Collaboration vs Choreography Conformance Checking in
BPMN 2.0: from Theory to Practice

Abstract—The BPMN 2.0 standard is nowadays largely used
to model distributed components both in academic and in-
dustrial contexts. The notation makes possible to represent
systems from different perspectives. A global perspective, using
choreography diagrams, to describe the interactions between
components without exposing their internal structure, and
a local perspective, using collaboration diagrams, where the
internal behavior of a component can be highlighted.

In this paper, we propose a formal approach for check-
ing conformance of choreographies, representing global con-
straints, with related collaborations, representing possible im-
plementations. In particular, we provide a direct formal op-
erational semantics for both BPMN collaboration and chore-
ography diagrams, and we formalize the conformance concept
by means of two relations defined on top of the semantics.
We have developed the C* tool to support the approach into
practice. We illustrate possible benefits of its usage by means of
a simple, yet realistic, running example concerning a traveling
scenario.

1. Introduction

Distributed components are at the basis of service-
oriented applications and have been largely adopted in the
last years. Components are usually implemented as software
services and they are designed to support systems interop-
erability. Generally, these kinds of systems are composed
by participants agreeing on communication patterns without
accessing to internal technical details. A way to enable
interoperability is to refer to global specifications [1], [2].

A lot of effort has been devoted to study specification
languages for such kind of systems, and then to conceive
techniques to assess how much a real implementation cor-
responds to a pre-designated model. Despite this effort, the
results obtained so far did not lead to a widely accepted
achievement both in academic and industrial communities.
This is partially due to the fact that most of the works found
in the literature approach the problem only at a foundational
level, highly abstracting from widely used specification lan-
guages.

To overcome such a limitation, in this work we rely on
the standard BPMN 2.0 [3] (in the following just BPMN),
since this graphical notation has been largely adopted both in
academia and industry. In particular, we consider the chore-
ography and collaboration diagrams provided by BPMN. A
choreography is a global specification that models interac-

tions as sequences of messages among participants, while a
collaboration describes the implementation of each single
participant in terms of exchanged messages and internal
behavior. Notably, even if the standard correlates the two
models types, it does not give them a formal semantics
suitable to guarantee the definition and checking of a precise
conformance relation. In this paper we try to address this
aspect, so to equip software engineers both with sound theo-
ries, and a tool to check the conformance of a composition of
software components with respect to a global specification.

The proposed theoretical framework has been developed
into the C* (Collaboration vs Choreography Conformance
Checker for BPMN 2.0) tool that allows a modeler to design
or select a collaboration diagram, obtained from the compo-
sition of a set of components, and then to check it against a
choreography specification. The tool uses standard formats,
to permit the easy integration with external IDEs, and makes
the usage of formal methods completely transparent to the
modeler.

Summing up, the major contributions of this paper are:

1) the definition and the implementation in Java of a
formal operational semantics for BPMN collaborations
and choreographies, enabling the formal analysis of
BPMN models;

2) the definition and implementation of two conformance
relations, namely bisimulation-based and trace-based
conformances;

3) the C* tool integrated with mCRL2 [4] for automatic
conformance checking.

It is worth noticing that the distinctive aspect of this work is
the specific focus on the well-established standard BPMN,
taking into account its specificities and peculiarities typi-
cally overlooked by other works (see Sec. 2 for a detailed
comparison with the literature).

The rest of the paper is organized as follows. Sec. 2
motivates our work detailing its differences in comparison
to related works. Sec. 3 provides background notions on
BPMN choreographies and collaborations, together with
a running example. Sec. 4 introduces formal syntax and
semantics both for choreographies and collaborations, while
Sec. 5 defines conformance relations. Sec. 6 presents the C*
tool and illustrates its usage in practice. Sec. 7 concludes
the paper and discusses directions for future work.

2. Motivations and Related Works

A lot of effort has been devoted by the research com-
munity to study specification languages for choreographies
and collaborations. To this aim, different notations and
approaches have been defined and used, but none of them is
able to combine in a unique framework the modelling and
verification capabilities considering BPMN, and its expres-
siveness. There is a clear lack of results specifically devoted
for BPMN, and this is the main motivation that drove our
work.

In the following we relate the distinctive aspects of our
work to the available literature, to clarify how the proposed
approach actually contributes to the state of the art.

Modeling Notation. In the literature, significant contribu-
tions on conformance rely on the WS-CDL standard [S]-
[9]. However, WS-CDL has never obtained wide approval
in practice, also due to its strong relationship with the Web
Services technology. In order to have a concrete impact
on practice we based our study on the BPMN standard
[10]. This notation received a lot of interest both from the
industry, thanks to the consolidation of BPMN management
systems, and from the academia, as also testified by several
EU projects that adopted it as the modeling notation to
be used to describe choreographies (e.g. CHOReOS [11],
CHOReVOLUTION [12]). Certainly there are other propos-
als considering BPMN as the modeling notation, but none
of them provide a direct semantics.

Direct Semantics. The usage of a direct semantics for
BPMN reduces errors potentially introduced during the
translation phase, and do not ask to translate syntactical
terms of the source language (i.e. BPMN) into other
syntactical terms of a target language, equipped with
a formal semantics. Differences in expressiveness of the
source and target languages could even hinder the definition
of the translation for the whole language. In the literature
many proposals can be found following a translation-based
approach and distinctions exist in relation to the used target
language, such as process algebras [7], [13], [14], more
complex languages (e.g. LOTOS) [15]-[20], transition-
based models (e.g. Petri Nets) [6], [9], [21] or session
types [1]. The direct semantics proposed here is inspired
by [22], but finalized to a different goal. In particular here
we provide a global semantics able to catch all the system
states from a global point of view.

It is worth to remark some of the advantages of a direct
semantics approach with respect to mappings from BPMN
to Petri Nets [23], also in relation to their possible usage for
conformance checking [21]. In particular Petri Nets are not
enough expressive to describe situations where the system is
waiting for a message that will never occur. This restriction
leads to assume that events always occur along a path,
somehow merging the semantics of message based events
with that of message tasks. This also affects the semantics
of event-based gateways treated as exclusive gateways, since
the event-based is not anymore triggered by events. Finally,
the terminate event has a non local behavior that is difficult

to reproduce with Petri Nets. The direct semantics we
provide instead does not suffer from any of the listed issues.

Arbitrary topology. The direct semantics we propose
supports a wider class of models, i.e. that of models with
an arbitrary topology, without imposing any constraint
on the structure of models. Indeed, even if structuredness
has been considered as a good modeling practice [24],
designers often do not follow such a guideline [25],
because in this way the modeling activity results to be less
complex [26] and more expressive [27], [28]. Instead, most
of the approaches to formal semantics of BPMN found
in the literature impose constraints on the structure of the
model. We believe that considering models with an arbitrary
topology can contribute to an extensive adoption of our
approach, thus having a real impact on the development of
process-aware systems.

Conformance vs Communication models. In order to
catch dissimilarity defined in the BPMN standard, between
choreographies and collaborations, we defined two different
semantics. The behavioral aspects of the two models are
successively related using two conformance relations that
are able to deal with inhomogeneous communications,
as choreographies are synchronous and collaborations
asynchronous. In this regard we differ from the literature
where, to deal with asynchronous communications,
additional constructs are used, such as buffers [17] or other
language structures [13], [19], and others [5], [6], [14], [16]
where asynchronous models are reduced in synchronous
ones. Moreover, the peculiarity of these relations is on the
observed actions. In particular, messages in a choreography
are related to received messages in the collaboration,
differently from most works in the literature [5], [7] that
focus the observation on send actions.

Conformance vs Non-determinism. Notably, one of the
main novelties of our contribution is the definition of
conformance relationships that deal with different forms
of non-determinism generated by message exchange. In
BPMN there are two different elements for describing
choices: the event-based gateway, that produces non-
dominated non-determinism (roughly no one in the model
as complete knowledge on the decision that will be
taken), and the exclusive gateway, that produces dominated
non-determinism (roughly the decision is taken by one
party and followed by the others). For such scope we
developed two relations, Trace-Based and Bisimulation-
Based Conformance, and considered in the semantics
the dominated and non-dominated non-determinism as
prescribed by the BPMN standard. This is somehow similar
to [7], [8] that rely on the concept of internal and external
choice defined in the CSP process algebra.

Tool support. The final distinctive result, which incorporates
all the previous advantages, is the availability of a tool,
where concepts like formal semantics and conformance

=T (Choreograpiy Eiemanis T i

Y T \
I e Pl P!
i P P Emessage message |
i - [name name |
Intermediate Receive | H H H
i StartEvent End Event
; Event [P! Iniziator Iniziator !
i i
i © ! i Task Name Task Name
Task [. (One-Way) (Two-Way) !
| Intermediate Send | | i - |
i Event i Excl e Receipient Receipient i
! a H
! message flow [message |
P o- TR P name |

Figure 1. BPMN 2.0 Elements.

abort

Customer
login request Withdraw
itinerary —»O
~ ™~ et
Customer Customer
Access the
3 Itinerar
(O—>| “booking 1wy inerEty book oy confirmation cket
e = X] =
Booking System Booking ystem T T
H Customer Customer Bani Booking System
4| Accept
Buy Payment Ticket Ng)
itinerary = . ¢
reply proposal ticket confirmation delivery
Booking System Bank Booking System Customer

Figure 2. Booking Choreography.

relations are included and made easily accessible to non-
expert users by means of a GUIL. A similar endeavor has
lead to the VerChor tool [19]. However, VerChor purpose
is different: it uses conformance to check the realizability
of a set of peers obtained from a projection of a given
choreography.

3. BPMN 2.0 Overview

The focus of this section is not a complete presentation
of BPMN, but a discussion of relevant aspects for choreog-
raphy and collaboration diagrams we use in the paper. We
also introduce a scenario to be used as a running example.

BPMN Standard. Fig. 1(center) depicts the main used
modeling elements that are included in both diagrams.
Events are used to represent something that can happen. An
event can be a Start Event, representing the point in which
the choreography/collaboration starts, while an End Event
is raised when the choreography/collaboration terminates.
Gateways are used to manage the flow of a choreogra-
phy/collaboration both for parallel activities and choices.
Gateways act as either join nodes (merging incoming se-
quence edges) or split nodes (forking into outgoing sequence
edges). Different types of gateways are available. A parallel
gateway (AND) in join mode has to wait to be reached
by all its incoming edges to start, and respectively all the
outgoing edges are started simultaneously in the split case.
An exclusive gateway (XOR) describes choices; it is acti-
vated each time the gateway is reached in join mode and, in
split mode, it activates exactly one outgoing edge. An Event
Based gateway is similar to the XOR-split gateway, but its
outgoing branches activation depends on the occurrence of a
catching event in the collaboration and on the reception of a
messages in the choreography; these events/messages are in
a race condition, where the first one that is triggered wins
and disables the other ones. Sequence Flows are used to
connect collaboration/choreography elements, they are used
to specify the flow of the collaboration/choreography.

Receive
Process
O ayment O
Tebtest payment

Bank

Withrow
travel
request

7
a:

Send Reguest
itinerary

iinerary

occepiance] | [inerany

Receive
itinerary
proposal

Access the
booking

Customer

Send travel
linformation|

system

Receive
ticket

aboft

requeft
repl

Cancel
itinerary

ticket

Tiotel® a5
linformation| Y

Booking System

Reserve
itinerary

Figure 3. Booking Collaboration.

In the collaboration diagram, the following elements are
also included (Fig. 1, left-hand side). Pools are used to
represent participants involved in the collaboration. Tasks
are used to represent specific works to perform within a
collaboration by a participant. Intermediate Events repre-
sent something that happens, such as sending or receiving
of a message. Message Edges are used to visualize commu-
nication flows between different participants, by connecting
communication elements within different pools.

Focusing on the choreography diagram, we underline
its ability to specify the message exchange between two or
more participants. This is done by means of Choreography
Tasks (Fig. 1, right-hand side). They are drawn as rectangles
divided in three bands: the central one refers to the name of
the task, while the others refer to the involved participants
(the white one is the initiator, while the gray one is the
recipient). Messages can be sent either by one participant
(One-Way tasks) or by both participants (Two-Way tasks).

Running Example. We introduce here a choreography and
a possible implementation in a collaboration model.

Choreography Example. The choreography in Fig. 2 com-
bines a booking system, a customer and a bank that have
to interact in order to book a travel. After accessing to
the booking system the customer requests an itinerary and
receives a tentative planning. Then, the choreography can
proceed following two different paths according to the
customer decision. The upper path is followed when the
customer decides to withdraw the travel proposal; while
the lower path is used for the the proposal acceptance.
In particular, when the proposal is accepted, the customer
interacts with the bank for the payment of the ticket, and
then the bank sends the confirmation to the booking system.
This completes then the procedure by sending the ticket to
the customer.

Collaboration Example. The collaboration in Fig. 3 com-
bines the work-activities of the same participants. After the
customer logins to the booking system, he requests some
travel information and receives a proposal from the booking
system. The customer then decides whether to withdraw
or accept the proposal; this is represented by means of a
XOR gateway. According to this decision, either the upper
path, for the proposal withdraw, or the lower path, for the
confirmation, is activated. The booking system waits for the
decision of the customer and behaves accordingly. This is
represented by means of an Event-based gateway. In case of

withdraw, the two participants terminate with an end event.
In case of confirmation, the customer sends the itinerary
acceptance to the booking system and asks for payment to
the bank. As soon as the bank processes the payment and
confirms it to the booking system, the customer receives the
ticket.

4. C* Formal Framework: Semantics

This section presents our formalization of the BPMN
semantics at the bases of the proposed framework. In the
formalization we follow a pragmatic approach, as we focus
on those elements regularly used to design process models
[29]. Specifically, we first summarize its distinctive aspects
in relation to the BPMN modeling principles, and then we
illustrate its formal definition.

4.1. Linguistic Aspects and Design Choices

Considering the choreography diagrams, we made some
specific design choices. In relation to the Two-Way chore-
ography task, the OMG standard states that it is “an atomic
activity in a choreography process” execution [3, p. 323].
Howeyver, this does not mean that the task blocks the whole
execution of the choreography. In fact, participants are
usually distributed, and we assume that other choreography
tasks involved in different parallel paths of the choreography
can be executed. Thus, here we intend atomicity to mean
that both messages exchanged in a Two-Way task have
to be received before triggering the execution along the
sequence flow outgoing from the task. Therefore, even if
we allow Two-Way tasks in the choreography models, we
safely manage them as pairs of One-Way tasks preserving
the same meaning.

A further distinctive aspect of our formal semantics
concerns the communication model that, to be compliant
with the BPMN standard, is different for choreographies
and collaborations. In the former case, the communication
is expressed using synchronous messages. Indeed, according
to the standard [3, p. 315], a choreography task completes
when the receiver participant reads the message, triggering
in this way the execution of the element connected to the
task by means of its outgoing sequence edge. Synchronous
communication requires choreography tasks to be blocking
activities, which resume the execution only when an ex-
changed message is actually received. The communication
model of collaborations, instead, is asynchronous, like that
of distributed systems in reality. This means that a message
sent by one participant is enqueued by the receiving one,
which can then consume and process it subsequently, while
the sender is free to proceed with its execution.The use of
two different communication models also impacts on the
definition of the conformance relation as illustrated in Sec. 5.

4.2. Semantics of BPMN Choreographies

To enable a formal treatment of a BPMN choreography
we defined a BNF syntax of its model structure (Fig. 4). In

Ch ::= start(e,) | end(e;) | andSplit(e;, Eo) | andJoin(E;, eo)
| xorSplit(e;, Eo) | xorJoin(E;, eo) | task(e;, €0, 01,02, m, t)
| eventBased(e;, Th,T2) | Chi|Chs

T = (eo,01,02,m,t) | T1,T>

Figure 4. Syntax of BPMN Choreography Structures.

the proposed grammar, the non-terminal symbol Ch repre-
sents Choreography Structures, while the terminal symbols,
denoted by the sans serif font, are the considered elements
of a BPMN model, i.e. events, tasks and gateways. Notably,
we are not proposing a new modeling formalism, but we
are only using a textual notation for the BPMN elements.
Indeed, with respect to the graphical notation, the textual
one is more coincise for writing the operational rules and
more manageable for the implementation of the semantics.

In the following e € [E denotes a sequence edge, while
E ¢ 2% a set of edges; we require |E| > 1 when E is
used in joining and splitting gateways. For the convenience
of the reader we refer with e; the edge incoming in an
element and with e, the edge outgoing from an element. o,
m, and t denote names uniquely identifying an organization,
a message and a task, respectively. The correspondence
between the syntax used here and the graphical notation
of BPMN illustrated in Sec. 3 is as follows.

« start(e,) represents a start event with outgoing edge e,,.

« end(e;) represents an end event with incoming edge e;.

o andSplit(e;, E,) (resp. xorSplit(e;, E,)) represents an
AND (resp. XOR) split gateway with incoming edge
e; and outgoing edges E,.

o andJoin(E;,e,) (resp. xorJoin(E;, e,)) represents an
AND (resp. XOR) join gateway with incoming edges
E; and outgoing edge e,.

o task(e;,e,,01,09, m t) represents a one-way task t
with incoming edge e; and outgoing edge e, sending
a message m from o; to 02. As explained in Sec. 4.1,
two-way tasks are rendered in our formal framework
as pairs of one-way tasks, hence they are not explicitly
included in the syntax.

« eventBased(e;, T1,T») represents an event-based gate-
way with incoming edge e;, and a list of (at least two)
tasks 77,75 to be processed. It is worth noticing that
the definition of the task list 7" is composed by elements
of the same structure of the one-way task except for the
incoming edge, which is subsumed in the structure of
the event-based gateway. When convenient, we shall
regard a task list simply as a set.

o Chy| Chy represents a composition of elements in order
to render a process structure in terms of a collection of
elements.

To achieve a compositional definition, each sequence edge
of the BPMN model is split in two parts: the part outgoing
from the source element and the part incoming into the
target element. The two parts are correlated by means of
unique sequence edge names in the BPMN model. To avoid
malformed structure models, we only consider structures
in which for each edge labeled by e outgoing from an
element, there exists only one corresponding edge labeled

by e incoming into another element, and vice versa.

The operational semantics we propose is given in terms
of configurations of the form (Ch,o), where Ch is a
choreography structure, and o is the execution state storing
for each edge the current number of tokens marking it.
Specifically, a state o : E — N is a function mapping edges
to numbers of tokens. The state obtained by updating in the
state o the number of tokens of the edge e to n, written
as o - {e — n}, is defined as follows: (o - {e — n})(¢)
returns n if ¢’ = e, otherwise it returns o(e’). The inifial
state, where all edges are unmarked is denoted by oy
formally, og(e) = 0 Ve € E. The transition relation

over configurations, written i> and defined by the rules
in Fig. 5, formalizes the execution of a choreography in
terms of marking evolution and message exchange. Labels [
represent computational steps and are defined as: 7, denoting
internal computations (in the rules these labels are omitted
for the sake of readability); and o; — oy : m, denoting an
exchange of message m from organization o; to oy. Notably,
despite the presence of labels, this has to be thought of
as a reduction semantics, because labels are not used for
synchronization (as instead it usually happens in labeled
semantics), but only for keeping track of the exchanged
messages in order to enable the conformance checking dis-
cussed in Sec. 5. Since choreography execution only affects
the current states, for the sake of presentation, we omit the
choreography structure from the target configuration of the
transition. Thus, a transition (Ch, o) 4 (Ch, o'y is written
as (Ch,o) Lo

Before commenting on the rules, we introduce the aux-
iliary functions they exploit. Specifically, function inc : S x
E — S (resp. dec : Sx E — S), where S is the set of states,
allows updating a state by incrementing (resp. decrementing)
by one the number of tokens marking an edge in the state.
Formally, they are defined as follows: inc(o,e) = o - {e —
o(e) + 1} and dec(o,e) = 0 - {e — o(e) — 1}. These func-
tions extend in a natural ways to sets of edges as follows:
inc(o,0) = o and inc(o, {e}UE)) = inc(inc(o,e), E); the
cases for dec are similar.

For the sake of space we only describe some rules in
Fig. 5, the meaning of the other can be easily deduced. In
particular rule Ch-Start starts the execution of a process
when it is in its initial state (i.e., all edges are unmarked).
The effect of the rule is to increment the number of tokens in
the edge outgoing from the start event. Rule Ch-AndJoin
decrements the tokens in each incoming edge and incre-
ments the number of tokens of the outgoing edge, when each
incoming edge has at least one token. Rule Ch-XorSplit
is applied when a token is available in the incoming edge
of a XOR split gateway, the rule decrements the token in
the incoming edge and increments the tokens in one of the
outgoing edges. Rule Ch-Task is activated when there is a
token in the incoming edge of a choreography task, so that
the application of the rule produces a message exchange
label and moves the token from the incoming edge to the
outgoing one. Finally, rules Ch-Int; and Ch-Ints deal with
interleaving in a standard way.

(Ch-Start)
(start(eo), 00) — inc(oo, €o)
(Ch-End) _
(end(e;), o) — dec(co, ;) o(ei) >0
(Ch-AndSplit) o(e)) > 0

(andSplit(e;, Eo), o) — inc(dec(o, €;), Eo)

(Ch-AndJoin)

(andJoin(E;, e5),0) — inc(dec(o, E;), eo) Ve € E;.0(e) >0

(Ch-XorSplit)

(xorSplit(e;, {e} U Ey), o) — inc(dec(c, e;),e) o(e;) >0
(Ch-XorJoin)

(xorJoin({e} U Ej, &), 0) — inc(dec(o, e), &) 7= 0
(Ch-Task)

<:aiko(eﬂ;n;e0’olyo2,m’t)’0> U(ei) >0

o172, inc(dec(o,e;), eo)
(Ch-EventQG)

<§virltl3n?sed(81, (e0,01,02,m,t) UT), o) o(e;) >0

272 ine(dec(o, e;), €0)

(Chi,0) = o' (Chz,0) — o'
(Ch-]’flt]) (Ch—[ntE)

<Ch1‘ch2,0'>4)0'/ <Ch1|0h2,0>4>0',

Figure 5. BPMN Choreography Semantics (7 labels are omitted).

4.3. Semantics of BPMN Collaborations

The formal treatment of collaborations is similar to that
of choreographies, therefore, we will focus here only on
the main differences. The BNF syntax of the collaboration
model structure is given in Fig. 6. The non-terminal sym-
bol C' represents Collaboration Structures, while terminal
symbols denote, as usual, the considered BPMN elements.
Differently from a choreography, the message exchange in
a collaboration is modeled by means of message edges.
Here, they are represented by triples of the form (01,02, m)
indicating, in order, the sending organization, the receiving
organization and the message; we use M to denote the
set of message edges. Accordingly, an event-based gateway
specifies a list of (at least two) message edges, each one
enriched with the outgoing edge enabled by the message
reception. Moreover, in a collaboration model there are three
types of tasks, i.e. non-communicating (task), receiving
(taskRcv) and sending (taskSnd), and also receiving and
sending intermediate events (interRcv and interSnd, respec-
tively).

C start(e,) | end(e;) | andJoin(E;, e5) | xorSplit(e;, Eo)
andSplit(e;, E,)xorJoin(E;, e,) | task(ei,eo)
taskRev(e;, €0, (01,02, m)) | taskSnd(e;,eo, (01,02, m))
eventBased(e;, M1, M3) | interRev(e;, €0, (01,02, m))
interSnd(e;, eo, (01,02, m)) | C1|C2

My, My

(01,02, m, &) |

Figure 6. Syntax of BPMN Collaboration Structures.

The operational semantics we propose is given in terms
of configurations of the form (C,o,d), where: C is a
collaboration structure; o is the first part of the execution

(C-EventG)

(eventBased(e;, (01,02, m,e0) U M), 0,) a(e;) >0,

5((o1,02,m))>0

L2020, (ine(dec(o, e:), &), dec(8, (01,02, m))
(C-Task) i
(task(e;,e0),0,8) — (inc(dec(o,e;),e0),9) a(ei) >0
C-TaskRcv)

01—02:m o(e) >0,

taskRev(e;, €0, (01,02, m)),0,0) —————
inc(dec(o, e;), €o), dec(d, (01,02, m)))

C-TaskSnd)
taskSnd(ei, €0, (01,027 m))’ g, 5> -
inc(dec(o, e;),eo),inc(d, (01,02, m)))

(
2 6((o1,02,m))>0
(

(

(

(C-InterRcv)

(

(

(

(

(

o(e;) >0

a(ei) >0,
(5((01, 02, m))>0

interRev(e;, eo, (01,02, m)), 0, d) o1e2im,

inc(dec(o, e;), eo), dec(d, (01,02, m)))
C-InterSnd)

interSnd(e;, eo, (01,02, m)), 0,d) —
inc(dec(o, e;), €0),inc(d, (01,02, m)))

a(ei) >0

Figure 7. BPMN Collaboration Semantics (excerpt of rules).

state, storing for each sequence edge the current number of
tokens marking it; and ¢ is the second part of the execution
state, storing for each message edge the current number of
message tokens marking it. Specifically, 6 : M — N is a
function mapping message edges to numbers of message
tokens; so that 0((o1,02,m)) = n means that there are
n messages of type m sent by o; and stored in the o0s’s
queue. Notably, to deal with decidability issues, in the
implementation we fixed the maximum of admissible tokens
in a message edge. Update and initial state for ¢ are defined
in a way similar to ¢’s definitions.

The transition relation — over collaboration configura-
tions formalizes the execution of a collaboration in terms
of edge and message marking evolution. It is defined by
the rules in Fig. 7 (for the sake of presentation, we report
only the rules concerning message exchange, as the other
rules are similar to those for choreography diagrams). As
usual, we omit the collaboration structure from the target
configuration of transitions.

We now briefly comment on some of the operational
rules. Rule C-FEventBased is activated when there is a
token in the incoming edge and there is a message m to
be consumed, so that the application of the rule moves
the token from the incoming edge to the outgoing edge
corresponding to the received message, whose number of
tokens in the meantime is decreased (i.e., a message from
the corresponding queue is consumed). Rules C-Task deals
with simple tasks, acting as a pass through. It is activated
only when there is a token in the incoming edge, which
is then moved to the outgoing edge. Rule C-TaskRcv is
activated not only when there is a token in the incoming
edge, like the one related to simple tasks, but also when there
is a message to be consumed. Similarly, rule C-TaskSnd,
instead of consuming, adds a message in the corresponding
queue. Rule C-InterRcv (resp. C-InterSnd) follow the
same behavior of rule C-TaskRcv (resp. C-TaskSnd).

(C,0,6) 5 (0,6 (C,0,8) 5 (o",8")

1¢L leL

(C/L,5,8) 5 (o', 8" (C/L,5,8) I (o, 8"

Figure 8. Hiding Operator.

5. C* Formal
checking

Framework: Conformance-

In this section we first discuss about the relations we
propose for checking the conformance between choreogra-
phies and collaborations, then we present how they work
into practice.

Bisimulation-Based and Trace-Based Conformances. Here
we present the Bisimulation-Based Conformance (BBC) and
the Trace-Based Conformance (TBC) relations we have
defined to check if an implementation (collaboration) re-
spects a given global specification (choreography). The two
conformances are inspired to well-established behavioral
equivalences [30], largely used in the literature and revised
to deal with BPMN characteristics. Before providing the
formal definition of BBC, we introduce the necessary nota-
tion. Ch and C represents the sets of all choreography and
collaboration configurations, respectively. Moreover, weak
transitions are defined as follows: = denotes the reflexive
and transitive closure of —s, i.e. zero or more T-transitions;
< denotes =—=. We exploit functions labels(C) and
labels(Ch) returning the sets of all communication labels
that can be potentially generated by the collaboration C'
and the choreography Ch, respectively. These functions
are inductively defined on the syntax of collaboration and
choreography structures in a straightforward way. For exam-
ple, in case of choreographies we have the definition case
labels(task(e;, e,, 01,02, m,t)) = {01 — 02 : m}, meaning
that if a choreography contains a task element, then its label
set contains the label corresponding the message exchange
described by the task.

Finally, at the collaboration level the definition of con-
formance requires the use of the hiding operator /, defined
by the rules in Fig. 8. This operator, as usual, transforms in
7 all the actions in the set L, in order to consider them as
internal actions in the conformance relation.

Definition 1. - Bisimulation-Based Conformance Rela-
tion.
A relation R C (Ch x C) is a weak Bisimulation Con-
formance if, for any (Ch, o) € Ch and (C,0.,0) € C
such that (Ch,o.n) R (C, 0., 6), it holds:

o for all 01,09, m and o/, , if (Ch,ocp) A LUN ol
then (C,0,,8) ==22 (5/,4§') for some o’,d s.t.
<Ch7 Uéh> R <C, Uév 5/>;

o for all o1,02,m,0, and &, if (C,o0.,0)
(00,0")
then (Ch,o.n)
(Ch,cl,) R (C,ol,0");

01—>02:M

01 —>02:Mm

——— o, for some o, s.t

C

o for all o/, if (Ch,0.) — o

then (C,o0.,d) —
(Ch,ol,) R (C,al,0");
o for all o, and &', if (C,0.,8) — {0, 8')
then (Ch,o.,) == o), for some o, s.t
(Ch,dl,) R (C,o.,d").
A choreography (Ch, o) and a collaboration (C, o, d)
conform if there exists a weak Bisimulation Confor-
mance relation R such that

(Ch,ocn) R (C/(labels(C)\labels(Ch)), oc,0).

/
ch

(ol,0")y for some o.,¢" s.t.

The proposed BBC relation considers to conform collabora-
tions that are able to simulate step by step choreographies,
and vice versa. In particular, if the choreography performs
a message exchange, in the collaboration we expect to
observe the reception of the message, possibly preceded or
followed by any number of internal actions, and then the
two continuations have to be in relation. Analogously, if
we observe a message reception in the collaboration, the
choreography has to reply with the corresponding weak
transition. Moreover, if one of the two models performs
an internal action, the counterpart can react with a weak
transition =-. The definition of conformance is quite close
to a standard bisimulation relation, except for the use of
the hiding operator at the collaboration level. Specifically,
the hiding is used to ignore all additional behaviors in the
collaboration that are not explicitly expressed, and hence
regulated, in the choreography. In this way, even if a col-
laboration performs some additional communications, if it
is able to (bi)simulate with the given choreography, they
do conform. The different communication models defined
in the semantics of choreographies and collaborations sig-
nificantly affects the conformance checking. Considering
that collaborations rely on an asynchronous communication
model, one may think that the collaboration actions to be
observed should be the sending ones (as, e.g., in the labeled
bisimulation introduced for asynchronous m-calculus [31]).
However, our aim here is to check the conformance with
respect to a choreography model that, at an higher level of
abstraction, prescribes that all interactions are synchronous.
Since the non-blocking nature of message sending in the
asynchronous collaborations may generate misalignment
with the message exchanges defined in the synchronous
choreography, we focus only on the message reception in
the collaboration (see rules C-FventG, C-TaskRcv and
C-InterRcv in Fig. 7). This guarantees the comparison of a
choreography communication with the effective completion
of the message exchange, defined by a message reception,
in the collaboration.

BBC guarantees that the collaboration takes decisions,
concerning the execution flow, exactly as what is specified
in the choreography. Sometimes this condition may result
too restrictive and the modeler would prefer to adopt a
weaker relation. To this aim, in our work we also introduced
the more relaxed TBC relation. Intuitively, in this case two
models conform if and only if they can perform exactly the
same weak sequences of actions. In the definition below, we
deem a label to be visible if it is of the form o1 — 09 : m.

Notationally, the transition (Ch,o) = ¢/, where s is a

sequence of visible labels l1l5...[,, denotes the sequence

(Ch,o) & (Ch,o1) 2 (Ch,o3) ... 2 (Ch,o') of

weak transitions. Transition (C, 0, 8) = (0’, ') is similarly
defined.

Definition 2. - Trace-Based Conformance Relation.

A choreography (Ch, o.p,) and a collaboration (C, o, 6)
trace conform if, given C' = C/(labels(C) \
labels(Ch)), for any sequence s of visible labels it

holds:

e (Chyo.n) = o, implies (C’,0.,6) = (0%,4") for
some o/, and §’;

e (C",0.,0) = (0l,0") implies (Ch,0.,) = o, for
some o7, .

The TBC relation guarantees that the collaboration is able
to produce the same sequences of messages of the chore-
ography, and vice versa, without controlling presence of
deadlock states and distinguishing different decision points
and non-determinism forms. Concerning this latter point,
BBC can recognize dominated non-determinism, where a
participant (non-deterministically) takes a decision using
a XOR gateway and the other behaves accordingly, from
non-dominated non-determinism, based on a race condition
among the messages managed by an event-based gateway.
As it usually happens for these classes of behavioral re-
lations, models that conform according BBC also conform
according to TBC.

Conformances at work. To demonstrate into practice the
characteristics of the conformance relations focusing on the
management of non-determinism, we test them considering
various model fragments in a simple scenario, where two
participants are involved. Table 1 depicts in the rows the
three gateways (i.e., in order, parallel, exclusive, and event-
based) that can be used in a choreography model, and in
the columns the possible combinations of participants in
collaborations (i.e., in order, parallel-parallel, parallel-event,
parallel-exclusive, exclusive-event, and exclusive-exclusive).

Checking all possible conformance combinations, we
realize that for each choreography we have at least one BBC
implementation. In particular, the choreography A can be
implemented by a bisimilar collaboration 1, the choreogra-
phy B is bisimilar to collaborations 3-4, and C to the col-
laboration 2. This last case results from the non-dominated
non-deterministic behavior characterizing the event-based
gateway, which is properly implemented by a sender using
an AND gateway and not a XOR gateway (as in col-
laboration 4). This becomes clearer if we generalize the
sender using an AND gateway to different senders in a race
condition, each one sending a single message.

The conformance checking results reported in the table
show in detail the differences between BBC and TBC. The
modeler can select the more appropriate relation that fits
more his needs, taking into account that BBC provides more
guarantees on the correct behavior between the two models,
while TBC ensures only that both models produce the same
sequences of messages.

) BBC: Vv X BBC X
TBC: V X TBC X
?) BBC: x X BBC v
TBC: x v TBC v
3) BBC: X c Y BBC X
TBC: x TBC: VvV TBC v
@) BBC: x BBC: Vv BBC X
TBC: x TBC: TBC v
©) BBC: x BBC: x BBC X
TBC: x TBC: TBC v

1) 3)

TABLE 1. CONFORMANCE BETWEEN COLLABORATION AND
CHOREOGRAPHY.

6. C* Supporting Tool

The C* formal framework presented so far is imple-
mented as a Java tool' supporting modelers in automatically
checking whether a collaboration conforms to a prescribed
choreography. A distinctive aspect of the tool is that mod-
elers do not need to know the formal notions underlying
its functionalities. The tool was developed as a stand-alone
solution, but it is also available as a service accessible, or
integrable as a plug-in in existing modeling tools, through
a RESTful interface. In this regards, even if we support
any BPMN modeling environments, we widely tested its
compatibility with Eclipse BPMN Modeling, Camunda and
Signavio. Fig. 9 depicts the internal components of the C*
tool and the interfaces with the modeler. Specifically, C*
takes as input a choreography and a collaboration in the
.bpmn format. Input models can be generated by the modeler
using different BPMN modeling environments, or can be
retrieved from public repositories. The input files can be
loaded in the C* tool using a dedicated GUI (Fig. 10(a)).
The modeler can load multiple files, both for choreographies
and collaborations. The inclusion of this feature was driven

1. The C* tool is available at https:/go00.gl/ZWDMbs

by the necessity of checking the conformance between
different versions of the same model, avoiding to load each
time a new file. The loaded models are listed in two text-
areas and by clicking in one of them, a graphical preview of
the model is showed automatically. Once the input files have
been selected the C* tool parses the models and generates
the corresponding LTS graphs for both the choreography and
the collaboration. The parsing of the input files is based on
the Camunda API. The API has been used as it is for the
collaboration models, while it has been extended (to include
choreography tasks) for the choreographies. The LTSs are
computed by means a Java implementation of the direct
semantics defined in Sec. 4.

Once generated the LTSs, C* saves the results in two
.aut files [32] and automatically open the BPMN Checker
(Fig. 10(b)) where the desired conformance relations can
be checked. The conformance checking is achieved by re-
sorting to the mCRL2 equivalence checker [4], that is fully
integrated in the C* tool. Notably, the standard bisimulation
and trace equivalences supported by mCRL2 can be directly
used at this stage, as all the specific characteristics of
our conformance relations (e.g., the use of hiding), have
been already taken into account during the LTS generation.
The verification results are visualized using a green/red
indicator that states the satisfiability/unsatisfiability of the
conformance relation. In case of dissatisfaction, C* returns
back a counterexample. Notably, the usage of the .aut format
for storing the LTS graphs enable the integration with other
checkers that could be used in the future for further analysis
(e.g., stochastic verification).

C* tool at work on the booking example. To check if the
booking collaboration in Fig. 3 can be considered a valid
implementation of the choreography in Fig. 2, we used the
C* tool with both BBC and TBC relations. These analy-
ses returned violations for both conformance relations. In
particular, considering TBC the following counterexample
is produced:
c—bs:login, c—bs:request, bs—c:reply, c—bk:pay

where ¢, bs and bk stand for the customer, booking system
and bank organization names, respectively. This trace is
allowed by the collaboration and not by the choreography.
It shows that the expected flow ‘booking and then payment’
is not respected in the collaboration, which indeed permits
to pay the reservation before booking it. This undesired
behavior is due to the non-blocking nature of the collab-
oration sending task, which permits the customer to send
the payment immediately after the booking request, without
waiting for any acknowledgment from the booking system.
This would not be a problem in case of a collaboration with
only two participants, or more generally when the receiver
of the two messages is the same participant, since the order
in which the messages are processed is managed by the
behavior of the receiver. Instead, in our running scenario the
book and the pay messages are received by two different
participants. The collaboration in Fig. 3 cannot guarantee
the correct order in which the messages are handled. To
solve such an issue, we can revise the collaboration in

BPVY -

Modelling Environments ¢

o /G I
Camunda BPMN

- N
Do m | L
BPMN2 Modeler|

Choreographies Choreography

> o J
Collaboratiori; & mCRL2 ¥
d : Conformance
Collaborations Conformance ——>|
g Collaboration
Implementation Checker ®
Signavio N~
T CounterExample

Choreography Results
" Conformance
Equivalence B

Modeler

Figure 9. C* Supporting Tool.

BPMN Checker x
File Chooser | BPMN Checker
Load Collaborations Load Choreographies

ionRepository/collaboration_communication_and_and_closed.bpmn nceChecker/Cl by
ionRepository/collaboration_communication_and_closed.bpmn

=

.

O—)
i
Show LTSs, Generate LTSs
(a) Models Selection.
BPMN Checker x

File Chooser | BPMN Checker

Equivalence | Bisimulation |~ | [V/| Weak Check Equivalence

Result:

Cannot generate counter example traces for weak bisimulation)
LTSs are equal (weak bisimilarity)

(b) Conformance Checker.

Figure 10. C* User Interface.

Fig. 11 adding an ack message between the book and
pay message exchanges. This guarantees that the booking
phase completes before giving to the customer the pos-
sibility to proceed with the payment. By checking again

Bank

Receive
Process
ayment
O~ paymen payment O
0

pay.

Receive
itinerary
proposal

Customer

Receive
Confirma-
tion

Receive
ticket

acceptarice|

Reguest H

for ;
itinerary ;
payment :

login|
requeft
repl

ack
ticket

itinerary
proposal

Receive
usarname
and

Receive
ravel
linformation|

password

Confirm
Reserva-
tion

Booking System

Reserve
itinerary

Receive
payment

Figure 11. Repaired Collaboration.

the conformance between the revised collaboration and the
choreography, in Fig. 2 C* tool states that the collaboration
is a correct implementation of the choreography, as the two
models conform according to both TBC and BBC. Notice
that the ack message in the collaboration does not lead to
a conformance violation, because it is not included in the
choreography and, hence, is transformed into a 7 by the
hiding operator. In fact, this message exchange is a low-
level implementation aspect of the collaboration necessary
to conform with the given choreography.

7. Conclusions and Future Work

Here we propose a theory for checking conformance be-
tween BPMN choreographies and collaborations. We started
defining the formal operational semantics for choreographies
and collaborations, following step-by-step the behavior de-
scribed by the BPMN standard, and on top of that we defined
the notion of conformance in terms of a trace-based and a
bisimulation-based relation. As proof of concept, the seman-
tics and conformance relations have been implemented and
tested on the C* tool using a running example.

In the next future we intend to further develop the C*
tool, integrating it in different platforms and providing a
user-friendly support for counterexamples, so to enlarge the
possible interest on the tool.

References

[1] G. Castagna, M. Dezani, and L. Padovani, “On global types and
multi-party sessions,” in FMOODS/FORTE, ser. LNCS, vol. 6722.
Springer, 2011, pp. 1-28.

(2]

(3]
[4]

[3]

(6]

(71

(8]

[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella,
“Verifying the conformance of web services to global interaction
protocols: A first step,” in Formal Techniques for Computer Systems
and Business Processes, ser. LNCS. Springer, 2005, vol. 3670, pp.
257-271.

OMG, “Business Process Model and Notation (BPMN V 2.0),” 2011.

J. F. Groote and M. R. Mousavi, Modeling and analysis of commu-
nicating systems. MIT press, 2014.

R. Kazhamiakin and M. Pistore, “Choreography conformance anal-
ysis: Asynchronous communications and information alignment,” in
International Workshop on Web Services and Formal Methods, ser.
LNCS, vol. 6. Springer, 2006, pp. 227-241.

S. Basu and T. Bultan, “Choreography conformance via synchroniz-
ability,” in World wide web. ACM, 2011, pp. 795-804.

N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “Chore-
ography and orchestration conformance for system design,” in Coor-
dination, ser. LNCS, vol. 4038. Springer, 2006, pp. 63-81.

Z. Qiu, X. Zhao, C. Cai, and H. Yang, “Towards the theoretical
foundation of choreography,” in World Wide Web. ACM, 2007, pp.
973-982.

T. Bultan, C. Ferguson, and X. Fu, “A tool for choreography analysis
using collaboration diagrams,” in International Conference on Web
Services. ICWS. 1EEE, 2009, pp. 856-863.

E. Teicholz et al., Technology for Facility Managers: The Impact of
Cutting-edge Technology on Facility Management. John Wiley &
Sons, 2012.

H. Vincent, V. Issarny, N. Georgantas, E. Francesquini, A. Goldman,
and F. Kon, “Choreos: scaling choreographies for the internet of the
future,” in Middleware’10 Posters and Demos Track. ACM, 2010,
pp. 8-10.

M. Autili, P. Inverardi, A. Perucci, and M. Tivoli, “Synthesis of
distributed and adaptable coordinators to enable choreography evo-
lution,” in Software Engineering for Self-Adaptive Systems 3, ser.
LNCS, vol. 9640. Springer, 2017, pp. 1-25.

G. Salaiin and T. Bultan, “Realizability of choreographies using
process algebra encodings,” in International Conference on Integrated
Formal Methods, ser. LNCS, vol. 5423. Springer, 2009, pp. 167-182.

G. Salaun, L. Bordeaux, and M. Schaerf, “Describing and reasoning
on web services using process algebra,” International Journal of
Business Process Integration and Management, vol. 1, no. 2, pp. 116—
128, 2006.

S. Tasharofi and M. Sirjani, “Formal modeling and conformance vali-
dation for ws-cdl using reo and casm,” Electronic Notes in Theoretical
Computer Science, vol. 229, no. 2, pp. 155-174, 2009.

H. N. Nguyen, P. Poizat, and F. Zaidi, “A symbolic framework for the
conformance checking of value-passing choreographies,” in /CSOC,
ser. LNCS, vol. 2012. Springer, 2012, pp. 525-532.

P. Poizat and G. Salaiin, “Checking the realizability of BPMN 2.0
choreographies,” in Symposium on Applied Computing. ACM, 2012,
pp- 1927-1934.

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

C. Molina-Jimenez and S. Shrivastava, “Establishing conformance be-
tween contracts and choreographies,” in Business Informatics (CBI).
IEEE, 2013, pp. 69-78.

M. Giidemann, P. Poizat, G. Salaiin, and L. Ye, ‘“Verchor: a framework
for the design and verification of choreographies,” IEEE Transactions
on Services Computing, vol. 9, no. 4, pp. 647-660, 2016.

A. Dumont, “A lotos nt library for modelisation, analysis, and val-
idation of distributed systems,” Internship Report, Ecole Nationale
Suprieure d’Informatique et Mathmatiques Appliques de Grenoble
(ENSIMAG), June 2012.

D. ReiBiner, R. Conforti, M. Dumas, M. L. Rosa, and A. Armas-
Cervantes, “Scalable conformance checking of business processes,” in
International Conference On Cooperative Information Systems, 2017,
pp. 607-627.

Anonymous Authors, “Omitted due to double blind reviewing.”

R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and analysis
of business process models in BPMN,” Information and Software
Technology, vol. 50, no. 12, pp. 1281-1294, 2008.

R. Laue and J. Mendling, “The Impact of Structuredness on Er-
ror Probability of Process Models,” in Information Systems and e-
Business Technologies, ser. LNBIP. Springer, 2008, vol. 5, pp. 585—
590.

A. Polyvyanyy and C. Bussler, “The structured phase of concur-
rency,” in Seminal Contributions to Information Systems Engineering.
Springer, 2013, pp. 257-263.

B. Kiepuszewski, A. H. M. ter Hofstede, and C. J. Bussler, “On struc-
tured workflow modelling,” in International Conference on Advanced
Information Systems Engineering, ser. LNCS, vol. 1789. Springer,
2000, pp. 431-445.

A. Polyvyanyy, L. Garcia-Bafiuelos, and M. Dumas, “Structuring
acyclic process models,” Information Systems, vol. 37, no. 6, pp. 518—
538, 2012.

A. Polyvyanyy, L. Garcia-Banuelos, D. Fahland, and M. Weske,
“Maximal Structuring of Acyclic Process Models,” The Computer
Journal, vol. 57, no. 1, pp. 12-35, 2014.

M. Muehlen and J. Recker, “How Much Language Is Enough? Theo-
retical and Practical Use of the Business Process Modeling Notation,”
in Advanced Information Systems Engineering, ser. LNCS. Springer,
2008, vol. 5074, pp. 465-479.

R. De Nicola, “A gentle introduction to process algebras,” 2014.

R. M. Amadio, I. Castellani, and D. Sangiorgi, “On bisimulations for
the asynchronous pi-calculus,” Theor. Comput. Sci., vol. 195, no. 2,
pp- 291-324, 1998.

J. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighireanu, “Cadp a protocol validation and verification toolbox,”
in International Conference on Computer Aided Verification, ser.
LNCS, vol. 1102. Springer, 1996, pp. 437-440.

