorSplit(e,E) | P, | ... | Pn |
xorJoin(E’,€"), o) is cs-safe.

* Let us consider eventBased(e,{(mj,e})[j € [L.n]}) | P | ... | Py |
xorJoin(E,e"), with Vj € [1.n] isWSCore(P;), in(P;) =€}, out(P;) < E.
There are the following possibilities:

— (eventBased(e, {(mj,€})[j € [l.n]}),0) evolves by means of rule P-
EventG. We can exploit the fact that this is a core reachable well-structured
/

configuration to prove that o(e) = 1 and Vel|j € [l.n].o(e}) = 0.

Thus, (eventBased(e, {(mj,€})|j € [L.n]}),0) KLER o/, with ¢/ =
inc(dec(o,e),e’). Hence, Ve” € edgesEl(eventBased(e, {(mj,e})|j
[1.n]})) . o(e”) < 1. By hypothesis {eventBased(e, {(m;,e})[j €
[1.n]}),0) is cs-safe, ie. if o'(ef) = 1, that is there is a to-
ken on one of the outgoing edges of the Event Based in the state
(eventBased(e, {(mj,e})[7 € [l.n]}),0’), then all the other edges are
unmarked. This means that cs-safeness is not affected. Therefore, the
overall term (eventBased(e, {(mj,e})|j € [L.n]}) | Pr | ... | Pu |
xorJoin(E,e"), ") is cs-safe.

m

- Node Py | ... | P, evolves without affecting the split and join gateways. In
this case we can easily conclude by inductive hypothesis.

- Node Py | ... | P, evolves and affects the split and/or join gateways. In this
case we can reason like in the first case, by relying on inductive hypothesis.

— (xorJoin({e} U E,€’),0) evolves by means of rule P-XorJoin. We can
exploit the fact that this is a core reachable well-structured configuration
to prove that o(e) = 1,Ve” € E’ .o(e”’) = 0 and o(e’) = 0. Thus
{xorJoin({e} U E,¢€),0) 5 o', with 0’ = inc(dec(o,e),e’). Hence, Ve €
edgesEl(xorJoin({e} U E,¢€')) . o(¢”) < 1. By hypothesis (xorSplit(e, E) |
| Py | ... | Py | xordoin(E’,€"),0) is cs-safe, i.e. if there is a token on
the outgoing edge of the XOR-Join in the state (xorJoin({e} U E,¢€’),0’)
all the other edges do not have tokens. This means that cs-safeness is not
affected. Therefore, the overall term {xorSplit(e, E) | P | ... | P |
xorJoin(E’,€e"),o") is cs-safe.

s Let us consider xorJoin({e”,e”},¢/) | P | P> | xorSplit(e", {e¥,e"}) with
in(Py) = {&}, out(Py) = {eV}, in(P) = {e"}, out(P,) = {e"}. We have
the following possibilities:

- (xorJoin({e”,e"},¢€"), o) evolves by means of rule P-XorJoin. We can ex-
ploit the fact that this is a core reachable well-structured configuration to

55

prove that the term is marked o(e’) = 0 and either o(e”) = 1 or o(e”) = 1;

let us assume the marking is o(e”) = 1 (since the other case is similar).
Thus (xorJoin({e”,e"},€'),0) = o with o’ = inc(dec(o, e”’) e’). Hence,
edgesEl(xorJoin({e”,e"},€')) = {€",¢” €'} and o' (¢/) = 1, o/(¢") = 0
and o’(e”) = 0, that is Ve € edgesEl(xorJom({e” e”},e)) o'(e) <

By hypothesis (xorJoin({e”,e"},e’) | P | P> | xorSplit(e", {e" ,e"'}),a>
is cs-safe, i.e. if there is a token on €’ in the state (xorJoin({e",e”},€’),0”)
all the other edges do not have token. This means that cs-safeness is not
affected. Therefore, the overall term (xorJoin({e”,e"},¢') | P | P |
xorSplit(eV, {e¥,e"'}), o’ is cs-safe.

— Node P, | P, evolves without affecting the split and join gateways. In this
case we can easily conclude by inductive hypothesis.

— Node P; | P, evolves and affects the xor join and xor split gateways. In this
case we can reason like in the first case, by relying on inductive hypothesis.

— (xorSplit(e", {e',e"}), o) evolves by means of rule P-XorSplit. We can
exploit the fact that this is a core reachable well-structured configura-
tion to prove that the term is marked as o(eV) = 1. Hence, it evolves
in a cs-safe term; in fact let us assume that it evolves in this way
{xorSplit(eV, {e",e"}),0) 5 o' with ¢/ = inc(dec(o,e"),e"). Hence,
edgesEl(xorSplit(eV, {e¥,e"1})) = {eV,e",e"} and o/(eV) = 0,0'(e") =
1,0'(e") = 0, that is Ve € edgesEl(xorSplit(e, {e¥,e"})) . o’(e) < 1. By
hypothesis (xorJoin({e”,e"”},e') | Pi | P> | xorSplit(e, {e",e"}), o) is
cs-safe, i.e. if there is a token on eV in the state (xorSplit(e", {e",e"'}), ")
all the other edges do not have token. This means that cs-safeness is not
affected. Therefore, the overall term (xorJoin({e”,e"},¢) | P | P |
xorSplit(eV, {e¥,e"1}), o’} is cs-safe.

s Let us consider subProc(e, start(e’,e”) | P{ | end(e”,eV),e'). By hypothe—
sis this is a cs-safe process conﬁguration then edgesEl(subProc(e, start(e’, e”) |
| P{ | end(e”,eV),e¥)) = {e,e”,e"” e} U edgesEl(P]) are such that Ve'i €
edgesEl(subProc(e, start(e’ 7e”)||P1 I end(" eV),e¥)) . o(e") < 1. We have the
following possibilities:

— (subProc(e, P,€"), o) evolves by means of rule P-SubProcStart. In order
to apply the rule it should be o(e) > 0; hence, by cs-safeness, 0 < o(e) < 1,
ie. o(e) = 1. We can exploit the fact that this is a reachable process
configuration to prove that o(e¥) = 0 and o(edges(P;)) = 0. Thus,
{subProc(e, Py,e"),0) 5 o' with ¢’ = inc(dec(o,e), start(Py)). Hence,
Ve¥l € edgesEl(subProc(e, start(e/, e”)|P] | end(e”,elV),e")) . o' (e") < 1.
By hypothesis (subProc(e, P1,€"), o) is cs-safe and reachable, i.e. if there

56

is a token on start(P;) in the state (subProc(e, P1,€"),0”), then all other
edges are unmarked. This means that cs-safeness is not affected. Therefore,
the overall term is cs-safe.

— P; evolves. Thus, (subProc(e, P;,e"),0) can evolve by means of rules
P-SubProcEvolution, P-SubProcEnd or P-SubProcKill. In all the cases
we can conclude by relying on the inductive hypothesis and on the fact that
we consider core reachable configurations.

* Letus consider (P, o) = (P, | P»,0). The relevant case for cs-safeness is when P
evolves by applying P-Int;. We have that (P, | Py, 0) <> o with (Py,0) % o'
By definition of edgesEl(-) function we have that edgesEl(P) = edgesEl(Py) u
edgesEl(P;). By inductive hypothesis we have that Ve € edgesEl(P;) . o(e) < 1
which is cs-safe. Since P, is well structured and cs-safe, then also (P, 0”) is cs-
safe, which permits us to conclude.

U

Lemma[Bl Ler P be WS, and let { P, 0 be a process configuration reachable and cs-safe,
if (P,0) % o then (P,c") is cs-safe.

Proof. According to Definition 4] P can have 6 different forms. We proceed by case
analysis on the parallel component of { P, o) that causes the transition (P, c) > o,

We show now the case P= start(e,e’) | P’ | end(e”,e”).

* start(e,e’) evolves by means of the rule P-Start. In order to apply the rule there
must be o(e) > 0, hence, by cs-safeness, o(e) = 1. We can exploit the fact that this
is a reachable well-structured configuration to prove that o(e’) = 0. The rule pro-
duces the following transition {start(e,e’),) — o} with o} = inc(dec(c,e),e’)
where of(e) = 0 and of(¢/) = 1. Now, (P,o]) = (start(e,e’) | P’ |
| end(e”,€e”),0]) can evolve only through the application of P-Int; producing
(P,c"y with ¢’ (in(P")) = 1.

By hypothesis (P, o) is cs-safe, thus o(¢”) < 1, o(¢”) < 1 and Ve' €
edgesEI(P) . o(e¥) < 1.

Now Ve¥ € edgesEl(P') . 0(e') < 1 and Ve¥ € edgesEIl(P’) . o'(e")
Therefore edgesEl(P) = {e,e"} U edgesEIl(P’) are such that o'(e)
o' (in(P")) < 1, 0'(out(P’)) < 1, 0’'(¢”) < 1. Thus, (P, 0’) is cs-safe.

I/
= =

* end(e”,€e”) evolves by means of the rule P-End. We can exploit the fact that
this is a reachable well-structured configuration to prove that the term is marked
as o(e’) = 1 and o(e”) = 0. The rule produces the following transition

57

(end(e” e"),0) S o} with o} = inc(dec(o,e”),e"”). Now, (P,c) can only
evolve by applying P-Int; producing (P, o).

By hypothesis (P, o) is cs-safe, then o(e”) < 1, o(e”) < 1 and P’ is cs-safe.
Reasoning as previously we can conclude that (P, ¢”) is cs-safe.

07

* P’ moves, that is (P',0) — o¢'. By Lemma 2| (P’ ,¢’) is safe, thus
Ve € edgesEI(P') . o’(e) < 1. By hypothesis, P is cs-safe therefore
edgesFEl(start(e, e)) = {e'} is such that 0’(¢’) < 1 and edgesFEl(end(e”, ")) =

{e”} is such that o/ (e”) < 1. We can conclude that { P, 0"} is safe.

Now we consider the case P= start(e, e’) | P’ | terminate(e”).
* The start event evolves: like the previous case.

* The end terminate event evolves: the only transition we can apply is P-
Terminate.We can exploit the fact that this is a reachable well-structured con-
figuration to prove that the term is marked as o(e”) = 1. By applying the rule

we have (terminate(e”), o) LR o} with o} = dec(o,€"). Now, (P, o) can only
evolve by applying P-Kill; producing {P,c") where ¢’ is completed unmarked,;
therefore it is cs-safe.

e P’ moves: similar to the previous case.
Now we consider the case P= start(e,e’) | P’ | endSnd(e”, m,e").
* The start event evolves: like the previous case.

* The end message event evolves: the only transition we can apply is P- EndSnd. We
can exploit the fact that this is a reachable well-structured configuration to prove
that the term is marked as o(e”) = 1 and o(e”) = 0. By applying the rule we
have (endSnd(e”, m,e"”), o) Am, o} with o] = inc(dec(o,€”),e"”) Now, (P, o)
can only evolve by applying P-Int; producing (P, ¢’). By hypothesis (P, o) is
cs-safe, then o(e”) < 1, o(e”) < 1 and P’ is cs-safe. Reasoning as previously we
can conclude that (P, o”) is cs-safe.

e P’ moves: similar to the previous cases.
Now we consider the case P= startRcv(e, m,€’) | P’ | end(e”,e”).

* startRecv(e, m, ') evolves by means of the rule P-StartRcv. In order to apply the
rule there must be o(e) > 0, hence, by cs-safeness, o(e) = 1. We can exploit the
fact that this is a reachable well-structured configuration to prove that o(e’) = 0.

: » ? .
The rule produces the following transition (startRcv(e,m,e’),s) —> o} with

58

o] = inc(dec(o,e),e') where oj(e) = 0 and oj(¢) = 1. Now, (P,0]) =
startRev(e,m,¢’) | P’ | end(e”,€"”), o]) can evolve only through the application
of P-Int; producing (P, ¢") with ¢’(in(P")) = 1.

By hypothesis (P, o) is cs-safe, thus o(¢”) < 1, o(¢”) < 1 and Ve' €
edgesEI(P’) . o(e¥) < 1.

Now Ve¥ € edgesEI(P') . o(e¥) < 1 and Ve¥ € edgesEl(P’) . o'(e¥)
Therefore edgesEl(P) = {€,e"} U edgesEl(P’) are such that o'(e’)
o' (in(P")) < 1, o'(out(P’)) < 1, 0'(e") < 1. Thus, (P, 0’) is cs-safe.

A

* end(e”,e”) evolves by means of the rule P-End. It follows as in the first case.

» P’ moves, that is (P',0) % ¢/. By Lemma 2 (P',¢') is safe, thus
Ve € edgesEI(P') . ¢’(e) < 1. By hypothesis, P is cs-safe there-
fore edgesFEl(startRev(e,m,e’)) = {e'} is such that o/(¢/) < 1 and
edgesFEl(end(e”,e")) = {e"} is such that o’(e”) < 1. We can conclude that
(P, o’y is safe.

Now we consider the case P= startRcv(e, m,¢’) | P’ | terminate(e”).

* startRcv(e, m,€’) evolves by means of the rule P-StartRcv: like in the previous
case.

* The end terminate event evolves: the only transition we can apply is P- Terminate:
like in the case P= start(e,€’) | P’ || terminate(e”).

« P’ moves, that is (P',0) % o¢'. By Lemma 2| (P’,¢') is safe, thus
Ve € edgesElI(P') . o'(e) < 1. By hypothesis, P is cs-safe there-
fore edgesEl(startRev(e,m,e’)) = {e’} is such that o'(¢/) < 1 and
edgesFEl(terminate(e”)) = {e”} is such that ¢/(e”) < 1. We can conclude that
(P,c") is safe.

Now we consider the case P= startRcv(e,m,¢e’) | P’ | endSnd(e”, m,e").

* startRcv(e, m,€’) evolves by means of the rule P-StartRcv: like in the previous
case.

* endSnd(e”,m,e”) evolves by means of P-EndSnd : like in the case P=
start(e,€’) | P’ | endSnd(e”, m,e").

* P' moves, that is (P',0) = o/. By Lemma [2] (P’ ,0’) is safe, thus
Ve € edgesEI(P') . o'(e) < 1. By hypothesis, P is cs-safe there-
fore edgesFEl(startRev(e,m,e’)) = {e'} is such that o/'(¢/) < 1 and
edgesEl(endSnd(e”,m,e”)) = {e"} is such that ¢’(¢”) < 1. We can conclude
that (P, ") is safe.

59

Theorem 1. Let P be a process, if P is well-structured then P is safe.

Proof. We have to show that if (P,o) —* ¢’ then (P, ") is cs-safe. We proceed by
induction on the length n of the sequence of transitions from (P, o) to (P, o").

Base Case (n = 0): In this case 0 = ¢/, then isInit(P, ¢’) is satisfied. By Lemma [1] we
conclude (P, ¢’ is cs-safe.

Inductive Case: In this case (P, o) —* (P, 0"y % (P, ¢") for some process (P,c"). By
induction, (P, ") is cs-safe. By applying Lemma [3|to (P, ¢") % (P, ¢", we conclude
(P, 0"y is cs-safe. Ul

Theorem 2. Let C be a collaboration, if C is well-structured then C' is safe.

Proof. By contradiction, let us assume C' is well-structured and C' is unsafe. By Defini-
tion [8] given ¢ and ¢ such that isInit(C, o, d) there exists a collaboration configuration
(C,0’',d") such that (C,0,5) —* (C,0’,0") and 3P in C, (P, ¢’) not cs-safe. From
hypothesis isInit(C, o, d), we have isInit(P, o). Thus, also (P, ¢") is reachable. From
hypothesis C' is well-structured, we have that P is WS. Therefore, by Theorem (I} P is
safe. By Definition[7} (P,) is cs-safe, which is a contradiction.]

Lemmaldl Let isWSCore(P) and let (P, o) be core reachable, then there exists o’ such
that { P, o) —*c" and isCompleteEl(P, o).

Proof. We proceed by induction on the structure of isWSCore(P). Base cases: by defi-
nition of is W.SCore(), P can only be either a task or an intermediate event.

» P = task(e,€'). The only rule we can apply is P-Task. In order to apply the
rule there must be o(e) > 0. Since isWSCore(P), (P, o) is safe, hence o(e) =
1. Since the process configuration is core reachable we have o(e) = 0. The
application of the rule produces (task(e, '), o) 5 ¢’ with o’ = inc(dec(o, e),e’).
Thus, we have o’(e) = 0 and o’(¢’) = 1, which permits us to conclude.

e P = taskRcv(e,m,€’). The only rule we can apply is P-TaskRcv. In order to
apply the rule there must be o(e) > 0. Since is WSCore(P), (P, o) is safe, hence
o(e) = 1. Since the process configuration is core reachable we have o(e’) =

0. The application of the rule produces (taskRcv(e, m,€’), o) M, o with o =
inc(dec(o,e),€"). Thus, we have o’(e) = 0 and ¢’(¢’) = 1, which permits us to
conclude.

60

P = taskSnd(e, m,€’). The only rule we can apply is P-TaskSnd. In order to
apply the rule there must be o(e) > 0. Since isWSCore(P), (P, o) is safe, hence
o(e) = 1. Since the process configuration is core reachable we have o(e') =

0. The application of the rule produces (taskSnd(e, m,¢e’), o) M, o' with o’ =
inc(dec(o,e),e’). Thus, we have ¢/(e) = 0 and ¢/(¢’) = 1, which permits us to
conclude.

e P = interRcv(e, m,¢€’). The only rule we can apply is P-InterRcv. In order to
apply the rule there must be o(e) > 0. Since isWSCore(P), (P, o) is safe, hence
o(e) = 1. Since the process configuration is core reachable we have o(e’) =
0. The application of the rule produces {interRcv(e, m,e’),0) = o’ with o/ =
inc(dec(o,e),e’). Thus, we have ¢/(e) = 0 and ¢/(¢’) = 1, which permits us to
conclude.

e P = interSnd(e,m,€’),. The only rule we can apply is P-InterSnd. In order
to apply the rule there must be o(e) > 0. Since isWSCore(P), (P,o) is safe,
hence o(e) = 1. Since the process configuration is core reachable we have o(e’) =

0. The application of the rule produces (interSnd(e, m,¢e’), o) M, o' with o/ =
inc(dec(c,e),e’). Thus, we have o/(e) = 0 and o’(¢’) = 1, which permits us to
conclude.

e P = empty(e,€'),. The only rule we can apply is P-Empty. In order to apply the
rule there must be o(e) > 0. Since is WSCore(P), (P, o) is safe, hence o(e) = 1.
Since the process configuration is core reachable we have o(e’) = 0. The appli-
cation of the rule produces (empty(e,e’),0) = o' with o/ = inc(dec(o,e),e’).
Thus, we have ¢/(e) = 0 and 0’(¢’) = 1, which permits us to conclude.

Inductive cases: we consider one case, the other are dealt with similarly.

* Let us consider P = (andSplit(e, E) | Py | ... | Pn | andJoin(E’,€'), o). There
are the following possibilities:

- (andSplit(e, E'), o) evolves by means of rule P-AndSplit. We can exploit
the fact that this is a core reachable well-structured configuration to prove
that o(e) = 1 and Ve” € E .o(e”) = 0. Thus, (andSplit(e, E), o) 5 o} with
o} = inc(dec(o,e), E). Now, P can evolve only through the application
of P-Int; producing (P, o) with oh(in(Py)) = ... = dh(in(P,)) = 1.
By inductive hypothesis there exists a state o4 such that isCompleteEl(P; |
| ... | Pn,o%). Now, P can only evolve by applying rule P-Int;, producing
(P,o}) where Ve € E' . oj(e"”) = 1. Now, (andJoin(E’,¢'),c}) can
evolve by means of rule P-AndJoin. The application of the rule produces
(andJoin(E',€), a0}y = o' with o = inc(dec(oy, E'),€'), ie. o'(e/) = 1
and Ve” € E' . /(") = 0. This permits us to conclude.

61

— Py | ... | P, evolves without affecting the split and join gateways. In this
case we can easily conclude by inductive hypothesis.

— Pi | ... | P, evolves and affects the split and/or join gateways. In this case
we can reason like in the first case.

* Let us consider P = {xorSplit(e,E) | P1 | ... | P, | xorJoin(E’,€"),c). There
are the following possibilities:

— (xorSplit(e, E), o) evolves by means of rule P-XorSplit. We can exploit the
fact that this is a core reachable well-structured configuration to prove that
o(e) = 1 and Ye” € E .o(e") = 0. Thus, (xorSplit(e, {¢'} U E),0) 5 o}
with o} = inc(dec(o,e),€e’). Now, P can evolve only through the applica-
tion of P-Int; producing (P, o) with o (in(P1)) = ... = ab(in(P,)) = 1.
By inductive hypothesis there exists a state o4 such that isCompleteEl(P; |
| ... | Pn,o0%). Now, P can only evolve by applying rule P-Int;, pro-
ducing (P, o)) where 3e” € E' . oi(e”) = 1, let us say oj(e") = 1.
Now, (xorJoin({elV} U E’ €'}, o} can evolve by means of rule P-XorJoin.
The application of the rule produces (xorJoin({elV} U E’, '), o) 5 o’ with
o' = inc(dec(o,eV),e’), ie. o'(¢) = 1 and Ve"” € E' . o/(”) = 0. This
permits us to conclude.

- P | ... | P, evolves without affecting the split and join gateways. In this
case we can easily conclude by inductive hypothesis.

- P1| ... | P, evolves and affects the split and/or join gateways. In this case
we can reason like in the first case.

* Let us consider P = eventBased(e, {(mj,e})|j € [L.n]}) | P | ... | P |
xorJoin(E, e"). There are the following possibilities:

— (eventBased(e, {(mj,e})[j € [l.n]}),0) evolves by means of rule
P-EventG. We can exploit the fact that this is a core reachable well-
structured configuration to prove that o(e) = 1 and Ve |j € [1..n].o(e}) =

0. Thus, (eventBased(e, {(m;,e})[5 € [1.n]}),0) KLER o] with o} =

inc(dec(o, e), ;). Now, P can evolve only through the application of P-Int;
producing (P, ch) with o}(in(P1)) = ... = oh(in(P,)) = 1. By induc-
tive hypothesis there exists a state o4 such that isCompleteEl(P; | ... |
| P,,0%). Now, P can only evolve by applying rule P-Int;, producing
(P,cy where 3¢” € E' . oi(e") = 1, let us say o)(e") = 1. Now,
{xorJoin({eV} U E,¢),d)) can evolve by means of rule P-XorJoin. The
application of the rule produces {xorJoin({eV} U E,¢'),d)) = o' with
o' = inc(dec(o,eV),e), ie. o'(¢/) = 1 and Ve"” € E . o’(¢") = 0. This
permits us to conclude.

62

— Py | ... | P, evolves without affecting the split and join gateways. In this
case we can easily conclude by inductive hypothesis.

- P1 | ... | P, evolves and affects the split and/or join gateways. In this case
we can reason like in the first case.

s Let us consider xorJoin({e”,e”},¢') | P | P> | xorSplit(e", {e¥,e"}) with
in(Py) = {e'}, out(P) = {eV}, in(P) = {e"}, out(P;) = {e"}. There are
the following possibilities:

- (xorJoin({e”,e"},¢€"), o) evolves by means of rule P-XorJoin. We can ex-
ploit the fact that this is a core reachable well-structured configuration to
prove that the term is marked o(e’) = 0 and either o(e”) = 1 or (") = 1;
let us assume the marking is o(e”) = 1 (since the other case is similar).
Thus (xorJoin({e”,e"},€'),0) 5 o} with o} = inc(dec(c,e”),e’). Now,
P can evolve only through the application of P-Int; producing {P,d})
with o4 (in(P1)) = ob(in(P2)) = 1. By inductive hypothesis there ex-
ists a state of such that isCompleteEl(P, | P»,0%). Now, P can only
evolve by applying rule P-Int;, producing (P, o) with, oj(eV) = 1.
Now, (xorSplit(el, {e",e"}), o)) can evolve by means of rule P-XorSplit.
The application of the rule produces (xorSplit(e", {e",e"1}), o) 5 ¢’ with
o' = inc(dec(ch,eVv),e"), ie. o'(e¥) = 1 and o’(eV) = o/(e") = 0. This
permits us to conclude.

— Pp | P, evolves without affecting the split and join gateways. In this case we
can easily conclude by inductive hypothesis.

— Py | P; evolves and affects the split and/or join gateways. In this case we
can reason like in the first case.

» Let us consider subProc(e,start(e’,e”) | P] | end(e”,eV),e") with
isWSCore(P]),in(P{) = {€"},out(P]) = {€"}. Let us call P; = start(e/,e”) |
P} | end(e”, e!), thus the overall term becomes subProc(e, 1, e") The we have:

— subProc(e, P, €") evolves by means of rule P-SubProcStart. We can ex-
ploit the fact that this is a core reachable well-structured configuration to
prove that o(e) = 1 and Ve"' € edgesEl(subProc(e, Py, e"))\{e} . o(e") =
0. The application of the rule produces {(subProc(e, Py, e"),0) < o} with
o} = inc(dec(o,e), start(Py)). Now, P; can evolve only through the appli-
cation of P-Int;. Thus, (subProc(e, P,€"), o) can evolve by means of rules
P-SubProcEvolution, or P-SubProcKill. In all the cases, by relying on the
inductive hypothesis there exists a state o such that isCompleteEl(Py, o%).
This means that there is a token on the incoming edge of the end event

63

of process P; and all other edges are unmarked, that is o5(end(P;)) =
o4 (e%/") = 1 and Ve € edges(Py)\end(P1).c(e) = 0. Indeed, predicate
completed (P, 0%) holds. We can now apply rule P-SubProcEnd produc-
ing (subProc(e, P1,e"), 0%y = o' with o’ = inc(zero(o, end(P1)),e") that
permits us to conclude.

e Let wus consider (P,o) = (P, [Py,0), with
isWSCore(Py),isWSCore(Py),out(Py) = in(P). The relevant case for cs-
safeness is when P evolves by applying P-Int;. We have that (P; | Py, 0) = o}
with (P;,0) % of. By inductive hypothesis we have that there exists o’
such that isCompleteEl(Py,0'). By hypothesis out(P;) = in(P,) thus,
isCompleteEl(getOutEl(e, Py | P2)) = isCompleteEl(getOutEl(e, Py)), that
holds by inductive hypothesis. By hypothesis P is well structured and core
reachable, then we have that edges(Ps)\out(P,)) : o'(e) = 0 By definition of
isCompleteEl(Py,| P2,0’) we can conclude.

Theorem 3. Let isWS(P), then P is sound.

Proof. According to Definition 4 P can have 6 different forms. We consider now the
case P= start(e,€e’) | P’ | end(e”,e”).

Let us assume that is/nit(P,c). Thus we have that o(start(P)) = 1, and V eV €
edges(P)\start(P) . o(e") = 0. Therefore the only parallel component of P that can
infer a transition is the start event. In this case we can apply only the rule P-Start. The
rule produces the following transition, (start(e, e'), o) = o’ with o’ = inc(dec(c,e),e’)
where ¢o’(e) = 0 and o’(¢’) = 1. Now (P, ¢’) can evolve through the application of
rule P-Int; producing (P, o}), with of(in(P")) = 1. Now P’ moves. By hypothesis
isWSCore(P’), thus by Lemma 4] there exists a process configuration (P, o) such that
(P! o) —*0), and isCompleteEl(P’, o). The process can now evolve thorough rule
P-Int;. By hypothesis the process is WS, thus, after the application of the rule we obtain
(start(e,€') | P’ | end(e”,e”),0%), where o4(e”) = 1 and Ve' € edges(P’) . o4(e") =
0. We can now apply rule P-End that decrements the token in e” and produces a token in
e”, which permits us to conclude.

0

Theorem 4. Let C be a collaboration, isWS(C') does not imply C' is sound.

64

Proof. Let C' be a WS collaboration, and let us suppose that C' is sound. Then, it is
sufficient to show a counter example, i.e. a WS collaboration that is not sound. Let us
consider, for instance, the collaboration in Fig. By Definition, the collaboration is
WS. The soundness of the collaboration instead depends on the evaluation of the condition
of the XOR-Split gateway in ORG A. If a token is produced on the upper flow and Task
A is executed then Task C in ORG B will never receive the message and the AND-Join
gateway can not be activated, thus the process of ORG B can not reach a marking where
the end event has a token. O

ORGA

ORG B

Figure B.23: An example of unsound collaboration with sound WS processes.

Theorem 5. Let C be a collaboration, isWS(C') does not imply C' is message-relaxed
sound.

Proof. Let C be a WS collaboration, and let us suppose that C' is message-relaxed sound.
Then, it is sufficient to show a counter example, i.e. a WS collaboration that is not
message-relaxed sound. We can consider again the collaboration in Fig. [B.23] By rea-
soning as previously, the message-relaxed soundness of the collaboration depends on the
evaluation of the condition of the XOR-Split gateway in ORG A. This permits us to con-
clude.]

Theorem 6. Let P be a process, P is unsafe does not imply P is unsound.

Proof. Let P be a unsafe process, and let us suppose that P is unsound. Then, it is suffi-
cient to show a counter example, i.e. a unsafe collaboration that is sound. We can consider
the process in Fig.[B.24] It is unsafe since the AND split gateway creates two tokens that
are then merged by the XOR join gateway producing two tokens on the outgoing edge of
the XOR join. However, after Task C is executed and one token enables the terminate end
event, the k¢!l label is produced and the second token in the sequence flow is removed
(rule P-Terminate), rendering the process sound. Il

Theorem 7. Let C be a collaboration, C' is unsafe does not imply C' is unsound.

65

Figure B.24: An example of unsafe but sound process.

Proof. Let C be a unsafe collaboration, and let us suppose that C' is unsound. Then, it
is sufficient to show a counter example, i.e. a unsafe collaboration that is sound. We
can consider the collaboration in Fig. Process in ORG A and ORG B are trivially
unsafe, since the AND split gateway generates two tokens that are then merged by the
XOR join gateway producing two tokens on the outgoing edge of the XOR join. By
definition of safeness collaboration the considered collaboration is unsafe. Concerning
soundness, processes of ORG B and ORG A are sound. In fact, in each process, after one
token enables the terminate end event, the kill label is produced and the second token in
the sequence flow is removed (rule P-Terminate), resulting in a marking where all edges
are unmarked. Thus, the resulting collaboration is sound. O]

ORGA

ORGB

Figure B.25: An example of unsafe but sound collaboration.

Theorem 8. Let C be a collaboration, if all processes in C are safe then C' is safe.

Proof. By contradiction let C be unsafe, i.e. there exists a collaboration (C, ¢’, ¢") such
that (C, o,6)—*(c’,40") with pool(p, P) in C and (P, ¢’) not cs-safe. By hypothesis
all processes of C' are safe, hence it is safe the process, say P, of organisation p. As
(C,0’,d") results from the evolution of {(C, o,), the process (P, o’y must derive from
(P,c) as well, that is (P,o)—*c’. By safeness of P, we have that (P, ¢") is cs-safe,

which is a contradiction.]

Theorem 9. Letr P be a process including a sub-process subProc(e, Py, €'), if Py is un-
safe then P is unsafe.

66

Proof. Let us suppose P = subProc(e, P1,€') | P» By contradiction let P be safe,
i.e. given o such that isInit(P, o), for all ¢’ such that (P,o)—*c’ we have that

(P, 0"y is cs-safe. By hypothesis P; is unsafe, i.e. given o} such that isInit(Py,o?),
there exists o) such that (P, 0])—*0} and (Pi,0}) not cs-safe. Thus, Je” €

edgesEl(Py) . o4(¢”) = 1. By definition of function edgesEl(-), we have that
edgesEl(P) = edgesEl(subProc(e, P1,€')) u edgesEl(P;). By safeness of P we
have that given o such that isInit(P, o), for all ¢’ such that (P, o)—*c’ we have that

(P,c") is such that Ve € edgesEl(P).o'(e) < 1. Choosing ¢/ = o), we have that
3e” € edgesEIl(P) . o4(e”) = 1. Thus, P is not cs-safe, which is a contradiction.]

Theorem 10. Let C' be a collaboration, if some processes in C' are unsound then C' is
unsound.

Proof. Let P; and P, be two processes such that P} is unsound, and let C be the collabo-
ration obtained putting together P, and P». By contradiction let C' be sound, i.e., given o
and ¢ such that isInit(C, 0, 0), for all ¢’ and ¢’ such that (C, o, §)—*(c’, 0") we have that

there exist o” and 0” such that (C, ¢’, §')—*(c”,§"),and V P € participant(C) we have

that (P, 0" is cs-sound and ¥m € M . 6”(m) = 0. Since P; is unsound, we have that,
given o, such that isInit(Py, o}), for all o} such that (P, o)—*c?, we have that does not

exist o such that (P, o4)—*0%, and (Py, 0%) is cs-sound. Choosing (C', ¢’, ¢") such that

pool(p, P1) in C’, by unsoundness of P; we have that there exists a process in C” that is
not cs-sound, which is a contradiction.]

Theorem 11. Ler P be a process including a sub-process subProc(e, Py, €'), if Py is
unsound does not imply P is unsound.

Proof. Let P; be a unsound, and let us suppose that P is unsound. Then, it is sufficient
to show a counter example, i.e. an sound process including an unsound sub-process. We
can consider process in Fig. The process is unsound since when there is a token in
the end event of ORG A there is still a pending sequence token to be consumed. If we
include the part of the model generating multiple tokens in the scope of a sub-process,
as it is shown in Fig. that is when the process includes a sub-process, the process
is sound. In fact, when there is a token in the end event of ORG A no other pending
sequence tokens need to be processed. O

67

ORGA

Ho

Figure B.26: An example of unsound process.

Task C .

ORGA

H

Figure B.27: An example of sound process with unsound sub-process.

68

	Introduction
	Basic Notions on BPMN Collaborations
	Pools
	Activities
	Gateways
	Events
	Tokens
	Travel Agency Collaboration Scenario

	Classification Results
	Well-structuredness, Safeness and Soundness for BPMN
	Advances with respect to already available classifications.
	Advances in Classifying BPMN Models

	Formal Framework
	Syntax of BPMN Collaborations
	Semantics of BPMN Collaborations

	Properties of BPMN Collaborations
	Well-Structured BPMN Collaborations
	Safe BPMN Collaborations
	Sound BPMN Collaborations

	Relationships among Properties
	Well-structuredness vs. Safeness in BPMN
	Well-structuredness vs. Soundness in BPMN
	Safeness vs. Soundness in BPMN

	Compositionality of Safeness and Soundness
	On Compositionality of Safeness
	On Compositionality of Soundness

	Relevance into Practice the S3 tool
	Related Work
	Concluding Remarks
	Definitions
	Proofs

