
Rollback Recovery in Session-based Programming

Claudio Antares Mezzina1, Francesco Tiezzi2, and Nobuko Yoshida3

1 University of Leicester, United Kingdom
cam78@leicester.ac.uk
2 University of Camerino, Italy

francesco.tiezzi@unicam.it
3 Imperial College London, United Kingdom

n.yoshida@imperial.ac.uk

Abstract. To react to unforeseen circumstances or amend abnormal situations
(e.g., runtime errors) in communication-centric systems, programmers are in
charge of “undoing” the interactions which led to an undesired state. To assist this
task, session-based languages can be endowed with reversibility mechanisms. In
this paper we propose a language enriched with programming facilities to commit
session interactions, to roll back the computation to a previous commit point, and
to abort the session. We prove that rollbacks in our language always bring the
system to previous visited states and that a rollback cannot bring the system back
to a point prior to the last commit. Programmers are relieved from the burden
of ensuring that a rollback never restores a checkpoint imposed by a session
participant different from the rollback requester. Such undesired situations are
prevented at design-time (statically) by relying on a decidable compliance check
at the type level, implemented using MAUDE. We show that the language satisfies
error-freedom and progress of a session, demonstrate the practical effectiveness of
the proposed approach by a means of a speculative execution scenario from the
reversibility literature, and illustrate how the approach applies to both binary and
multiparty sessions.

Keywords: Reversible Computing · Session Types · Recovery · Rollback · Check-
points ·MAUDE

1 Introduction

Reversible computing, whose origin dates back to the 70’s for circuits energy efficiency,
is now attracting interest for its application to different fields: from modelling bio-
logical/chemical phenomena [18], to simulation [30], debugging [12] and modelling
fault-tolerant systems [11,19]. Our interest focusses on this latter application and, in par-
ticular, stems from the fact that reversibility can be used to rigorously model, implement
and revisit programming abstractions for reliable software systems.

Recent works [3,27,26,5,32] have studied the effect of reversibility in communication-
centric scenarios, as a means to amend computations that led to an error by bringing
back the system to a consistent previous state. In this setting, processes’ behaviours
are strongly disciplined by their types, prescribing the actions they have to perform
within a session. A session consists in a structured series of message exchanges, whose
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flow can be controlled via conditional choices, branching and recursion. Correctness
of communication is statically guaranteed by a framework based on a (session) type
discipline [16]. Nonetheless, none of these works addresses systems in which the par-
ticipants can explicitly abort the session, commit a computation and roll it back to a
previous checkpoint. In this paper, we aim at filling this gap in programming reversible
behaviours within communication-centric systems. We explain below the distinctive
aspects of our checkpoint-based rollback recovery approach.

Linguistic primitives for explicitly and practically programming reversible ses-
sions. We introduce three primitives to: (i) commit a session, preventing undoing the
interactions performed so far along the session; (ii) roll back a session, restoring the
last saved process checkpoints; (iii) abort a session, to discard the session, and hence
all interactions already performed in it, thus allowing another session of the same
protocol to start with possible different participants. Notice that most proposals in
the literature (e.g., [1,2,3]) only consider an abstract view, as they focus on reversible
contracts (i.e., types). Instead, we focus on programming primitives at process level,
and use types for guaranteeing a safe and consistent system evolution.

Asynchronous commits. Our commit primitive does not require a session-wide syn-
chronisation among all participants, as it is a local decision. However, its effect is on
the whole session, as it affects the other session participants. This means that each
participant can independently decide when to commit. Such flexibility comes at the
cost of being error-prone, especially considering that the programmer has not only
to deal with the usual forward executions, but also with the backward ones. Our type
discipline allows for ruling out programs which may lead to these errors.

The key idea of our approach is that “a session participant executing a rollback action
is interested in restoring the last checkpoint he/she has committed”. For the success
of the rollback recovery it is irrelevant whether the ‘passive’ participants go back to
their own last checkpoints. Instead, if the ‘active’ participant is unable to restore the last
checkpoint he/she has created, because it has been replaced by a checkpoint imposed by
another participant, the rollback recovery is considered unsatisfactory.

In our framework, programmers are relieved from the burden of ensuring the sat-
isfaction of rollbacks, since undesired situations are prevented at design time (stati-
cally) by relying on a compliance check at the type level. To this aim, we introduce
cherry-pi (checkpoint-based rollback recovery pi-calculus), a variant of the session-
based π-calculus [38,17] enriched with rollback recovery primitives. We present first
a binary version of the calculus, which is more convenient to demonstrate the essence
of our rollback recovery approach, and then we extend it to multiparty sessions. A key
difference with respect to the standard binary type discipline is the relaxation of the
duality requirement. The types of two session participants are not required to be dual, but
they will be compared with respect to a compliance relation (as in [2]), which also takes
into account the effects of commit and rollback actions. Such relaxation also involves the
requirements concerning selection and branching types, and those concerning branches
of conditional choices. The cherry-pi type system is used to infer types of session
participants, then combined together for the compliance check.

Reversibility in cherry-pi is controlled via two specific primitives: a rollback one
telling when a reverse computation has to take place, and a commit one limiting the scope
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of a potential reverse computation. This implies that the calculus is not fully reversible
(i.e., backward computations are not always enabled), leading to have relaxed and
different properties with respect to other reversible calculi, such as RCCS [10], Rπ [9],
ρπ [21,22] and ReSπ [32]. We prove that cherry-pi satisfies the following properties:
(i) a rollback always brings back the system to a previous visited state and (ii) it is not
possible to bring the computation back to a point prior to the last checkpoint, which
implies that our commits have a persistent effect. Concerning soundness properties,
we prove that (a) our compliance check is decidable, and that compliance-checked
cherry-pi specifications (b) never reduce to communication errors (e.g., a blocked
communication where there is a receiver without the corresponding sender) and (c) never
activate undesirable rollbacks (according to our notion of rollback recovery mentioned
above). Property (b) resembles the type safety property of session-based calculi (see,
e.g., [38]), while property (c) is a new property specifically defined for cherry-pi.
The technical development of property proofs turns out to be more intricate than that
of standard properties of session-based calculi, due to the combined use of type and
compliance checking.

To demonstrate feasibility and effectiveness of our rollback recovery approach, we
have concretely implemented4 the compliance check using the MAUDE framework [7].

Outline. Sec. 2 illustrates the key idea of our rollback recovery approach; Sec. 3
introduces syntax and semantics of the cherry-pi calculus; Sec. 4 introduces typing
and compliance checking; Sec. 5 presents the properties satisfied by cherry-pi; Sec. 6
shows an application of cherry-pi to a practical case study [31,14]; Sec. 7 describes
how the approach extends to multiparty sessions; Sec. 8 concludes the paper with related
and future work. The Appendix reports the proofs of our results.

2 A reversible video on demand service example

We discuss the motivations underlying our work by introducing our running example, a
Video on Demand (VOD) scenario. The key idea is that a rollback requester is satisfied
only if her restored checkpoint was set by herself. In Fig. 1(a), a service (S) offers to
a user (U) videos with two different quality levels, namely high definition (HD) and
standard definition (SD). After the login, U sends her video request, and receives the
corresponding price and metadata (actors, directors, description, etc.) from S. According
to this information, U selects the video quality. Then, she receives, first, a short test video
(to check the audio and video quality in her device) and, finally, the requested video. If
the vision of the HD test video is not satisfactory, U can roll back to her last checkpoint
to possibly change the video quality, instead in the SD case U can abort the session.

Let us now add commit actions as in the run shown in Fig. 1(b). After receiving the
price, U commits, while S commits after the quality selection. In this scenario, however,
if U activates the rollback, she is unable to go back to the checkpoint she set with her
commit action because the actual effect of rollback is to restore the checkpoint set by the
commit action performed by S.

4 Our MAUDE implementation of the compliance check is available at the cherry-pi’s website:
http://pros.unicam.it/tools/cherry-pi.

http://pros.unicam.it/tools/cherry-pi
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Fig. 1. VOD example: (a) a full description without commit actions; (b,d) runs with undesired
rollback; (c) a run with satisfactory rollback.

In the scenario in Fig. 1(c), instead, S commits after sending the price to U. In
this case, no matter who first performed the commit action, the rollback results to be
satisfactory. Also if S commits later, the checkpoint of U remains unchanged, as U
performed no other action between the two commit actions. This would not be the case
if both U and S commited after the communication of the metadata, as in Fig. 1(d). If
S commits before U, no rollback issue arises, but if U commits first it may happen that
her internal decision is taken before that S commits. In this case, U would not be able to
go back to the checkpoint set by herself, and she would be unable to change the video
quality.

These undesired rollbacks are caused by bad choices of commit points. We propose
a compliance check that identifies these situations at design time, avoiding unnecessary
checks at runtime.

3 The cherry-pi calculus

In this section, we introduce cherry-pi, a calculus (extending that in [38]) devised for
studying sessions equipped with our checkpoint-based rollback recovery mechanism.

3.1 Syntax

The syntax of the cherry-pi calculus relies on the following base sets: shared channels
(ranged over by a), used to initiate sessions; session channels (ranged over by s),
consisting of pairs of endpoints (ranged over by s, s̄) used by the two parties to interact
within an established session; labels (ranged over by l), used to select and offer branching
choices; values (ranged over by v), including booleans, integers and strings (whose sorts,
ranged over by S, are bool, int and str, respectively), which are exchanged within a
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C ::= Collaborations
āpxq.P | apxq.P | C1 |C2 request, accept, parallel

P ::= Processes
x!xey.P | x?py : Sq.P output, input

| xŸ l.P | xŹ tl1 : P1, . . . , ln : Pnu selection, branching
| if e then P1 else P2 | X | µX.P | 0 choice, recursion, inact
| commit.P | roll | abort commit, roll, abort

e ::= v | `pe1, e2q | ^pe1, e2q | . . . Expressions

Fig. 2. cherry-pi syntax.

session; variables (ranged over by x, y, z), storing values and session endpoints; process
variables (ranged over by X), used for recursion.

cherry-pi specifications, called collaborations and ranged over by C, are given
by the grammar in Fig. 2. The key ingredient of the calculus is the set of actions for
controlling the session rollback. Actions commit, roll and abort are used, respectively,
to commit a session (producing a checkpoint for each session participant), to trigger the
session rollback (restoring the last committed checkpoints) or to abort the whole session.
We discuss below the other constructs of the calculus, which are those typically used for
session-based programming [15].

A cherry-pi collaboration is a collection of session initiators, i.e. terms ready
to initiate sessions by synchronising on shared channels. A synchronisation of two
initiators āpxq.P and apyq.Q causes the generation of a fresh session channel, whose
endpoints replace variables x and y in order to be used by the triggered processes P
and Q, respectively, for later communications. No subordinate sessions can be initiated
within a running session.

When a session is started, each participant executes a process. Processes are built
up from the process 0, which does nothing, and from basic actions by means of action
prefix . , conditional choice if e then else , and recursion µX. . Actions x!xey and
y?pz : Sq denote output and input via session endpoints replacing x and y, respectively.
These communication primitives realise the standard synchronous message passing,
where messages result from the evaluation of expressions, which are defined by means
of standard operators on boolean, integer and string values. Variables that are arguments
of input actions are (statically) typed by sorts. There is no need for statically typing
the variables occurring as arguments of session initiating actions, as they are always
replaced by session endpoints. Notice that in cherry-pi the exchanged values cannot
be endpoints, meaning that session delegation (i.e., channel-passing) is not considered.
Actions xŸ l and xŹ tl1 : P1, . . . , ln : Pnu denote selection and branching (where l1,
. . . , ln are pairwise distinct).

Example 1. Let us consider the VOD example informally introduced in Sec. 2. The
scenario described in Fig. 1(a) with commit actions placed as in Fig. 1(b) is rendered in
cherry-pi as

CUS “ loginpxq. PU | loginpyq. PS
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C ::= āpxq.P | apxq.P | C1 |C2 | pνs : C1q C2 | xP1y § P2 Collaborations

P ::= r !xey.P | r ?py : Sq.P | r Ÿ l.P | r Ź tl1 :P1,. . ., ln :Pnu | ¨ ¨ ¨ Processes

Fig. 3. cherry-pi runtime syntax (the rest of processes P and expressions e are as in Fig. 2).

where:

PU “ x!xvreqy. x?pxprice : intq. commit. x?pxmeta : strq. if pfevalpxprice, xmetaqq

then xŸ lHD. x?pxtestHD : strq.
pif pfHDpxtestHDqq then x?pxvideoHD : strq.0 else rollq

else xŸ lSD. x?pxtestSD : strq.
pif pfSDpxtestSDqq then x?pxvideoSD : strq.0 else abortq

PS “ y?pyreq : strq. y!xfpricepyreqqy. y!xfmetapyreqqy.
y Ź t lHD : commit. y!xftestHDpyreqqy. y!xfvideoHDpyreqqy.0 ,

lSD : commit. y!xftestSDpyreqqy. y!xfvideoSDpyreqqy.0 u

Notice that expressions used for decisions and computations are abstracted by functions
fnp¨q.

Considering the placement of commit actions depicted in Fig. 1(c), the cherry-pi
specification of the service’s process becomes:

y?pyreq : strq. y!xfpricepyreqqy. commit. y!xfmetapyreqqy.
y Ź t lHD : y!xftestHDpyreqqy. y!xfvideoHDpyreqqy.0 ,

lSD : y!xftestSDpyreqqy. y!xfvideoSDpyreqqy.0 u

Finally, considering the placement of commit actions depicted in Fig. 1(d), the
cherry-pi specification of the user’s process becomes:

x!xvreqy. x?pxprice : intq. x?pxmeta : strq. commit. if pfevalpxprice, xmetaqq then . . .

3.2 Semantics

The operational semantics of cherry-pi is defined for runtime terms, generated by the
extended syntax of the calculus in Fig. 3 (where the new constructs are highlighted
by a grey background). We use k to denote generic session endpoints (s or s̄); and r
to denote session identifiers, i.e. session endpoints and variables together. We refer as
initial collaborations to those runtime terms that can be also generated by the grammar
in Fig. 2.

At collaboration level, two constructs are introduced: pνs : C1q C2 represents a
session along the channel s with associated starting checkpoint C1 (corresponding to the
collaboration that has initialised the session) and codeC2; construct xP1y § P2 represents
a log storing the checkpoint P1 associated to the code P2. At process level, the only
difference is that session identifiers r are used as first argument of communicating
actions. We extend the standard notion of binders to take into account pνs : C1q C2,
which binds session endpoints s and s̄ in C2 (in this respect, it acts similarly to the
restriction of π-calculus, but its scope cannot be extended in order to avoid involving
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� Forward reduction over collaborations ù Backward reduction over collaborations

�“p�Yùq Reduction over collaborations `
ÝÑ Relation labelled by actions over processes

Fig. 4. cherry-pi transition relations.

k!xey.P
k!xvy
ÝÝÝÑ P (e Ó v) [P-SND] k?px : Sq.P

k?pxq
ÝÝÝÑ P [P-RCV]

k Ÿ l.P
kŸl
ÝÝÑ P [P-SEL] k Ź tl1 :P1, . . . , ln :Pnu

kŹli
ÝÝÝÑ Pi (1ď iďn) [P-BRN]

P1 ” P 11
`
ÝÑ P 12 ” P2

P1
`
ÝÑ P2

[P-STR]
if e then P1 else P2

τ
ÝÑ P1 (e Ó true)

if e then P1 else P2
τ
ÝÑ P2 (e Ó false)

[P-IFT]

[P-IFF]

commit.P
cmt
ÝÝÑ P [P-CMT] roll

roll
ÝÝÑ 0 [P-RLL] abort

abt
ÝÝÑ 0 [P-ABT]

Fig. 5. cherry-pi semantics: auxiliary labelled relation.

processes that do not belong to the session in the rollback effect). The derived notions of
bound and free names (where names stand for variables, process variables and session
endpoints), alpha-equivalence, and substitution are standard and we assume that bound
names are pairwise distinct. The semantics of the calculus is defined for closed terms,
i.e. terms without free variables and process variables.

Not all processes allowed by the extended syntax corresponds to meaningful collab-
orations. In a general term the processes stored in logs may not be consistent with the
computation that has taken place. We get rid of such malformed terms, as we will only
consider those runtime terms, called reachable collaborations, obtained by means of
reductions from initial collaborations.

In cherry-pi, processes can perform, besides usual forward computations, also
backward computations that restore the last committed checkpoints, thus undoing the
effect of forward computations. The operational semantics is given in terms of a standard
structural congruence [17], written ”, and a reduction relation, written �, given as
the union of the corresponding forward reduction relation � and backward reduction
relations ù. The definition of the relation � over closed collaborations relies on an
auxiliary labelled relation `

ÝÑ over processes that specifies the actions that processes
can initially perform and the continuation process obtained after each such action. The
notation of the above relations is summarised in Fig. 4. Given a reduction relation R,
we will indicate with R` and R˚ respectively the transitive and the reflexive-transitive
closure of R.

The operational rules defining the auxiliary labelled relation are reported in Fig. 5,
where action label ` stands for either k!xvy, k?pxq, k Ÿ l, k Ź l, cmt , roll , abt , or
τ . The meaning of these rules is straightforward, as they just produce as labels the
actions currently enabled in the process. In doing that, expressions of sending actions
and conditional choices are evaluated (the auxiliary function e Ó v says that closed
expression e evaluates to value v).

The operational rules defining the reduction relation � are reported in Fig. 6. We
comment on salient points. Once a session is created, its initiating collaboration is
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āpx1q.P1 | apx2q.P2 � pνs : pāpx1q.P1 | apx2q.P2qq [F-CON]
pxP1rs̄{x1sy§P1rs̄{x1s | xP2rs{x2sy§P2rs{x2sq

P1
k̄!xvy
ÝÝÝÑ P 11 P2

k?pxq
ÝÝÝÑ P 12

xQ1y§P1 | xQ2y§P2 � xQ1y§P
1
1 | xQ2y§P

1
2rv{xs

[F-COM]

P1
k̄Ÿl
ÝÝÑ P 11 P2

kŹl
ÝÝÑ P 12

xQ1y§P1 | xQ2y§P2 � xQ1y§P
1
1 | xQ2y§P

1
2

[F-LAB]

P1
cmt
ÝÝÑ P 11

xQ1y § P1 | xQ2y § P2 � xP 11y § P 11 | xP2y § P2

[F-CMT]

C1 ” C 11 � C 12 ” C2

C1 � C2
[F-STR]

P
τ
ÝÑ P 1

xQy § P � xQy § P 1
[F-IF]

C2 � C 12

pνs : C1qC2 � pνs : C1qC
1
2

[F-RES]
C1 � C 11

C1 |C2 � C 11 |C2

[F-PAR]

P1
roll
ÝÝÑ P 11

xQ1y § P1 | xQ2y § P2 ù xQ1y §Q1 | xQ2y §Q2
[B-RLL]

P1
abt
ÝÝÑ P 11

pνs : CqpxQ1y § P1 | xQ2y § P2q ù C
[B-ABT]

C1 ” C 11 ù C 12 ” C2

C1 ù C2
[B-STR]

C2 ù C 12

pνs : C1qC2 ù pνs : C1qC
1
2

[B-RES]
C1 ù C 11

C1 |C2 ù C 11 |C2

[B-PAR]

Fig. 6. cherry-pi semantics: forward and backward reduction relations.

stored in the session construct (rule [F-CON]). Communication, branching selection and
internal conditional choices proceed as usual, without affecting logs (rules [F-COM],
[F-LAB] and [F-IF]). A commit action updates the checkpoint of a session, by replacing
the processes stored in the logs of the two involved parties (rule [F-CMT]). Conversely,
a rollback action restores the processes in the two logs (rule [B-RLL]). The abort action,
instead, restores the collaboration stored in the session construct formed by the two
initiators that have started the session (rule [B-ABT]). The other rules simply extend
the standard parallel, restriction, structural congruence rules to forward and backward
relations.

Example 2. Consider the first cherry-pi specification of the VOD scenario given in
Ex. 1. In the initial state CUS of the collaboration, U and S can synchronise in order to
initialise the session, thus evolving to

C1
US “ pνs : CUSq pxPUrs̄{xsy § PUrs̄{xs | xPSrs{ysy § PSrs{ysq
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Let us consider now a possible run of the session. After three reduction steps, U
executes the commit action, obtaining the following runtime term:

C2
US “ pνs : CUSq pxP

1
Uy § P 1U | xP

1
Sy § P 1Sq

P 1U “ s̄?pxmeta : strq. if pfevalpvprice, xmetaqq then . . .

P 1S “ s!xfmetapvreqqy. y Ź t . . . u

After four further reduction steps, U chooses the HD video quality and S commits as
well; the resulting runtime collaboration is as follows:

C3
US “ pνs : CUSq pxP

2
U y § P 2U | xP 2S y § P 2S q

P 2U “ s̄?pxtestHD : strq. if pfHDpxtestHDqq then s̄?pxvideoHD : strq.0 else roll

P 2S “ s!xftestHDpvreqqy. s!xfvideoHDpvreqqy.0

In the next reductions, U evaluates the test video and decides to revert the session
execution, resulting in

C4
US “ pνs : CUSq pxP

2
U y § roll | xP 2S y § s!xfvideoHDpvreqqy.0q

The execution of the roll action restores the checkpointsP 2U andP 2S , that isC4
US ù C3

US.
After the rollback, U is not able to change the video quality as her own commit point
would have permitted; in fact, it holds C4

US ù{ C2
US.

4 Rollback safety

The operational semantics of cherry-pi provides a description of the functioning of the
primitives for programming the checkpoint-based rollback recovery in a session-based
language. However, as shown in Ex. 2, it does not guarantee high-level properties about
the safe execution of the rollback. To prevent such undesired rollbacks, we propose the
use of compliance checking, to be performed at design time before actually executing
the system. This check is not done on the full system specification, but only at the level
of session types.

4.1 Session types and typing

The syntax of the cherry-pi session types is defined in Fig. 7. The type !rSs.T represents
the behaviour of first outputting a value of sort S, then performing the actions prescribed
by type T . The type ?rSs.T is the dual one, where a value is received instead of sent.
Type end represents inaction. Type Ÿrls.T represents the behaviour that selects the label
l and then behaves as T . Type Źrl1 : T1, . . . , ln : Tns describes a branching behaviour:
it waits with n options, and behaves as type Ti if the i-th label is selected (external
choice). Type T1‘T2 behaves as either T1 or T2 (internal choice). Type µt.T represents
a recursive behaviour that starts by doing T and, when variable t is encountered, recurs
to T again. Type cmt.T represents a commit action followed by the actions prescribed
by type T . Finally, types roll and abt represent rollback and abort actions.
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S ::= Sorts
bool | int | str boolean, integer, string

T ::= Session types
!rSs.T | ?rSs.T output, input

| Ÿrls.T | Źrl1 : T1, . . . , ln : Tns selection, branching
| T1 ‘ T2 | t | µt.T | end choice, recursion, end
| cmt.T | roll | abt commit, roll, abort

Fig. 7. cherry-pi type syntax.

H;H $ P § x : T

āpxq.P § tā : T u
[T-REQ]

H;H $ P § x : T

apxq.P § ta : T u
[T-ACC]

C1 § A1 C2 § A2

C1 | C2 § A1 YA2
[T-PAR]

Fig. 8. Typing system for cherry-pi collaborations.

The cherry-pi type system does not perform compliance checks, but it just aims
at inferring the types of collaboration participants, which will be then checked together
according to the compliance relation. Typing judgements are of the form C § A, where
A, called type associations, is a set of session type associations of the form â : T , where
â stands for either ā or a. Intuitively, the judgement C § A indicates that from the
collaboration C the type associations in A are inferred. The definition of the type system
for these judgments relies on auxiliary typing judgements for processes, of the form
Θ;Γ $ P § ∆, where Θ, Γ and ∆, called basis, sorting and typing respectively,
are finite partial maps from process variables to type variables, from variables to sorts,
and from variables to types, respectively. Updates of basis and sorting are denoted,
respectively, by Θ ¨ X : t and Γ ¨ y : S, where X R dompΘq, t R codpΘq and
y R dompΓ q. Intuitively, the judgement Θ;Γ $ P § ∆ stands for “under the
environment Θ;Γ , process P has typing ∆”. In its own turn, the typing of processes
relies on auxiliary (standard) judgments for expressions, of the form Γ $ e § S. The
axioms and rules defining the typing system for cherry-pi collaborations, processes
and expressions are given in Fig. 8 and 9, and 10, respectively. The type system is
defined only for initial collaborations, i.e. for terms generated by the grammar in Fig. 2.
Other runtime collaborations are not considered here, as no check will be performed
at runtime. We comment on salient points. Typing rules at collaboration level simply
collect the type associations of session initiators in the collaboration. Rules at process
level instead determine the session type corresponding to each process, by mapping
each process operator to the corresponding type operator. Data and expression used in
communication actions are abstracted as sorts, and a conditional choice is rendered as
an internal non-deterministic choice. Typing rules for expressions are standard.

4.2 Compliance checking

To check compliance between pairs of session parties, we consider type configurations
of the form pT, T 1q : xT̃1y § T2 ‖ xT̃3y § T4, consisting in a pair pT, T 1q of session types,
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Γ $ e § S Θ;Γ $ P § x : T

Θ;Γ $ x!xey.P § x :!rSs.T
[T-SND]

Θ;Γ ¨ y : S $ P § x : T

Θ;Γ $ x?py : Sq.P § x :?rSs.T
[T-RCV]

Θ;Γ $ 0 § x : end [T-INACT]
Θ;Γ $ P § x : T

Θ;Γ $ xŸ l.P § x : Ÿrls.T
[T-SEL]

Θ;Γ $ P1 § x : T1 . . . Θ;Γ $ Pn § x : Tn

Θ;Γ $ xŹ tl1 : P1, . . . , ln : Pnu § x : Źrl1 : T1, . . . , ln : Tns
[T-BR]

Γ $ e § bool Θ;Γ $ P1 § x : T1 Θ;Γ $ P2 § x : T2

Θ;Γ $ if e then P1 else P2 § x : T1 ‘ T2
[T-IF]

Θ ¨X : t;Γ $ X § t [T-PVAR]
Θ ¨X : t;Γ $ P § T

Θ;Γ $ µX.P § µt.T
[T-REC]

Θ;Γ $ P § x : T

Θ;Γ $ commit.P § x : cmt.T
[T-CMT]

Θ;Γ $ roll § x : roll [T-RLL] Θ;Γ $ abort § x : abt [T-ABT]

Fig. 9. Typing system for cherry-pi processes.

Γ $ true § bool [T-BOOLtt ] Γ $ false § bool [T-BOOLff ]

Γ ¨ x : S $ x § S [T-VAR] Γ $ 1 § int [T-INT] Γ $ “a” § str [T-STR]

Γ $ e1 § int Γ $ e2 § int

Γ $ `pe1, e2q § int
[T-SUM]

Γ $ e1 § bool Γ $ e2 § bool

Γ $ ^pe1, e2q § bool
[T-AND]

Fig. 10. Typing system for cherry-pi expressions (excerpt of rules).

corresponding to the types of the parties at the initiation of the session, and in the parallel
composition of two pairs xT̃cy § T , where T is the session type of a party and T̃c is
the type of the party’s checkpoint. We use T̃ to denote either a type T , representing a
checkpoint committed by the party, or T , representing a checkpoint imposed by the other
party of the session. The semantics of type configurations, necessary for the definition of
the compliance relation, is given in Fig. 11, where label λ stands for either !rSs, ?rSs,
Ÿ l, Ź l, τ , cmt, roll, or abt. We comment on the relevant rules. In case of a commit
action, the checkpoints of both parties are updated, but the one of the passive party
(i.e., the party that has not performed the commit action) is marked as ‘imposed’ (rule
[TS-CMT1]). However, if the passive party did not perform any action from its current
checkpoint, this checkpoint is not overwritten by the active party (rule [TS-CMT2]), as
discussed in Sec. 2 (Fig. 1(c)). In case of a roll action (rule [TS-RLL1]), the reduction
step is performed only if the active party (i.e., the party that has performed the rollback
action) has a non-imposed checkpoint; in all other situations the configuration cannot
proceed with the rollback. Finally, in case of abort (rule [TS-ABT1]), the configuration
goes back to the initial state; this allows the type computation to proceed, in order to not
affect the compliance check between the two parties.
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!rSs.T
!rSs
ÝÝÑ T [TS-SND] ?rSs.T

?rSs
ÝÝÑ T [TS-RCV] Ÿrls.T

Ÿ l
ÝÝÑ T [TS-SEL]

Źrl1 : T1, . . . , ln : Tns
Ź li
ÝÝÑ Ti p1ď iďnq [TS-BR]

T rµt.T {ts
λ
ÝÑ T 1

µt.T
λ
ÝÑ T 1

[TS-REC]
T1 ‘ T2

τ
ÝÑ T1 [TS-IF1] T1 ‘ T2

τ
ÝÑ T2 [TS-IF2]

cmt.T
cmt
ÝÝÑ T [TS-CMT] roll

roll
ÝÝÑ end [TS-RLL] abt

abt
ÝÝÑ end [TS-ABT]

T1
τ
ÝÑ T 11

pT, T 1q : xŨ1y § T1 ‖ xŨ2y § T2 ÞÝÑ pT, T 1q : xŨ1y § T 11 ‖ xŨ2y § T2

[TS-TAU]

T1
!rSs
ÝÝÑ T 11 T2

?rSs
ÝÝÑ T 12

pT, T 1q : xŨ1y § T1 ‖ xŨ2y § T2 ÞÝÑ pT, T 1q : xŨ1y § T 11 ‖ xŨ2y § T 12
[TS-COM]

T1
Ÿ l
ÝÝÑ T 11 T2

Ź l
ÝÝÑ T 12

pT, T 1q : xŨ1y § T1 ‖ xŨ2y § T2 ÞÝÑ pT, T 1q : xŨ1y § T 11 ‖ xŨ2y § T 12
[TS-LAB]

T1
cmt
ÝÝÑ T 11 Ũ2 ‰ T2

pT, T 1q : xŨ1y § T1 ‖ xŨ2y § T2 ÞÝÑ pT, T 1q : xT 11y § T 11 ‖ xT2y § T2

[TS-CMT1]

T1
cmt
ÝÝÑ T 11 Ũ2 “ T2

pT, T 1q : xŨ1y § T1 ‖ xŨ2y § T2 ÞÝÑ pT, T 1q : xT 11y § T 11 ‖ xŨ2y § T2

[TS-CMT2]

T1
roll
ÝÝÑ T 11

pT, T 1q : xU1y § T1 ‖ xŨ2y § T2 ÞÝÑ pT, T 1q : xU1y § U1 ‖ xŨ2y § U2

[TS-RLL1]

T1
abt
ÝÝÑ T 11

pT, T 1q : xŨ1y § T1 ‖ xŨ2y § T2 ÞÝÑ pT, T 1q : xT y § T ‖ xT 1y § T 1
[TS-ABT1]

Fig. 11. Semantics of types and type configurations (symmetric rules for configurations are
omitted).

We define the compliance relation, inspired by the relation in [2], and prove its
decidability (the proof is reported in Appendix A).

Definition 1 (Compliance). Two types T1 and T2 are compliant, written T1 - T2, if
pT1, T2q : xT1y § T1 - xT2y § T2. Relation - on configurations is defined as follows:
pT, T 1q : xŨ1y § T1 - xŨ2y § T2 holds if for any U 11, T 11, U 12, T 12 such that pT, T 1q :

xŨ1y § T1 ‖ xŨ2y § T2 ÞÝÑ
˚ pT, T 1q : xŨ 11y § T 11 ‖ xŨ 12y § T 12 ÞÝÑ{ we have that

T 11 “ T 12 “ end.

Theorem 1. Let T1 and T2 be two session types, checking if T1 - T2 holds is decidable.

The above compliance relation is used to define the notion of rollback safety.
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Definition 2 (Rollback safety). Let C be an initial collaboration, then C is rollback
safe (shortened r-safe) if C § A and for all pairs ā : T1 and a : T2 in A we have
T1 - T2.

Example 3. Let us consider again the VOD example. As expected, the first cherry-pi
collaboration defined in Ex. 1, corresponding to the scenario described in Fig. 1(b), is not
rollback safe, because the types of the two parties are not compliant. Indeed, the session
types TU and TS associated by the type system to the user and the service processes,
respectively, are as follows:

TU “ !rstrs. ?rints. cmt. ?rstrs. pŸrlHDs. ?rstrs. p ?rstrs. end ‘ roll q

‘ Ÿ rlSDs. ?rstrs. p ?rstrs. end ‘ abt q q

TS “ ?rstrs. !rints. !rstrs. Ź rlHD : cmt. !rstrs. !rstrs. end ,
lSD : cmt. !rstrs. !rstrs. ends

Thus, the resulting initial configuration is pTU, TSq : xTUy § TU ‖ xTSy § TS, which
can evolve to the configuration pTU, TSq : xT y § roll ‖ xUy§!rstrs.end, with T “
?rstrs. p?rstrs. end ‘ rollq and U “!rstrs. !rstrs. end. This configuration cannot
evolve and is not in a final state (in fact, types roll and !rstrs.end are different from
end), meaning that TU and TS are not compliant.

In the scenario described in Fig. 1(c), instead, the type of the server process is as
follows:

T 1S “ ?rstrs. !rints. cmt. !rstrs. Ź rlHD : !rstrs. !rstrs. end ,
lSD : !rstrs. !rstrs. ends

and we have TU - T 1S.
Finally, the types of the processes depicted in Fig. 1(d) are:

T 1U “ !rstrs. ?rints. ?rstrs. cmt. pŸrlHDs. . . . ‘ ŸrlSDs. . . . q

T 2S “ ?rstrs. !rints. !rstrs. cmt. Ź rlHD : !rstrs. !rstrs. end ,
lSD : !rstrs. !rstrs. ends

and we have T 1U -{ T
2
S . Indeed, the corresponding initial configuration can evolve to the

configuration pT 1U, T
2
S q : xŸrlHDs. . . .y § roll ‖ xŹrlHD : . . . , lSD : . . .sy§!rstrs.end,

which again is not in a final state.

4.3 MAUDE implementation

To practically enable the compliance checking at the basis of our notion of rollback
safety, we have implemented the semantics of type configurations in Fig. 11 within the
MAUDE framework [7]. MAUDE provides an instantiation of rewriting logic [24] and it
has been used to implement the semantics of a variety of formal languages [25].

The syntax of cherry-pi types and type configurations is specified by defining
algebraic data types, while transitions and reductions are rendered as rewrites and,
hence, inference rules are given in terms of (conditional) rewrite rules. Since MAUDE
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specifications are executable, we have obtained in this way an interpreter for cherry-pi
type configurations, which permits to explore the reductions arising from the initial
configuration of two given session types.

Our implementation consists of two MAUDE modules:

– CHERRY-TYPES-SYNTAX provides the definition of the sorts that characterise
the syntax of cherry-pi types, such as session types, selection/branching labels,
type variables and type configurations. In particular, basic terms of session types are
rendered as constant operations on the sort Type; e.g., the roll type is defined as

op roll : -> Type .

The other syntactic operators are instead defined as operations with one or more
input arguments; e.g., the output type takes as input a Sort (i.e., bool, int or str)
and a continuation type:

op ![_]._ : Sort Type -> Type [frozen prec 25] .

To prevent undesired rewrites inside operator arguments, following the approach
in [35], we declared these operations as frozen. The prec attribute has been used
to define the precedence among operators.

– CHERRY-TYPES-SEMANTICS provides rewrite rules, and additional operators
and equations, to define the cherry-pi type semantics. For example, the operational

rule [TS-SND] of the output type, i.e. !rSs.T
!rSs
ÝÝÑ T , is rendered as the following

rewrite rule:

r l [TS-Snd] : ![S].T => {![S]}T .

The correspondence between the operational rule and the rewrite one is one-to-one;
the only peculiarity is the fact that, since rewrites have no labels, we have made the
transition label part of the resulting term. Reduction rules for type configurations
are instead rendered in terms of (conditional) rewrite rules with rewrites in their
conditions. For example, the [TS-COM] rule is rendered as:

c r l [TS-Com] :
init(T,T’) CT1 > T1 || CT2 > T2 => init(T,T’) CT1 > T1’ || CT2 > T2’
i f T1 => {![S]}T1’ /\ T2 => {?[S]}T2’ .

The compliance check between two session types can be then conveniently realised
on top of the implementation described above by resorting to the MAUDE command
search. This permits indeed to explore the state space of configurations reachable
from an initial configuration. Specifically, the compliance check between types T1 and
T2 is rendered as follows:

search
init(T1,T2) ckp(T1) > T1 || ckp(T2) > T2
=>!
init(T:Type,T’:Type) CT1:CkpType > T1’:Type || CT2:CkpType > T2’:Type

such that T1’ =/= end or T2’ =/= end .

This command searches for all terminal states (=>!), i.e. states that cannot be rewritten
any more (see ÞÝÑ{ in Def. 1), and checks if at least one of the two session types in the
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corresponding configurations (T1’ and T2’) is different from the end type. Thus, if
this search has no solution, T1 and T2 are compliant; otherwise, they are not compliant
and a violating configuration is returned.

Example 4. Let us consider the cherry-pi types defined in Ex. 3 for the scenario
described in Fig. 1(b). In our MAUDE implementation of the type syntax, the session
types TU and TS, and the corresponding initial type configuration, are rendered as follows:

eq Tuser = ![str]. ?[int]. cmt. ?[str].
((sel[’hd]. ?[str]. ((?[str]. end) (+) roll))
(+) (sel[’sd]. ?[str]. ((?[str]. end) (+) abt))) .

eq Tservice = ?[str]. ![int]. ![str].
brn[brnEl(’hd, cmt. ![str]. ![str]. end);

brnEl(’sd, cmt. ![str]. ![str]. end)] .

eq InitConfig = init(Tuser,Tservice)
ckp(Tuser) > Tuser || ckp(Tservice) > Tservice .

where (+) represents the internal choice operator, sel the selection operator, brn the
branching operator, brnEl an option offered in a branching, and ckp a non-imposed
checkpoint. The compliance between the two session types can be then checked by first
loading the two modules of our MAUDE implementation 5:

./maude.darwin64 cherry-pi_type_semantics.maude

and then executing the following command:

search InitConfig
=>!
init(T:Type,T’:Type) CT1:CkpType > T1:Type || CT2:CkpType > T2:Type

such that T1 =/= end or T2 =/= end .

This search command returns the following solution:

CT1 --> ickp(?[str]. ((?[str]. end)(+)roll))
T1 --> roll
CT2 --> ckp(![str]. ![str]. end)
T2 --> ![str]. end

As already explained in Ex. 3, the two types are not compliant. Indeed, the configuration
above is final, because T1 cannot perform the rollback, since its checkpoint is imposed
(ickp), and T2 cannot perform the communication action, since its partner T1 is not
ready to receive. Moreover, roll and ![str].end are clearly different from end.

The scenario in Fig. 1(c) is rendered by means of the following implementation of
the service type:

eq Tservice’ = ?[str]. ![int]. cmt. ![str].
brn[brnEl(’hd, ![str]. ![str]. end);

brnEl(’sd, ![str]. ![str]. end)] .

In this case, as expected, the search command returns:

No solution.

5 We have used the version 2.7.1 of MAUDE for Mac OS X.
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meaning that the types are compliant.
Finally, the search command applied to the type configuration related to the

scenario depicted in Fig. 1(d) returns a solution, meaning that the user and service types
are not compliant.

5 Properties of cherry-pi

We present in this section the results regarding the properties enjoyed by cherry-pi.
Their proofs are reported in Appendix A. The statement of some properties exploits
labelled transitions that permit to easily distinguish the execution of commit and rollback
actions from the other ones. To this aim, rules [F-CMT], [B-RLL] and [B-ABT] can be
slightly modified by labelling the transition in their conclusions by cmt , roll and abt ,
respectively, and rules [F/B-PAR], [F/B-RES] and [F/B-STR] change accordingly in
order to propagate the labelled transitions.

5.1 Rollback properties

We show some properties related to the reversible behaviour of cherry-pi and in
particular related to the interplay between rollback and commit primitives.

The following theorem states that any reachable collaboration is also a forward
only reachable collaboration. This means that all the states a collaboration reaches via
backward reductions are states that we can reach from the initial configuration with just
forward reductions. This assures us that if the system goes back it will reach previous
visited states.

Theorem 2. Let C0 be an initial collaboration. If C0 �˚ C1 then C0 �˚ C1.

We now show a variant of the so-called Loop Lemma [10]. In a fully reversible
calculus this lemma states that each computational step, either forward or backward,
can be undone. Since reversibility in cherry-pi is controlled, we have to state that if a
reversible step is possible (e.g., a rollback is enabled) then the effects of the rollback can
be undone. Formally we have:

Lemma 1 (Safe rollback). Let C1 and C2 be reachable collaborations. If C1 ù C2

then C2 �˚ C1.

The following result states that a rollback always brings the system to the last taken
checkpoint.

Lemma 2 (Determinism). Let C be a reachable collaboration. IfC roll
ù C 1 andC roll

ù C2

then C 1 ” C2.

The last rollback property states that a cherry-pi collaboration cannot go back to a
state prior to the execution of a commit action, that is commits have a persistent effect.

Theorem 3 (Undoability). Let C be a reachable collaboration. If C
cmt
� C 1 then there

exists no C2 such that C 1 �˚ rollù C2 and C2 �` C.
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P1
k!xvy
ÝÝÝÑ P 11  P2 ók? [E-COM1]

xQ̃1y § P1 | xQ̃2y § P2 � com error

P1
k?pxq
ÝÝÝÑ P 11  P2 ók! [E-COM2]

xQ̃1y § P1 | xQ̃2y § P2 � com error

P1
kŸl
ÝÝÑ P 11  P2 ókŹl [E-LAB1]

xQ̃1y § P1 | xQ̃2y § P2 � com error

P1
kŹl
ÝÝÑ P 11  P2 ókŸl [E-LAB2]

xQ̃1y § P1 | xQ̃2y § P2 � com error

P1
cmt
ÝÝÑ P 11 Q̃2 ‰ P2

xQ̃1y § P1 | xQ̃2y § P2 � xP 11y § P 11 | xP2y § P2

[E-CMT1]

P1
cmt
ÝÝÑ P 11 Q̃2 “ P2

xQ̃1y § P1 | xQ̃2y § P2 � xP 11y § P 11 | xQ̃2y § P2

[E-CMT2]

P1
roll
ÝÝÑ P 11

xQ1y § P1 | xQ̃2y § P2 ù xQ1y §Q1 | xQ̃2y §Q2

[E-RLL1]

P1
roll
ÝÝÑ P 11

xQ1y § P1 | xQ̃2y § P2 � roll error
[E-RLL2]

Fig. 12. cherry-pi semantics: error reductions.

5.2 Soundness properties

The second group of properties concerns soundness guarantees. The definition of these
properties requires to formally characterise the errors that may occur on the execution of
an unsound collaboration. We rely on error reduction (as in [6]) rather than on the usual
static characterisation of errors (as, e.g., in [38]), since rollback errors cannot be easily
detected statically. In particular, we extend the syntax of cherry-pi collaborations
with the roll error and com error terms, denoting respectively collaborations in
rollback and communication error states:

C ::“ āpxq.P | apxq.P | C1 |C2 | pνs : C1q C2

| xP̃1y § P2 | roll error | com error

where P̃ denotes either a checkpoint P committed by the party or a checkpoint P
imposed by the other party of the session. The semantics of cherry-pi is extended as
well by the (error reduction) rules in Fig. 12, where [E-CMT1] and [E-CMT2] replace
[F-CMT], and [E-RLL1] replaces [B-RLL], and ˜ is used in the checkpoints of the
other rules. The error semantics does not affect the normal behaviour of cherry-pi
specifications, but it is crucial for stating our soundness theorems. Its definition is based
on the notion of barb predicate: P óµ holds if there exists P 1 such that P ñ P 1 and P 1

can perform an action µ, where µ stands for k?, k! ,k Ÿ l or k Ź l (i.e., input, output,
select and branching action along session channel k);ñ is the reflexive and transitive
closure of τ

ÝÑ. The meaning of the error semantics rules is as follows. A communication
error takes place in a collaboration when a session participant is willing to perform an
output but the other participant is not ready to perform the corresponding input (rule [E-
COM1]) or viceversa (rule [E-COM2]), or one participant is willing to perform a selection
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but the corresponding branching is not available on the other side (rule [E-LAB1]) or
viceversa (rule[E-LAB2]). Instead, a rollback error takes place in a collaboration when
a participant is willing to perform a rollback action but its checkpoint has been imposed
by the other participant ([E-RLL2]). To enable this error check, the rules for commit and
rollback have been modified to keep track of imposed overwriting of checkpoints. This
information is not relevant for the runtime execution of processes, but it is necessary for
characterising the rollback errors that our type-based approach prevents.

Besides defining the error semantics, we also need to define erroneous collaborations,
based on the following notion of context: C ::“ r¨s | C |C | pνs : Cq C.

Definition 3 (Erroneous collaborations). A collaboration C is communication (resp.
rollback) erroneous if C “ Crcom errors (resp. C “ Crroll errors).

The key soundness results follow: a rollback safe collaboration never reduces to
either a rollback erroneous collaboration (Theorem 4) or a communication erroneous
collaboration (Theorem 5).

Theorem 4 (Rollback soundness). If C is a r-safe collaboration, then we have that
C �{ ˚ Crroll errors.

Theorem 5 (Communcation soundness). If C is a r-safe collaboration, then we have
that C �{ ˚ Crcom errors.

We conclude with a property concerning the progress of cherry-pi sessions: given
a rollback safe collaboration that can initiate a session, each collaboration reachable
from it either is able to progress on the session with a forward/backward reduction step
or has correctly reached the end of the session. This result straightforwardly follows
from Theorems 4 and 5, and from the fact that we consider binary sessions without
delegation and subordinate sessions.

Theorem 6 (Session progress). Let C “ pāpx1q.P1 | apx2q.P2q be a r-safe collabora-
tion. If C�˚C 1 then either C 1�C2 for some C2 or C 1”pνs :CqpxQ̃1y §0 | xQ̃2y §0q
for some Q̃1 and Q̃2.

6 cherry-pi at work on a speculative parallelism scenario

To shed light on the practical effectiveness of cherry-pi and the related notion of
rollback safety, we consider in this section a simple, yet realistic, scenario concerning a
form of speculative execution borrowed from [31]. In this scenario, value speculation is
used as a mechanism for increasing parallelism, hence system performance, by predicting
values of data dependencies between tasks. Whenever a value prediction is incorrect,
corrective actions must be taken in order to re-execute the data consumer code with
the correct data value. In this regard, as shown in [14] for a shared-memory setting,
reversible execution can permit to relieve programmers from the burden of properly
undoing the actions subsequent to an incorrect prediction. Here, we tailor the scenario to
the channel-based communication model of session-based programming, and show how
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Fig. 13. Producer-consumer scenario with non-speculative (a) and speculative (b) consumers.

our rollback safety checking supports programmers in identifying erroneous rollback
recovery settings.

In the producer-consumer scenario depicted in Fig. 13(a) the session participant
P produces a value and the participant C consumes it. The data dependence between
P and C serialises their executions, thus forcing C to wait for the completion of the
value production that requires a fairly long time. In the scenario in Fig. 13(b), instead,
C enacts a speculative behaviour, as it predicts ahead of time the value computed by P
from a partial information. By using the predicted value, C can execute speculatively
and concurrently with P. When P completes the production, C validates the prediction
by comparing the actual value computed by P and the predicted one; if the prediction
is precise, we gain performance because the execution of C and P overlapped in time,
otherwise rollback is used to move C and P back to a state that precedes the speculative
behaviour, in order to re-execute C using the correct value. The behaviours of C and
P can be recursively defined in order to repeat the overall execution once a value is
correctly consumed.

The scenario informally described above is rendered in cherry-pi as startpxq.PC |
startpyq.PP, where the consumer and producer processes are:

PC “ µX. x!xfreqpqy. xŹ t lspec : x?pxpartial : strq. x?pxfinal : strq.
if pfcomparepxpartial, xfinalqq then roll else commit. X ,

lnonSpec : x?pxcomputed : strq. commit. X u

PP “ µY. y?pyreq : strq.
if pfevalpyreqqq then y Ÿ lspec. y!xfpartialpyreqqy. y!xffinalpyreqqy. Y
else y Ÿ lnonSpec. y!xfcomputepyreqqy. Y

The producer evaluates each consumer’s request in order to establish whether to provide
directly the produced value or the partial information for the prediction. In the former
case the consumer commits the session and both participants restart, while in the latter
one the consumer commits or rolls back depending on the result of the comparison
between the predicted value and the produced one.

According to our compliance check, the above collaboration is rollback safe. In
case of incorrect prediction the session execution is moved back to the last checkpoint,
corresponding to the successfully consumption of the previous requested value. When the
producer receives again the same request, it can immediately send the already produced
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C ::= ¨ ¨ ¨ | ārpspxq.P | arpspxq.P Collaborations

P ::= ¨ ¨ ¨ | rrps!xey.P | rrps?py : Sq.P | rrps Ÿ l.P | rrps Ź tl1 :P1, . . . , ln :Pnu Processes

Fig. 14. Multiparty cherry-pi runtime syntax (the omitted parts are as in Fig. 3).

value. In case the first prediction is wrong, and hence no commit action is performed by
the consumer yet, according to the cherry-pi semantics the checkpoint corresponds to
the beginning of the session.

Let us consider instead the case of a producer that commits each time a value
production is completed, which could apparently seem a reasonable behaviour from
the producer side. The resulting collaboration, however, is not rollback safe: while the
commit action in the non-speculative case does not affect the compliance between the
two session participants, the other commit action overwrites the checkpoint set by the
consumer, making it impossible to re-execute the consumer with the correct value. This
situation, undesirable for the consumer, is detected by our compliance check.

7 Extension to multiparty sessions

We discuss in this section how to extend cherry-pi, its type discipline, the compliance
checking and the related results, to multiparty sessions [17].

The base sets for the multiparty syntax of cherry-pi are the same of the binary case,
except for session endpoints, which now are denoted by srps, with p,q ranging over roles
(represented as natural numbers). Thus, session identifiers r now range over session
endpoints srps or variables x. The runtime syntax of multiparty cherry-pi is defined by
the grammar in Fig. 14, where expressions e are defined as in the binary case (with values
that extends to multiparty session endpoints). Primitive ārpspxq.P initiates a new session
through identifier a on the other multiple participants, each one of the form arqspxq.Pq

where 1 ď q ď p´ 1. Variable x will be substituted with the session endpoint used for
the interactions inside the established session. Primitive rrps!xey.P denotes the intention
of sending a value to role p; similarly, process rrps?py : Sq.P denotes the intention of
receiving a value from role p. Selection and branching are extended in a similar way.

As usual the operational semantics is given in terms of a structural congruence and of
a reduction relation. The rules defining the structural congruence are standard, while the
forward and backward reduction relations are given by the rules in Fig. 15. We comment
on salient points. Rule [M-F-CON] synchronously initiates a session by requiring all
session endpoints be present for a forward reduction, where each role p creates a session
endpoint srps on a fresh session channel s. The participant with the maximum role is
responsible for requesting a session initiation. Rule [M-F-COM] defines how a party
with role p synchronously sends a value to the receiving party with role q. Rules [M-F-
CMT], [M-B-RLL] and [M-B-ABT] are similar to those of the binary case, and affect
all participants within the considered session.

The syntax of session types extends to multiparty as shown in Fig. 16. The session
types for output (rpsrqs!xSy.T ) and input (rpsrqs?pSq.T ) are extended with information
about the interacting roles; selection and branching types are similarly extended. In the
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srpsrqs!xey.P
srpsrqs!xvy
ÝÝÝÝÝÝÑP (e Ó v) [M-P-SND] srpsrqs?py :Sq.P

srpsrqs?pyq
ÝÝÝÝÝÝÑP [M-P-RCV]

ārnspxq.Pn |
ś

iPI arispxq.Pi �

pνs :pārnspxq.Pn |
ś

iPI arispxq.Piqq I“t1, .., n´1u [M-F-CON]

pxPnrsrns{xsy§Pnrsrns{xs |
ś

iPIxPirsris{xsy§Pirsris{xsq

P1
srpsrqs!xvy
ÝÝÝÝÝÝÑ P 11 P2

srqsrps?pxq
ÝÝÝÝÝÝÑ P 12

xQ1y§P1 | xQ2y§P2 � xQ1y§P
1
1 | xQ2y§P

1
2rv{xs

[M-F-COM]

P
cmt
ÝÝÑ P 1

pνs : CqpxQy § P |
ś

iPIxQiy § Piq � pνs : CqpxP 1y § P 1 |
ś

iPIxPiy § Piq
[M-F-CMT]

P
roll
ÝÝÑ P 1

pνs : CqpxQy § P |
ś

iPIxQiy § Piq ù pνs : CqpxQy §Q |
ś

iPIxQiy §Qiq
[M-B-RLL]

P
abt
ÝÝÑ P 1

pνs : CqpxQy § P |
ś

iPIxQiy § Piq ù C
[M-B-ABT]

Fig. 15. Multiparty cherry-pi semantics: forward and backward reductions (excerpt of rules).

T ::= . . . | rpsrqs!xSy.T | rpsrqs?pSq.T | rpsrqs Ÿ rls.T | rpsrqs Ź rl1 :T1, . . . , ln :Tns Types

Fig. 16. Multiparty cherry-pi type syntax (the omitted parts are as in Fig. 7).

H;H $ P § x : T

ārpspxq.P § tārps : T u
[M-T-REQ]

H;H $ P § x : T

arpspxq.P § tarps : T u
[M-T-ACC]

Γ $ e § S Θ;Γ $ P § x : T

Θ;Γ $ xrps!xey.P § x : r srps!xSy.T
[M-T-SND]

Θ;Γ ¨ y : S $ P § x : T

Θ;Γ $ xrps?py : Sq.P § x : r srps?pSq.T
[M-T-RCV]

Θ;Γ $ P § x : T

Θ;Γ $ xrps Ÿ l.P § x : r srps Ÿ rls.T
[M-T-SEL]

Θ;Γ $ P1 § x : T1 . . . Θ;Γ $ Pn § x : Tn

Θ;Γ $ xrps Ź tl1 :P1, . . . , ln :Pnu § x : r srps Ź rl1 :T1, . . . , ln :Tns
[M-T-BR]

Fig. 17. Multiparty cherry-pi typing system (the omitted rules as in Fig. 8, 9 and 10).

type inference, when one of such role is unknown, it is used a placeholder to be filled
with a given role; T ¨ p denotes the type obtained from T by filling all its placeholders
with the role p. The cherry-pi type system extends accordingly, as shown in Fig. 17.
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rpsrqs!xSy.T
rpsrqs!xSy
ÝÝÝÝÝÝÑ T [M-TS-SND] rpsrqs?pSq.T

rpsrqs?pSq
ÝÝÝÝÝÝÑ T [M-TS-RCV]

Ti
rpsrqs!xSy
ÝÝÝÝÝÝÑ T 1i Tj

rqsrps?pSq
ÝÝÝÝÝÝÑ T 1j

pT Iq : xŨiy § Ti ‖ xŨjy § Tj ‖
ś

hPI´ti,juxŨhy § Th

ÞÝÑ pT Iq : xŨiy § T 1i ‖ xŨjy § T 1j ‖
ś

hPI´ti,juxŨhy § Th

[M-TS-COM]

Ti
cmt
ÝÝÑ T 1i

pT Iq : xŨiy § Ti ‖
ś

hPI´tiuxŨhy § Th

ÞÝÑ pT Iq : xT 1iy § T 1i ‖
ś

hPI´tiuxŨ
1
hy § Th

Ũ 1h“

"

Ũh if Ũh “ Th
Th otherwise

[M-TS-CMT]

Ti
roll
ÝÝÑ T 1i [M-TS-RLL]

pT Iq : xUiy § Ti ‖
ś

hPI´tiuxŨhy § Th ÞÝÑ pT Iq : xUiy § Ui ‖
ś

hPI´tiuxŨhy § Uh

Ti
abt
ÝÝÑ T 1i

pT Iq : xŨiy § Ti ‖
ś

hPI´tiuxŨhy § Th ÞÝÑ pT Iq :
ś

kPIxT
k
y § T k

[M-TS-ABT]

Fig. 18. Multiparty cherry-pi type semantics (excerpt of rules, where I “ t1, . . . , nu, i, j P I ,
and T I denotes T 1, . . . , Tn).

The semantics of type configurations is defined only for filled types. Semantic rules
in Fig. 18 are the natural extension of those for the binary case. Rule [M-TS-COM]
shows that communication affects only the two interacting parties, without modifying
any checkpoint. Rule [M-TS-CMT] sets the checkpoint of the committing party and
sets an imposed checkpoint for each other party that has performed at least an action
from its current checkpoint. Rule [M-TS-RLL] rolls all parties back to their checkpoints,
provided that the checkpoint of the party requesting the rollback is not imposed. Rule
[M-TS-ABT] brings all parties back to the initial configuration.

Our notion of rollback safety, and the related compliance relation, extend to multi-
party sessions as follows. Notice that types Ti in Def. 4 contain placeholders, while in
Def. 5 all types are filled.

Definition 4 (Multiparty Rollback safety). Let C be an initial collaboration, then C
is rollback safe (shortened r-safe) if C § A and for each n-tuple ārns : Tn, . . . , ar1s : T1

in A we have - pTn ¨ n, . . . , T1 ¨ 1q.

Definition 5 (Compliance for Multiparty Sessions). Types T1, . . . , Tn are compliant,
written - pT1, . . . , Tnq, if - ppT1, . . . , Tnq : xT1y § T1, . . . , xTny § Tnq. Relation - on
type configurations is defined as follows: - ppT 1, . . . , Tnq : xŨ1y § T1, . . . , xŨny § Tnq
holds if for any Ũ 11, T 11, . . . , Ũ 1n, T 1n such that pT 1, . . . , Tnq :

ś

hPt1,...,nuxŨhy§Th ÞÝÑ
˚

pT 1, . . . , Tnq :
ś

hPt1,...,nuxŨ
1
hy § T 1h ÞÝÑ{ we have that T 11 “ . . . “ T 1n “ end.

All notions and concepts of our rollback recovery approach smoothly extend to the
multiparty case. As consequence, all properties in Sec. 5 still hold in the extended setting;
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their proofs are in Appendix A.4. We report below just the key theorem concerning
session progress.

Theorem 7 (Multiparty session progress). Let C be a r-safe collaboration of the form
pārnspxq.Pn |

ś

iPt1,..,n´1u arispxq.Piq. If C �˚ C 1 then either C 1 � C2 for some

C2 or C 1 ” pνs : Cq
ś

iPt1,..,nuxQ̃iy § 0 for some Q̃1, . . . , Q̃n.

8 Conclusion and related work

This paper proposes rollback recovery primitives for session-based programming, which
permit checkpointing session participants, rolling back to the last committed checkpoints,
or completely aborting a session. These primitives come together with session typing,
enabling a design time compliance check that statically ensures checkpoint persistency
properties (Lemma 1 and Theorem 3) and session soundness (Theorems 4 and 5), which
differ from the properties of the existing (fully) reversible calculi. Our compliance
check has been implemented in the MAUDE framework. We have first illustrated our
rollback recovery approach in the binary sessions setting, and then we have shown how
it smoothly extends to the multiparty case.

In the literature we can distinguish two ways of dealing with rollback: either using
explicit rollbacks and implicit commits [20], or by using explicit commits and sponta-
neous aborts [11,36]. Differently from these works, we have introduced a way to control
reversibility by both triggering it and limiting its scope. Reversibility is triggered by
means of an explicit rollback primitive (as in [20]), while explicit commits limit the
scope of potential future reverse executions (as in [11,36]). Differently from [11,36],
commit does not require any synchronisation, as it is a local decision. This could lead to
runtime misbehaviours where a process willing to roll back to its last checkpoint reaches
a point which has been imposed by another participant of the session. Our type discipline
allows for ruling out programs which may lead to such undesired states.

Reversibility in behavioural types has been studied in different formalisms: be-
havioural contracts [1,3], binary session types [27], multi party session types [26,5,32,33],
and global graphs [28,13]. In [1,3] choices can be seen as implicit checkpoints and the
system can go back to a previous choice and try another branch. In [1] rollback is
triggered non-deterministically (e.g., it may happen at any time during the execution),
while in [3] it is triggered by the system only when the computation is stuck (e.g., the
client cannot further continue). Types information is used at runtime by monitors, for
binary [27] and multiparty [26] settings, to keep track of the computational history of the
system. There, reversibility is uncontrolled, and each computational step can be undone.
In [5] global types are enriched with history information, and choices are seen as labelled
checkpoints. At any moment, the party who decided which branch to take in a choice
may decide to revert it, forcing the entire system to go back to a point prior to the choice.
Hence, rollback is confined inside choices and it is spontaneous. Checkpoints are not seen
as commits, and a rollback can bring the system to a state prior to several checkpoints.
In [32] an uncontrolled reversible variant of session π-calculus is presented, while [33]
studies different notions of reversibility for both binary and multiparty single sessions.
In [28,13] global graphs are extended with conditions on branches. These conditions at
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runtime can trigger coordinated rollbacks to revert a distributed choice. Reversibility is
confined into branches of a distributed choice and not all the computational steps are
reversible; inputs, in fact, are irreversible unless they are inside an ongoing loop. Hence,
it is not always possible to revert system computations.

We detach from these works in several ways. First our checkpoint facility is explicit
and checkpointing is not relegated to choices: the programmer can decide at any point
when to commit. This because the programmer may be interested in committing, besides
choice points, a series of interactions (e.g., to make a payment irreversible). Thus, once
a commit is taken, the system cannot revert to a state prior to it. Our rollback facility is
explicit, meaning that it is the programmer who deliberately triggers a rollback, and it
is not the system to decide when to go back. Our extension to the multiparty setting is
natural and does not rely on a formalism to describe the global view of the system.

Concerning our compliance check, the relation at its basis resembles those given
in [1,2,3], which however are defined for different rollback recovery approaches based
on implicit checkpoints (see comments above). Like these compliance checks, also
the check we propose is decidable. Concerning the MAUDE implementation of the
compliance check, we have followed the approach of the seminal work by Verdejo
and Martı́-Oliet [35], providing the state-of-the-art implementation of CCS in MAUDE.
Along the same line, many other MAUDE implementations of formalisms and languages
have been proposed, such as BPMN [8], Twitlang [23], SCEL [4], and QFLan [34].

As future work, we plan to extend our approach to deal with sessions where parties
can interleave interactions performed along different sessions. This requires to deal with
subordinate sessions, which may affect enclosing sessions by performing, e.g., commit
actions that make some interaction of the enclosing sessions irreversible, similarly to
nested transactions [37]. To tackle this issue it would be necessary to extend the notion
of compliance relation to take into account possible partial commits (in case of nested
sub-sessions) that could be undone at the top level if a rollback is performed.
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A Proofs

A.1 Decidability result

Theorem 1. Let T1 and T2 be two session types, checking if T1 - T2 holds is decidable.

Proof. By Def. 1, checking T1 - T2 consists in checking that types T 11 and T 12 of
each configuration pT1, T2q : xŨ 11y § T 11 ‖ xŨ 12y § T 12 such that pT1, T2q : xT1y § T1 ‖
xT2y § T2 ÞÝÑ

˚ pT1, T2q : xŨ 11y § T 11 ‖ xŨ 12y § T 12 ÞÝÑ{ (i.e., type configurations that are
reachable from the initial one and that cannot further evolve) are end types. Thus, to
prove that the compliance check is decidable we have to show that the number of these
reachable configurations is finite. Let us consider the transition system TS “ xS,Ry
associated to the type configuration t “ pT1, T2q : xT1y § T1 ‖ xT2y § T2 by the
reduction semantics of types (Fig. 11): the set S of states corresponds to the set of type
configurations reachable from t, i.e. S “ t t1 | t ÞÝÑ˚ t1 u, while the set R of system
transitions corresponds to set of the type reductions involving configurations in S, i.e.
R “ tpt1, t2q P S ˆ S | t1 ÞÝÑ t2u. Hence, checking T1 - T2 boils down to check the
type configurations corresponding to the leaves (i.e., states without outgoing transitions)
of TS. Specifically, given a leaf of TS corresponding to pT1, T2q : xṼ1y§V2 ‖ xṼ3y§V4,
we have to check if V2 “ V4 “ end. The decidability of this check therefore depends on
the finiteness of TS. This result is ensured by the fact that: : (i) backward reductions
connect states of TS only to previously visited states of TS (Theorem 2), and (ii) our
language of types (Fig. 7) corresponds to a CCS-like process algebra without static
operators (i.e., parallel and restriction operators) within recursion (see [29, Sec. 7.5]).

A.2 Reversibility results

We can instrument our semantics in order to carry the information on which session
the reduction is taking place. Hence we will indicate with C

s
� C 1 the fact that the

reduction is taking place on session s. We can show that sessions are independent:

Lemma 3 (Swap Lemma). Let C be a collaboration and s and r two sessions. If
C

s
� C1

r
� C2 then there exists a collaboration C3 such that C

r
� C3

s
� C2.

Proof. By case analysis on the reductions
s
� and

r
�.

Lemma 4. Let C be a collaboration. If C �˚ C1, then for any session s in C1 there
exists a collaboration C0 such that C �˚ C0

s
� ˚C1 and s is never used in the trace

C �˚ C0.

Proof. By induction on the number n of reduction on s. If there are no reductions then
the thesis banally holds. Otherwise we can take the very last reduction on s, that is the
closest one to C1 and iteratively apply Lemma 3 in order to bring it to the very end. Then
we can conclude by induction on a trace with less occurrences of reductions on s.
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Thanks to Lemma 4 we can rearrange any trace as a sequence of independent sessions.
Moreover given an initial collaboration C for any reachable collaboration C1 and session
s such that C �˚ C1

s
� ˚ and s R�˚, we indicate C1 as the initial collaboration for s.

This will allows us to focus just on a sigle session, say s, and to consider collaboration
initial for s without loosing of generality.

Lemma 5. Let C be an initial collaboration such that C �˚ C1. If C1
abt
ù C2 then

C2 ” C.

Proof. Since C is initial, without losing of generality we can assume

C ” āpx1q.P1 | apx2q.P2

The first reduction of C �˚ C1 has to be an application of rule [F-CON], that is

C �pνs : pāpx1q.P1 | apx2q.P2qq

pxP1rs̄{x1sy § P1rs̄{x1s | xP2rs{x2sy § P2rs{x2sq “ C 1

and, by hypothesis, C 1 �˚ C1.
Now, no matter the shape of processes in C1 by applying rule [B-ABT], and possibly

[B-STR], we will go back to C, that is C1
abt
ù C, as desired.

The following lemma states that a rollback leads back to the last committed check-
point.

Lemma 6. Let C be a reachable collaboration, such that C
cmt
� C1. If C1 �˚ C2

roll
ù

C3 and there is no commit in C1 �˚ C2, then C3 ” C1.

Proof. Since C is a reachable collaboration, this implies it has been generated from an
initial collaboration C0. Without losing of generality, similarly to the Lemma 5’s proof,
we can assume C ” pνs : C0qpxP1y § P2 | xQ1y § Q2q | C

˝. Therefore, we have that
C1 “ pνs : C0qpxP2y § P2 | xQ2y § Q2q | C

˝. By hypothesis, there is no commits in
C1 �˚ C2, and this implies that the log part of theC1 will never change. Hence, we have
thatC2 ” pνs : C0qpxP2y§P | xQ2y§Qq | C

˝ for some processes P andQ. By applying
[B-RLL] and [B-PAR] we have thatC2

roll
ù pνs : C0qpxP2y§P2 | xQ2y§Q2q | C

˝ ” C1,
as desired.

Any reachable collaboration is also a forward only reachable collaboration. Formally:
Theorem 2. Let C0 be an initial collaboration. If C0 �˚ C1 then C0 �˚ C1.

Proof. By induction on the number n of backward reductions contained into C0 �˚ C1.
The base case (n “ 0) trivially holds. In the inductive case, let us take the backward
reduction which is the nearest to C0. That is:

C0 �˚ C 1 ù C2 �˚ C1
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Depending whether it is an abt
ù or a roll

ù we can apply respectively Lemma 5 or Lemma 6
to obtain a forward trace of the form

C0 �˚ C2 �˚ C1

and we can conclude by applying the inductive hypothesis on the obtained trace which
contains less backward moves with respect to the original one.

Lemma 1. Let C1 and C2 be two reachable collaborations. C1 ù C2 then C2 �˚ C1.

Proof. Since C1 is a reachable collaboration, we have that there exists an initial collabo-
ration C0 such that C0 �˚ C1. By applying Theorem 2 we can rearrange the trace such
that it contains just forward transitions as follows

C0 �˚ C1

If the backward reduction is obtained by applying [B-ABT], by Lemma 5 we have
C2 ” C0, from which the thesis trivially follows. Instead, if the backward reduction is
obtained by applying [B-RLL], we proceed by case analysis depending on the presence
of commit reductions in the trace. If they are present, we select the last of such commit,
that is we can decompose the trace in the following way:

C0 �˚
cmt
� Ccmt �

˚ C1
roll
ù C2

and by applying Lemma 6 we have that C2 �˚” C1 as desired.
In the case there is no commit in the trace, without losing of generality we can

assume

C0 ” āpx1q.P1 | apx2q.P2 | C
˝

C0 � pνs : C0qpxP2y § P2 | xQ2y §Q2q | C
˝

By rule [B-RLL], C2 ” pνs : C0qpxP2y § P2 | xQ2y §Q2q | C
˝. Thus, we can conclude

by noticing that C0 � C2 must be the first reduction in C0 �˚ C1.

Lemma 2. Let C be a reachable collaboration. If C roll
ù C 1 and C

roll
ù C2 then

C 1 ” C2.

Proof. Since C is a reachable collaboration, it is has been generated by an initial
collaboration C0 of the form C0 “ āpxq.P1 | apxq.P2, and by Theorem 2 we have that
C0 �˚ C. We distinguish two cases, whether in the trace there has been at least one
commit or not. In the first case, we can decompose the trace in such a way to single out
the last commit as follows:

C0 �˚ Ccmt �
˚ C

so that in the reduction Ccmt �˚ C there is no commit. If from C the rollbacks
C

roll
ù C 1 and C roll

ù C2 are triggered by the same process, the thesis trivially follows.
In the other case, we have that:

Ccmt ” pνs : C0qpxP1y § P2 | xQ1y §Q2q | C
˝
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with both P2 and Q2 are able to trigger a rollback. If the roll action is executed by P2

we have that

pνs : C0qpxP1y§P2 | xQ1y§Q2q | C
˝ roll

ù pνs : C0qpxP1y§P1 | xQ1y§Q1q | C
˝ “ C 1

If the roll is triggered by Q2 we have that

pνs : C0qpxP1y§P2 | xQ1y§Q2q | C
˝ roll

ù pνs : C0qpxP1y§P1 | xQ1y§Q1q | C
˝ “ C2

And we can conclude by noticing that C 1 ” C2, as desired.

Theorem 3. Let C be a reachable collaboration. If C
cmt
� C 1 then there exists no C2

such that C 1 �˚ rollù C2 and C2 �` C.

Proof. We proceed by contradiction. Suppose that there exists C2 such that C 1 �˚ rollù

C2 and C2 �` C. Since C is a reachable collaboration, thanks to Theorem 2 we have
that there exists an initial collaboration C0 such that C0 �˚ C

cmt
� C 1. Since a rollback

brings back the collaboration to a point before a commit, this means it has been restored
a commit previous to the last one (by [B-RLL], indeed, only processes stored in logs can
be committed). This implies that there exist at least two different commits in the trace
such that

C0 �˚ Ccmt �
˚ C

cmt
� C 1 �˚ rollù C2

with C2 “ Ccmt. We have that C2 �` C
cmt
� C 1 �˚ Crl, where Crl is the collabo-

ration that perform the roll reduction. Now since the last commit has been done by C,
supposing that the commit is triggered by Pc, which evolves to P 1c in doing that, we have
that:

C ” pνs : C0qpxP y § Pc | xQy §Qcq and C 1 “ pνs : C0qpxP
1
cy § P 1c | xQcy §Qcq

Now, by hypothesis we have that C 1 �˚ Crl without any commit being present in the
trace, hence:

Crl ” pνs : C0qpxP
1
cy § Prl | xQcy §Qrlq

By hypothesis, from Crl a rollback is possible. Regardless the rollback is triggered by
Prl or Qrl, we have that Crl

roll
ù C 1. Now, from C 1 we cannot reach C (C 1 �`{ C), as

C 1 is derived from C and the rollback can only bring the collaboration back to C 1. This
violates the hypothesis, and hence we conclude.

A.3 Soundness results

To prove our soundness results, we need to introduce some auxiliary lemmas, which rely
on the following definitions:

– a process P̃ and a type T̃ are in checkpoint accordance if P̃ “ P implies T̃ “ T ,
and P̃ “ P implies T̃ “ T ;

– let ` a process label, its dual label ¯̀ is defined as follows: k!xvy “ k?, k?pxq “ k!,
k Ÿ l “ k Ź l, k Ź l “ k Ÿ l; this notion of duality straightforwardly extends to
type labels;
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– the function tlΓ p¨q, mapping process labels to type labels under sorting Γ , is defined
as follows: tlΓ pk!xvyq “!rSs with Γ $ v § S, tlΓ pk?pxqq “?rSs with Γ $

x § S, tlΓ pk Ÿ lq “ Ÿ l, tlΓ pk Ź lq “ Ź l, tlΓ pcmtq “ cmt, tlΓ prollq “ roll,
tlΓ pabtq “ abt, and tlΓ pτq “ τ .

The following lemma states that each reduction of a reachable collaboration corre-
sponds to a reduction of its configuration types.

Lemma 7. Let C “ pνs : C 1qpxP̃1y § P2 | xQ̃1y § Q2q be a reachable collabora-
tion, with C 1 “ pāpxq.P | apyq.Qq, pH;H $ P § x : T q, pH;H $ Q § y : T 1q,
T - T 1, pΘ1;Γ1 $ P1rx{s̄s § x : T1q, pΘ2;Γ2 $ P2rx{s̄s § x : T2q, pΘ11;Γ 11 $

Q1ry{ss § y : U1q, and pΘ12;Γ 12 $ Q2ry{ss § y : U2q. If C � pνs : C 1qpxP̃ 11y§P 12 |

xQ̃11y§Q12q then there exist T 11, T 12, U 11, U 12 such that pT, T 1q : xT̃1y§T2 ‖ xŨ1y§U2 ÞÝÑ

pT, T 1q : xT̃ 11y § T 12 ‖ xŨ 11y § U 12 with P̃ 11 (resp. Q̃11) in checkpoint accordance with
T̃ 11 (resp. Ũ 11), pΘ̂1; Γ̂1 $ P 11rx{s̄s § x : T 11q, pΘ̂2; Γ̂2 $ P 12rx{s̄s § x : T 12q,
pΘ̂11; Γ̂ 11 $ Q11ry{ss § y : U 11q, and pΘ̂12; Γ̂ 12 $ Q12ry{ss § y : U 12q.

Proof. We have two cases depending whether the reduction � has forward or backward
direction.

p�“�q. From rule [F-RES], we have xP̃1y § P2 | xQ̃1y § Q2 � xP̃ 11y § P 12 |

xQ̃11y § Q12. We prove the result by case analysis on the last rule applied in the
inference of the above reduction.

– [F-COM]. In this case we have P2
s̄!xvy
ÝÝÝÑ P 12, Q2

s?pzq
ÝÝÝÑ Q22, with Q12 “

Q22rv{zs, P̃ 11 “ P̃1 and Q̃11 “ Q̃1. Thus, P2rx{s̄s “ x!xey.P 12rx{s̄s for some
e such that e Ó v, and Q2ry{ss “ y?pz : S1q.Q12ry{ss. By rule [T-SND], we
have that T2 “!rSs.T 12, with Γ2 $ e § S, (hence Γ2 $ v § S), and
Θ2;Γ2 $ P 12rx{s̄s § x : T 12 (hence Θ̂2 “ Θ2 and Γ̂2 “ Γ2). Similarly, by rule
[T-RCV], we have that U2 “?rS1s.U 12 and Θ12;Γ 12 ¨ z : S1 $ Q22ry{ss § y : U 12
(hence Θ̂12 “ Θ12 and Γ̂ 12 “ Γ 12 ¨ z : S1). By rules [TS-SND] and [TS-RCV],

we get T2
!rSs
ÝÝÑ T 12 and U2

?rS1
s

ÝÝÝÑ U2. Now, reasoning by contradiction, let us
suppose that S ‰ S1. Thus, the term pT, T 1q : xT̃1y § T2 ‖ xŨ1y §U2 ÞÝÑ{ , since
no rule in Fig. 11 can be applied. However, since C is a reachable collaboration,
this type configuration is originated from pT, T 1q : xT y § T ‖ xT 1y § T 1. By
Def. 1, T - T 1 implies T2 “ U2 “ end, which is a contradiction. Therefore, it
holds that S “ S1. Hence, by applying rule [TS-COM] we can conclude.

– [F-LAB], [E-CMT1] and [E-CMT2]. Similar to the previous case.
– [F-STR]. The use of ” leads us back to one of the other cases.
– [F-PAR]. In this case we have that xP̃1y § P2 � xP̃ 11y § P 12. Since this transition

involves only one log term, it can be inferred only by applying rule [F-IF],
from which we have P2

τ
ÝÑ P 12 and P̃ 11 “ P̃1. By rule [P-IFT] (the case of rule

[P-IFF] is similar), we have P2rx{s̄s “ if e then P 12rx{s̄s elseR with e Ó true.
By rule [T-IF] we get T2 “ T 12 ‘ V and Θ2;Γ2 $ P 12rx{s̄s § x : T 12. By rule
[TS-IF1], T2

τ
ÝÑ T 12. By applying rule [TS-TAU] we can conclude.

p�“ùq. From rule [B-RES], we have xP̃1y § P2 | xQ̃1y § Q2 ù xP̃ 11y § P 12 |

xQ̃11y § Q12. We prove the result by case analysis on the last rule applied in the
inference of the above reduction.
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– [B-RLL]. In this case P2
roll
ÝÝÑ P 12, P̃ 11 “ P̃1, Q̃11 “ Q1 and Q12 “ Q1. By

rule [P-RLL], we have P2rx{s̄s “ roll and P 12rx{s̄s “ 0. By rule [T-RLL]
we get T2 “ roll. By rule [TS-RLL], T2

roll
ÝÝÝÑ T 12, with T 12 “ end. By rule

[T-INACT], we have Θ2;Γ2 $ P 12rx{s̄s § x : T 12. Finally, by applying rule
[TS-RLL1] we can conclude.

– [B-STR] and [B-PAR]. Similarly to the forward cases.

The following lemma relates collaboration reductions to type reductions when a
roll error is produced.

Lemma 8. Let C “ pāpxq.P | apyq.Qq such that C § tā : T1, a : T2u and T1 - T2. If
C �˚ pνs : CqpxP1y § P2 | xQ̃1y §Q2q and P2

roll
ÝÝÑ P 12, then there exist U1, U2, U 11,

U 12, U21 such that pT1, T2q : xT1y§T1 ‖ xT2y§T2 ÞÝÑ
˚ pT1, T2q : xU1y§U 11 ‖ xŨ2y§U 12

and U 11
roll
ÝÝÝÑ U21 .

Proof. FromC § tā : T1, a : T2u, by applying [T-PAR], [T-ACC] and [T-REQ], we have
thatH;H $ P § x : T1 andH;H $ Q § x : T2. By applying rule [F-CON] to the
collaboration C, we obtain C � pνs : CqpxP rs̄{xsy §P rs̄{xs | xQrs{ysy §Qrs{ysq “
C 1. Now, by repeatedly applying Lemma 7, from C 1 �˚ pνs : CqpxP1y § P2 |

xQ̃1y§Q2qwe get pT1, T2q : xT1y§T1 ‖ xT2y§T2 ÞÝÑ
˚ pT1, T2q : xU1y§U

1
1 ‖ xŨ2y§U

1
2

for some U1, U2, U 11, U 12, with Θ2;Γ2 $ P2rx{s̄s § x : U 11. Now, let us consider the
transition P2

roll
ÝÝÑ P 12. This can be derived only by the application of rules [P-RLL].

Thus, P2 “ roll, from which we have P2rx{s̄s “ roll. From Θ2;Γ2 $ roll § x : U 11,
by rule [T-RLL], we get U 11 “ roll. Therefore, by rule [TS-RLL], we can conclude
U 11

roll
ÝÝÝÑ U21 with U21 “ end.

The following lemma relates collaboration reductions to type reductions when a
com error is produced.

Lemma 9. Let C “ pāpxq.P | apyq.Qq such that C § tā : T1, a : T2u and T1 - T2.
If C �˚ pνs : CqpxP̃1y § P2 | xQ̃1y § Q2q, P2

`
ÝÑ P 12 and  Q2 ó¯̀ with ` of

the form k!xvy, k?pxq, k Ÿ l or k Ź l, then there exist U1, U2, U 11, U 12, U21 such that
pT1, T2q : xT1y § T1 ‖ xT2y § T2 ÞÝÑ

˚ pT1, T2q : xŨ1y § U 11 ‖ xŨ2y § U 12 with P̃1 (resp.

Q̃1) in checkpoint accordance with Ũ1 (resp. Ũ2), U 11
tlΓ p`q
ÝÝÝÝÑ U21 , with Γ sorting for

typing P 12, and for all U22 such that U 12
τ
ÝÑ
˚
U22 we have U22

tlΓ p`q
ÝÝÝÝÑ{ .

Proof. FromC § tā : T1, a : T2u, by applying [T-PAR], [T-ACC] and [T-REQ], we have
thatH;H $ P § x : T1 andH;H $ Q § x : T2. By applying rule [F-CON] to the
collaboration C, we obtain C � pνs : CqpxP rs̄{xsy §P rs̄{xs | xQrs{ysy §Qrs{ysq “
C 1. Now, by repeatedly applying Lemma 7, from C 1 �˚ pνs : CqpxP̃1y § P2 | xQ̃1y §

Q2q we get pT1, T2q : xT1y § T1 ‖ xT2y § T2 ÞÝÑ
˚ pT1, T2q : xŨ1y §U 11 ‖ xŨ2y §U 12 for

someU1,U2,U 11,U 12, withΘ2;Γ2 $ P2rx{s̄s § x : U 11 andΘ12;Γ 12 $ Q2ry{ss § y : U 12.
Now, let us reason by case analysis on the rule for deriving the transition P2

`
ÝÑ P 12.

Rule [P-SND]. Thus, P2 “ s̄!xey.P 12 and ` “ s̄!xvy with e Ó v. From Θ2;Γ2 $

P2rx{s̄s § x : U 11, by rule [T-SND], we get U 11 “!rSs.U21 with Γ $ e § S.

Therefore, by rule [TS-SND], we get U 11
!rSs
ÝÝÑ U21 .
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Rule [P-RCV]. Thus, P2 “ s̄?py : Sq.P 12 and ` “ s̄?pyq. FromΘ2;Γ2 $ P2rx{s̄s § x :
U 11, by rule [T-RCV], we get U 11 “?rSs.U21 . Therefore, by rule [TS-RCV], we get

U 11
?rSs
ÝÝÑ U21 .

Rules [P-SEL] and [P-BRN]. Similar to the previous cases.
Rule [P-STR]. According to the definition of ”, the only relevant case is when P2 “

µX.R. Thus, by rule [P-STR] we have P2 ” RrµX.R{Xs “ P 22 , and P 22
`
ÝÑ P32

with P32 ” P 12. If P 22 has not the form µY.R1, we can proceed as in one of the cases
above, otherwise we repeat this reasoning.

Finally, from  Q2 ó¯̀, following a similarly reasoning, we can conclude U 12
τ
ÝÑ
˚ tlΓ p`q
ÝÝÝÝÑ{ .

We can now prove our soundness results.

Theorem 4. If C is a rollback safe collaboration, then C �{ ˚ Crroll errors.

Proof. The proof proceeds by contradiction. Suppose that there exists an initial col-
laboration C that is rollback safe and such that C �˚ Crroll errors. The erro-
neous collaboration roll error can be only produced by applying rule [E-RLL2].
Thus, to infer at least one reduction of the sequence C �˚ Crroll errors, rule
[E-RLL2] must be used. From this, we have that there exists a runtime collabora-
tion C 1 ” C1rC2s, with C2 “ pxQ1y § P1 | xQ̃2y § P2q, such that C �˚ C 1,

P1
roll
ÝÝÑ P 11, and C 1 � C1rroll errors �˚ Crroll errors. By rules [F-CON],

[F-RES] and [B-RES], and the fact that the scope of operator pνs : q is statically
defined (i.e., neither the operational rules nor ” allow scope extension), the term C2

can only be the argument of the operator pνs : C1q, i.e. C1 “ C2 | pνs : C1qr¨s, with
C1 “ āpxq.P | apyq.Q for some a, x, y, P and Q. In its own turn, the term pνs : C1qC

2

can only be generated by applying rule [F-CON] from C1, which must be a subterm
of C, i.e. C ” C1 | C

1
2 for some C 12. Since the scope of pνs : q operator cannot

be extended, all reductions performed by terms in parallel with it by applying rules
[F-PAR] and [B-PAR] do not affect the argument of such operator. Therefore, focussing
on the subterm C1 of C, by exploiting rules [F-PAR] and [B-PAR] we can set apart the
reductions in C �˚ Crroll errors involving C1 and its derivatives, thus obtaining
C1 �˚ pνs : C1qC

2 � pνs : C1qroll error.
Now, since C is rollback safe, by Def. 2 we have that C § A and for all pairs b̄ : V1

and b : V2 in A we have V1 - V2. Since C ” C1 | C
1
2, by rule [T-PAR] we obtain

C1 § A1 with A1 Ď A. By rules [T-REQ] and [T-ACC], we have A1 “ tā : T1, a : T2u.
Since A1 is a subset of A2, that is A1 Ď A2, we have that T1 - T2.

By Lemma 8, we have that there exist U1, U2, U 11, U 12, U21 such that pT1, T2q :

xT1y § T1 ‖ xT2y § T2 ÞÝÑ
˚ pT1, T2q : xU1y § U 11 ‖ xŨ2y § U 12 “ t and U 11

roll
ÝÝÝÑ U21 .

No rule in Fig 11 allows the term t to evolve, i.e. t ÞÝÑ{ , because U 11 can only perform
roll and rule [TS-RLL1] cannot be applied due to the imposed checkpoint U1. Since
T1 - T2, by Def. 1 it must hold that U 11 “ end. However, Since U 11 is able to perform an
action (as it holds that U 11

roll
ÝÝÝÑ U21 ), we get that it cannot be an end type, i.e. U 11 ‰ end,

which is a contradiction.



34 C.A. Mezzina, F. Tiezzi, N. Yoshida

Theorem 5. If C is a rollback safe collaboration, then C �{ ˚ Crcom errors.

Proof. The proof proceeds by contradiction. Suppose that there exists an initial col-
laboration C that is rollback safe and such that C �˚ Crcom errors. The erro-
neous collaboration com error can be produced by applying one of the rules [E-
COM1], [E-COM2], [E-LAB1] and [E-LAB2]. Let us consider the case [E-COM1],
the other cases are similar. Proceeding as in the proof of Theorem 4, without loss of
generality we can focus on the subterm C1 “ pāpxq.P | apyq.Qq of C, such that
C1 �˚ pνs : C1qC

2 � pνs : C1qcom error, with C2 “ pxQ̃1y § P1 | xQ̃2y § P2q,
and C1 § tā : T1, a : T2u, with T1 - T2.

By Lemma 9, we have that there exist U1, U2, U 11, U 12, U21 such that U1, U2, U 11, U 12,
U21 such that pT1, T2q : xT1y§T1 ‖ xT2y§T2 ÞÝÑ

˚ pT1, T2q : xŨ1y§U 11 ‖ xŨ2y§U 12 “ t

with Q̃1 (resp. Q̃2) in checkpoint accordance with Ũ1 (resp. Ũ2), U 11
!rSs
ÝÝÑ U21 , and for

all U22 such that U 12
τ
ÝÑ
˚
U22 we have U22

?rSs
ÝÝÑ{ . Thus, for all U22 as above, we have

t ÞÝÑ˚ pT1, T2q : xŨ1y § U 11 ‖ xŨ2y § U22 “ t1. No rule in Fig 11 allows the term t1 to
evolve, i.e. t1 ÞÝÑ{ , because U 11 can only perform !rSs and rule [TS-COM] cannot be

applied since U22
?rSs
ÝÝÑ{ . Since T1 - T2, by Def. 1 it must hold that U 11 “ end. However,

since U 11 is able to perform an action (as it holds that U 11
!rSs
ÝÝÑ U21 ), we get that it cannot

be an end type, i.e. U 11 ‰ end, which is a contradiction.

We conclude with the session progress theorem.

Theorem 6. Let C “ pāpx1q.P1 | apx2q.P2q be a rollback safe collaboration. If C �˚

C 1 then either C 1 � C2 for some C2 or C 1 ” pνs : CqpxQ̃1y § 0 | xQ̃2y § 0q for some
Q̃1 and Q̃2.

Proof. The proof proceeds by contradiction. Suppose that C is rollback safe and C �˚

C 1 with C 1 �{ and C 1 ”{ pνs : CqpxQ̃1y § 0 | xQ̃2y § 0q for any Q1 and Q2.
The only situations that prevents C 1 from progressing are C 1 “ Crroll errors
and C 1 “ Crcom errors. However, from Theorems 4 and 5, respectively, we have
C 1 ‰ Crroll errors and C 1 ‰ Crcom errors, which is a contradiction.

A.4 Multiparty session results

All notions and concepts of our rollback recovery approach smoothly extend to the
multiparty case. As consequence, all properties in Sec. 5 still hold in the extended setting.
Their proofs indeed follow the same structure of the binary case and only differ for the
technicalities concerning the extended definitions.

Decidability result Theorem 1. Let T1, . . . , Tn be filled multiparty session types,
checking if - pT1, . . . , Tnq holds is decidable.

Proof. By definition of Compliance in Sec. 7, checking - pT1, . . . , Tnq consists in
checking that types T 11, . . . , T

1
n of each configuration pT 1, . . . , Tnq :

ś

hPt1,...,nuxŨ
1
hy §
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T 1h such that pT 1, . . . , Tnq :
ś

hPt1,...,nuxThy§Th ÞÝÑ
˚ pT 1, . . . , Tnq :

ś

hPt1,...,nuxŨ
1
hy§

T 1h ÞÝÑ{ (i.e., type configurations that are reachable from the initial one and that can-
not further evolve) are end types. Thus, to prove that the compliance check is decid-
able we have to show that the number of these reachable configurations is finite. Let
us consider the transition system TS “ xS,Ry associated to the type configuration
t “ pT 1, . . . , Tnq :

ś

hPt1,...,nuxThy § Th by the reduction semantics of types (Fig. 18):
the set S of states corresponds to the set of type configurations reachable from t, i.e.
S “ t t1 | t ÞÝÑ˚ t1 u, while the set R of system transitions corresponds to set of the
type reductions involving configurations in S, i.e. R “ tpt1, t2q P S ˆ S | t1 ÞÝÑ t2u.
Hence, checking - pT1, . . . , Tnq boils down to check the type configurations corre-
sponding to the leaves (i.e., states without outgoing transitions) of TS. Specifically,
given a leaf of TS corresponding to t “ pT 1, . . . , Tnq :

ś

hPt1,...,nuxṼh
1
y §Vh, we have

to check if V1 “ . . . “ Vn “ end. The decidability of this check therefore depends on
the finiteness of TS. This result is ensured by the fact that: : (i) backward reductions
connect states of TS only to previously visited states of TS (Theorem 8), and (ii) our
language of types (Fig. ??) corresponds to a CCS-like process algebra without static
operators (i.e., parallel and restriction operators) within recursion (see [29, Sec. 7.5]).

Reversibility results As in Appendix A.2, we will indicate with C
s
� C 1 the fact that

the reduction is taking place on session s.

Lemma 10 (Swap Lemma). Let C be a collaboration and s and r two sessions. If
C

s
� C1

r
� C2 then there exists a collaboration C3 such that C

r
� C3

s
� C2.

Proof. By case analysis on the reductions
s
� and

r
�.

Lemma 11. Let C be a collaboration. If C �˚ C1, then for any session s in C1 there
exists a collaboration C0 such that C �˚ C0

s
�˚ C1 and s is never used in the trace

C �˚ C0.

Proof. By induction on the number n of reduction on s. If there are no reductions then
the thesis banally holds. Otherwise we can take the very last reduction on s, that is the
closest one to C1 and iteratively apply Lemma 10 in order to bring it to the very end.
Then we can conclude by induction on a trace with less occurrences of reductions on s.

As in Appendix A.2, thanks to Lemma 11 without loosing of generality we can focus
just on a sigle session, say s, and to consider collaboration initial for s.

Lemma 12. Let C be an initial collaboration such that C �˚ C1. If C1
abt
ù C2 then

C2 ” C.

Proof. Since C is initial, without losing of generality we can assume

C ” ārnspxq.Pn |
ź

iPI

arispxq.Pi

with I “ t1, .., n´ 1u.
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The first reduction of C �˚ C1 has to be an application of rule [M-F-CON], that is

C � pνs :pārnspxq.Pn |
ź

iPI

arispxq.Piqq

pxPnrsrns{xsy§Pnrsrns{xs |
ź

iPI

xPirsris{xsy§Pirsris{xsq “ C 1

and, by hypothesis, C 1 �˚ C1.
Now, no matter the shape of processes in C1 by applying rule [M-B-ABT], and

possibly [M-B-STR], we will go back to C, that is C1
abt
ù C, as desired.

Lemma 13. Let C be a reachable collaboration, such that C
cmt
� C1. If C1 �˚ C2

roll
ù

C3 and there is no commit in C1 �˚ C2, then C3 ” C1.

Proof. As in Lemma 6’s proof, by hypothesis, there is no commits in C1 �˚ C2, and
this implies that the log part of theC1 will never change. Hence, by applying [M-B-RLL]
and [M-B-PAR] to C2we can conclude.

Theorem 8. Let C0 be an initial collaboration. If C0 �˚ C1 then C0 �˚ C1.

Proof. By induction on the number n of backward reductions contained into C0 �˚ C1.
The base case (n “ 0) trivially holds. In the inductive case, let us take the backward
reduction which is the nearest to C0. That is:

C0 �˚ C 1 ù C2 �˚ C1

Depending whether it is an abt
ù or a roll

ù we can apply respectively Lemma 12 or
Lemma 13 to obtain a forward trace of the form

C0 �˚ C2 �˚ C1

and we can conclude by applying the inductive hypothesis on the obtained trace which
contains less backward moves with respect to the original one.

Lemma 14. Let C1 and C2 be two reachable collaborations. C1 ù C2 then C2 �˚

C1.

Proof. (Skecth) Since C1 is a reachable collaboration, we have that there exists an initial
collaboration C0 such that C0 �˚ C1. By applying Theorem 8 we can rearrange the
trace such that it contains just forward transitions as follows

C0 �˚ C1

If the backward reduction is obtained by applying [M-B-ABT], by Lemma 12 we have
C2 ” C0, from which the thesis trivially follows. Instead, if the backward reduction
is obtained by applying [M-B-RLL], we proceed by case analysis depending on the
presence of commit reductions in the trace. If they are present, we select the last of such
commit, that is we can decompose the trace in the following way:

C0 �˚
cmt
� Ccmt �

˚ C1
roll
ù C2
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and by applying Lemma 13 we have that C2 �˚” C1 as desired. In the case there is
no commit in the trace, we can conclude by noticing that C0 � C2 must be the first
reduction in C0 �˚ C1.

Lemma 15. Let C be a reachable collaboration. If C roll
ù C 1 and C roll

ù C2 then
C 1 ” C2.

Proof. (Skecth) Since C is a reachable collaboration, it is has been generated by an
initial collaboration C0, and by Theorem 8 we have that C0 �˚ C. We distinguish two
cases, whether in the trace there has been at least one commit or not. In the first case, we
can decompose the trace in such a way to single out the last commit as follows:

C0 �˚ Ccmt �
˚ C

so that in the reduction Ccmt �˚ C there is no commit. If from C the rollbacks
C

roll
ù C 1 and C roll

ù C2 are triggered by the same process, the thesis trivially follows.
In the other case, we have that at least two processes, say P and Q, are able to trigger
a rollback. If the roll action is executed by P we have that Ccmt

roll
ù C 1. If the roll

is triggered by Q we have that Ccmt
roll
ù C2. And we can conclude by noticing that

C 1 ” C2, as desired.

Theorem 3. Let C be a reachable collaboration. If C
cmt
� C 1 then there exists no C2

such that C 1 �˚ rollù C2 and C2 �` C.

Proof. We proceed by contradiction. Suppose that there exists C2 such that C 1 �˚ rollù

C2 and C2 �` C. Since C is a reachable collaboration, thanks to Theorem 8 we have
that there exists an initial collaboration C0 such that C0 �˚ C

cmt
� C 1. Since a rollback

brings back the collaboration to a point before a commit, this means it has been restored
a commit previous to the last one (by [M-B-RLL], indeed, only processes stored in logs
can be committed). This implies that there exist at least two different commits in the
trace such that

C0 �˚ Ccmt �
˚ C

cmt
� C 1 �˚ rollù C2

with C2 “ Ccmt. We have that C2 �` C
cmt
� C 1 �˚ Crl, where Crl is the collabo-

ration that perform the roll reduction. Now since the last commit has been done by C,
supposing that the commit is triggered by P c, which evolves to P c1 in doing that, we
have that:

C ” pνs : C0qpxP y § P c |
ź

iPI

xQiy §Qci q

and

C 1 “ pνs : C0qpxP
c1y § P c1 |

ź

iPI

xQciy §Qci q

Now, by hypothesis we have that C 1 �˚ Crl without any commit being present in the
trace, hence:

Crl ” pνs : C0qpxP
c1y § P rl |

ź

iPI

xQciy §Qrli q
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By hypothesis, from Crl a rollback is possible. Regardless the rollback is triggered by
Prl or Qrl, we have that Crl

roll
ù C 1. Now, from C 1 we cannot reach C (C 1 �`{ C), as

C 1 is derived from C and the rollback can only bring the collaboration back to C 1. This
violates the hypothesis, and hence we conclude.

Soundness results

Lemma 16. Let C “ pνs : C 1q
ś

iPIxQ̃iy § Pi be a reachable collaboration, with
I “ t1, .., nu, C 1 “ pārnspxq.Rn |

ś

iPI´tnu arispxq.Riq, and for all i P I pH;H $

Ri § x : Tiq, - pT1, . . . , Tnq, pΘi;Γi $ Qirx{sriss § x : Viq, pΘ1i;Γ
1
i $

Pirx{sriss § x : Uiq. If C � pνs : C 1q
ś

iPIxQ̃
1
iy § P 1i then there exist V 1i and

U 1i such that pT 1, . . . , Tnq :
ś

hPIxṼhy § Uh ÞÝÑ pT 1, . . . , Tnq :
ś

hPIxṼ
1
hy § U 1h with

Q̃1i in checkpoint accordance with Ṽ 1h, and for all i P I pΘ̂i; Γ̂i $ Q1irx{sriss § x : V 1i q,
pΘ̂1i; Γ̂

1
i $ P 1i rx{sriss § x : U 1iq.

Proof. (Skecth) We have two cases depending whether the reduction � has forward or
backward direction.

p�“�q. From rule [M-F-RES], we have
ś

iPIxQ̃iy § Pi �
ś

iPIxQ̃
1
iy § P 1i . We

prove the result by case analysis on the last rule applied in the inference of the above
reduction.

p�“ùq. From rule [B-RES], we have
ś

iPIxQ̃iy § Pi ù
ś

iPIxQ̃
1
iy § P 1i . We

prove the result by case analysis on the last rule applied in the inference of the above
reduction.

Lemma 17. Let C “ ārnspxq.Pn |
ś

iPI´tnu arispxq.Pi, with I “ t1, .., nu, such that
C § tārns : Vn, . . . , ar1s : V1u, Ti “ Vi ¨ i for all i P I , and - pTn, . . . , T1q. If
C �˚ pνs : CqpxR1y §Q1 |

ś

iPt2,..,nuxR̃iy §Qiq and Q1
roll
ÝÝÑ Q11, then there exist

tUiuiPI , tU 1iuiPI and U21 such that pT1, . . . , Tnq :
ś

iPIxTiy § Ti ÞÝÑ
˚ pT1, . . . , Tnq :

xU1y § U 11 ‖
ś

iPt2,..,nuxŨiy § U 1i and U 11
roll
ÝÝÝÑ U21 .

Proof. (Sketch) As in Lemma 8’s proof, this result can be obtained by repeatedly
applying Lemma 16.

Lemma 18. Let Let C “ ārnspxq.Pn |
ś

iPI´tnu arispxq.Pi, with I “ t1, .., nu, such
that C § tārns : Vn, . . . , ar1s : V1u, Ti “ Vi ¨ i for all i P I , and - pTn, . . . , T1q.
If C �˚ pνs : Cq

ś

iPIxQ̃iy § Pi, P1
`
ÝÑ P 11 and there is no Pj with j P t2, .., nu

such that Pj ó¯̀ with ` of the form srpsrqs!xvy, srpsrqs?pxq, srpsrqs Ÿ l or srpsrqs Ź l,
then there exist tUiuiPI , tU 1iuiPI and U21 such that pT1, . . . , Tnq :

ś

iPIxTiy § Ti ÞÝÑ
˚

pT1, . . . , Tnq :
ś

iPIxŨiy §U 1i with Q̃i in checkpoint accordance with Ũi, U 11
tlΓ p`q
ÝÝÝÝÑ U21 ,

with Γ sorting for typing P 11, and for all U2i such that U 1i
τ
ÝÑ
˚
U2i we have U2i

tlΓ p`q
ÝÝÝÝÑ{ .

Proof. (Skecth) As in Lemma 9’s proof, this result can be obtained by repeatedly
applying Lemma 16 and reasoning by case analysis on the rule for deriving the transition
P1

`
ÝÑ P 11.
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Theorem 9. If C is a rollback safe collaboration, then C �{ ˚ Crroll errors.

Proof. (Skecth) The proof proceeds by contradiction and relies on Lemma 17.

Theorem 10. If C is a rollback safe collaboration, then C �{ ˚ Crcom errors.

Proof. (Skecth) The proof proceeds by contradiction and relies on Lemma 18.

Theorem 7. Let C “ pārnspxq.Pn |
ś

iPt1,..,n´1u arispxq.Piq be a r-safe collaboration.
If C�˚C 1 then either C 1�C2 for some C2 or C 1 ” pνs : Cq

ś

iPt1,..,nuxQ̃iy § 0 for
some Q̃1, . . . , Q̃n.

Proof. The proof proceeds by contradiction. Suppose that C is rollback safe and C �˚

C 1 with C 1 �{ and C 1 ”{ pνs : Cq
ś

iPt1,..,nuxQ̃iy § 0 for any Q1, . . . , Qn. The
only situations that prevents C 1 from progressing are C 1 “ Crroll errors and
C 1 “ Crcom errors. However, from Theorems 9 and 10, respectively, we have
C 1 ‰ Crroll errors and C 1 ‰ Crcom errors, which is a contradiction.
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