
A Classification of BPMN Collaborations based on
Safeness and Soundness Notions

Flavio Corradini, Chiara Muzi, Barbara Re, and Francesco Tiezzi

School of Science and Technology, University of Camerino, Italy
name.surname@unicam.it

Abstract. BPMN has a huge uptake in modelling business process collabora-
tions in both academia and industry. It results that providing a solid foundation
to enable BPMN designers to understand their models in a consistent way is be-
coming more and more important. In our investigation we define and exploit a
formal characterisation of the collaborations’ semantics, specifically and directly
given for BPMN models, to provide a classification of BPMN collaborations. In
particular, we refer to collaborations involving processes with arbitrary topology,
thus overcoming the well-structuredness limitations. The proposed classification
is based on some of the most important correctness properties, namely safeness
and soundness. We prove, with a uniform formal framework, some conjectured
and expected results and, most of all, we achieve novel results for BPMN collab-
orations concerning the relationships between safeness and soundness, and their
compositionality, that represent major advances in the state-of-the-art.

1 Introduction

For some years now, organisations recognised the importance of having tools to model
how to behave in order to reach the organisation objectives. This is generally reflected in
a business process model that is characterised as “a collection of related and structured
activities undertaken by one or more organisations in order to pursue some particular
goal. [. . .] BPs are often interrelated since the execution of a business process often
results in the activation of related business processes within the same or other organ-
isations” [1]. Up to now, several languages have been proposed to represent business
process models. However, BPMN [2] is the standard language since it is widely ac-
cepted in both academia and industry. In particular, the BPMN collaboration model is
used to describe distributed and complex scenarios where multiple participants interact
via message exchange.

Even if widely accepted, BPMN major drawback is related to the possible misun-
derstanding of its execution semantics defined by means of natural text descriptions,
sometimes containing misleading information [3]. To fill this gap, much effort has been
devoted to formalise BPMN semantics by means of mapping to other formal languages.
The most relevant is the one to Petri Nets provided by Dijkman et al. [4]. However, mod-
els resulting from mapping inherits constraints given by the target formal language and
none of them considers BPMN specificities such as the different abstraction levels (i.e.,
collaboration, process, and sub-process), the asynchronous communication model, and
the notion of completeness adapted to different types of event (i.e., simple, message
throwing, and terminate).

Our investigation is based on a formal characterisation of the BPMN semantics
specifically given for collaboration models. It is used to formally define a classification
of these models according to relevant properties of the business process domain. It is
worth noticing that we do not aim at providing a generic classification approach suitable
to different kinds of workflow models, but we specifically focus on the BPMN notation.
To this aim, our formal semantics is directly defined on BPMN elements rather than as
an mapping to other formalisms. Our intention is to introduce solid foundation to enable
BPMN designers to understand their models, and properties they enjoy, in a consistent
way. Relying on this classification, systematic methodological advice for modelling
BPMN diagrams can be provided, thus avoiding errors during their enactment.

As a distinctive aspect, the proposed semantics supports models with arbitrary
topology, including of course also well-structured ones. This is necessary to enable
the classification of both structured and unstructured models with respect to the con-
sidered properties. Moreover, studying unstructured models is motivated by the fact
that model structuredness can only be achieved at the expense of increased model size
[5], or it cannot be applicable at all [6] [7], and most of all it would anyway limit
BPMN designer freedom [8]. The use of unstructured models in practice, especially
when the model size increases, is also confirmed by a study we conducted [9] consid-
ering the public repository of BPMN models provided by the BPM Academic Initiative
(http://bpmai.org).

In terms of properties, our classification is based on safeness [10] and soundness
[11] [12]. Despite the large body of work on BPMN, no formal definition of such prop-
erties directly given on BPMN is provided. The common practice is to reconsider in
the business process domain some studies related to formal properties on Petri Nets
[13], Workflow Nets [10], and Elementary Nets [14]. We believe instead that the direct
formal characterisation we provide for such properties considering a unique framework
is crucial, as it does not leave any room for ambiguity, and increases the potential for
formal reasoning on BPMN. In this respect, a further contribution is the introduction of
a variant of the soundness property, named message-aware soundness, suitable to un-
derline that asynchronously sent messages are properly handled by the receiver (hence,
avoiding possible pending messages when the execution completes).

The provided classification relies on the considered properties and their relation-
ship. We demonstrate that a well-structured collaboration is always safe, but the vice
versa does not always hold. We also prove that well-structuredness implies soundness
only at process level, while there are well-structured collaborations that are not sound.
Regarding the relationship between soundness and safeness we prove the existence of
unsafe models that are sound. Moreover, we study safeness and soundness composi-
tionality. Finally, we show how the use of some BPMN constructs, namely terminate
event and sub-processes, crucially affects the model classification, thus moving BPMN
models from one class to another.

The rest of the paper is organised as follows. Sec. 2 provides background notions on
BPMN and the considered properties. Sec. 3 introduces a first insight into the obtained
results, while Sec. 4 introduces the proposed formal framework. Sec. 5 provides the
definition of properties, and Sec. 6 makes clearer the relationships between these prop-

2

http://bpmai.org

erties. Sec. 7 presents the study on safeness and soundness compositionality. Finally,
Sec. 8 discusses related works, and Sec. 10 concludes the paper.

2 Background and Basic Notions

In this section we introduce BPMN 2.0 collaboration diagrams presenting a scenario
used throughout the paper as a running example. We also illustrate basic properties we
consider in the rest of paper.

2.1 A Travel Agency Scenario in BPMN

The considered scenario combines the activities of a Customer and a Travel Agency
(Fig. 1). It is used throughout the paper as a running example. This example is inten-
tionally kept simple, as it just aims at illustrating how the language works in practice.

Running Example (1/9). The Travel Agency continuously offers travels to the Customer,
until an offer is accepted. If the Customer is interested in one offer, she decides to book
the travel and refuses all the other offers that the Travel Agency insistently proposes.
As soon as the booking is received by the Travel Agency, it sends back a confirmation
message, and asks for the payment of the travel. When this is completed the ticket is
sent to the Customer, and the Travel Agency activities immediately end.

The processes of the Customer and of the Travel agency are represented inside two
rectangles, called pools. These are used to represent participants or organisations in-
volved in a collaboration, and provide details on internal process specifications and
related elements. The flow of process elements in the same or different pools is given
by connecting edges. In particular, sequence edges are used to specify the internal flow
of the process, thus ordering elements in the same pool, while message edges are dashed
connectors used to visualise communication flows between organisations.

Considering the Customer pool, from left to right, we have that as soon as the pro-
cess starts, due to the presence of a start event (drawn as a circle with an outgoing
sequence edge), the Customer checks the travel offer. This is done by executing a re-
ceiving task (drawn as a rectangle with rounded corners, an incoming message edge,
and an incoming and an outgoing sequence edge). Then, she decides either to book

C
us

to
m

er
Tr

av
el

 A
ge

nc
y

Offer
 Management

Check
Travel Offer Book Travel

Is the offer
interesting?

Booking
Confirmed

Pay Travel

Ticket
Received

Offer
Needed

Make Travel
Offer

Booking
Received

Confirm
Booking

Order
Ticket

Payment
Received

No

Yes

Offer Payment Travel Confirmation Ticket

Transaction
Completed

Offer
Completed

Fig. 1: BPMN collaboration diagram of a Travel Agency scenario.

3

the travel or to wait for other offers, by means of a cycle composed of two gateways:
an XOR-Join (drawn as a diamond marked by ˆ with two incoming sequence edges
and an outgoing one) that acts as a pass-through, meaning that it is activated each time
the gateway is reached; and an XOR-Split (having two outgoing sequence edges and
an incoming one), used after a decision to fork the flow into two branches. After the
Customer finds the interesting offer, she books the travel, by sending a message to the
Travel Agency by executing a sending task (having an outgoing message edge), and
waits for the booking confirmation. As soon as she receives the booking confirmation,
through an intermediate receiving event (drawn as a circle with an incoming message
edge), she pays the travel, receives the ticket from the Agency and her specific works
terminate by means of an end event (drawn as a thick circle).

Considering the work of the Travel Agency, as soon as its process starts, it makes
travel offers to the Customer, by means of a sending task, until an offer is accepted.
Thanks to the behaviour of the AND-Split (drawn as a diamond marked by ` with two
outgoing sequence edges and an incoming one, used to enable parallel execution flows)
combined with the XOR-Join in a cycle, it continuously make offers. At the same time,
it proceeds in order to receive a booking via an intermediate receiving event. Then, it
confirms the booking and sends a notification to the Customer. Finally, after receiving
the payment, it orders and sends the ticket, thus completing its activities by means of
a terminate end event (displayed by a thick circle with a darkened circle inside) which
stops and aborts the running process.

There are other BPMN elements we consider in our work that, however, are not
present in the running example. In particular, regarding gateways, the AND-Join per-
mits to synchronise the execution of two or more parallel branches, as it waits for all
incoming sequence edges to complete before triggering the outgoing flow. Another type
of gateway we consider is the event-based one: it is similar to the XOR-Split, but its
outgoing branches activation depends on taking place of receiving events. For the sake
of presentation we do not include the OR gateway, whose semantics would only add
complexity to the readability of the work and for our aims it can be treated as an AND
gateway, since it affects the studied properties in a similar way. Regarding events, we
can have also a start message event, which permits to start upon the reception of a mes-
sage; and an end message event, which sends a message and ends the process. Moreover,
although the intermediate event in the example shows only the receiving behaviour, this
event can also send a message. Our choice of the considered BPMN fragment is driven
by practical aspects. Indeed, as shown in [15], even if the BPMN specification is quite
wide, only less than 20% of its vocabulary is used regularly in designing business pro-
cess models. We therefore selected those constructs that are most used in practice.

2.2 Well-structuredness, Safeness and Soundness for BPMN

Being inspired by the Petri Net community we reconsidered well-structuredness, safe-
ness and soundness for BPMN models focusing both to the internal characteristics of a
single process in a collaboration, and to the whole collaboration itself. In the following
we introduce such properties, while their formalisation is provided in Section 5.

Well-structuredness relates to the way the various model elements are connected
with each other. BPMN, as well as most business process modelling notations, allows

4

start

Task D

Task C

End 1

End2

Task A

Task B Task E

End 3

start

Task D

Task C

Task A

Task B Task E
End 1

Fig. 2: A WS Process Model.

start

Task D

Task C

End 1

End2

Task A

Task B Task E

End 3

start

Task D

Task C

Task A

Task B Task E
End 1

Fig. 3: A non WS Process Model.

models to have arbitrary topology. However, to avoid undesired behaviours, modelling
guidelines suggest to use structured building blocks [16], thus obtaining well-structured
process model [17]. In particular, in a well-structured process (see Def. 4), for every
split gateway there is a corresponding join gateway such that the fragment of the model
between the split and the join forms a single-entry-single-exit process component. As an
example, the process in Fig. 2 is the well-structured version of the unstructured process
in Fig. 3. The notion of well-structured can be extended to process collaborations (see
Def. 5), requiring that the processes of all involved organisations are well-structured.

Safeness and Soundness relate to the way a process model can be instantiated, exe-
cuted and completed.

A BPMN proces model is safe if during its execution no more than one token occur
along the same sequence edge (see Def. 7). It is inspired by the Petri-Net scenario where
safeness means that the Petri Net does not contain more than one tokens in all reachable
markings [18]. Safeness properties naturally extend to process collaborations, requiring
that the processes of all involved organisations satisfy it considering the overall collab-
oration execution (see Def. 8).

A BPMN process model is sound if it can complete without lefting over active ele-
ments and all the model elements can be activated at least in one of the execution traces
(see Def. 10). It is inspired by literature that since the mid nineties presents several
version of soundness considering different modelling language [18] [19] [20] [21]. To
escape from the jungle of soundness definitions and aiming to capture the BPMN ex-
pressibility here we based to the classical soundness definition for processes [22] that
informally requires the satisfaction of three sub-properties: (i) Option to complete: any
running process instance must eventually complete, (ii) Proper completion: at the mo-
ment of completion, each token of the process instance must be in a different end event,
(iii) No dead activities: any activity can be executed in at least one process instance.
Moreover, considering the BPMN notion of completeness [23, pp. 426, 431] requiring
that all tokens in that instance must reach an end node (see Def. 3), we have that sound-
ness is reduced to the satisfaction of one property, i.e. option to complete. In fact, the
proper completion property is included in the definition of successful completion, since
it requires that “there exists no related activity of this process which is still running or
enabled”. Moreover, the no dead activities property is equivalent to requiring the com-
plete execution of a process. In fact, the only way to have dead activities is that the
incoming sequence flow of that activity is never reached by a token. This can happen
either when there is a deadlock upstream the considered activity or when there are some
conditions on gateways. The first case is subsumed in the notion of completeness, while
the second case is not caught by our semantics since reasoning on models with data is

5

left to future work. Soundness can be extended to process collaborations (see Def. 11),
considering the notion of completeness under the asynchronous nature of the BPMN
communication model. Indeed it is not always true that all the incoming messages are
available when an activity is to be executed.

3 Classification Results

In this section, we show how BPMN collaborations can be classified according to well-
structuredness, safeness, and soundness. Differently from other classifications [24] [25]
reasoning at process level thanks to the Workflow Nets semantics, our study directly
addresses BPMN collaboration models and this has led to novel results. As we formally
prove in the following sections, the obtained results are synthesized in the Euler diagram
in Fig. 4, showing that:

(i) all well-structured collaborations are safe, but the vice versa does not hold;
(ii) there are well-structured collaborations that are neither sound nor message-aware

sound;
(iii) there are sound and message-aware sound collaborations that are not safe.

Safe

Message-Aware
Sound

Sound Well - Structured

Fig. 4: Classification of BPMN collaborations.

In the following we first discuss how our classification advances the state of the art.
Advances with respect to already available classifications. Result (i) demonstrates
that well-structured collaborations represent a subclass of safe collaborations. We also
show that such relation is valid at process level, where the classification relaxes the
existing results on Workflow Nets, stating that a process model to be safe has to be not
only well-structured, but also sound [25].

Result (ii) shows that there are well-structured collaborations that are not sound.
This is also valid at process level confirming results provided on Workflow Nets, where
well-structuredness implies soundness [26], and relaxing the one obtained in Petri Nets
[24], where relaxed soundness and well-structuredness together imply soundness.

Results (i) and (ii) together confirm limits of well-structuredness as a correctness
criterion. Indeed, only consider well-structuredness is too strict, as some safe and sound
models that are not well-structured result discarded right from the start.

Also result (iii) shows that there are sound and message-aware sound collaborations
that are not safe. This also can be observed at the process level resulting as a novel
contribution strictly related to the expressiveness of BPMN and its differences with
respect to other workflow languages. In fact, Van der Aalst shows that soundness of a
Workflow Net is equivalent to liveness and boundedness of the corresponding short-
circuited Petri Net [27]. Similarly, in workflow graphs and, equivalently, free-choice

6

Petri Nets, soundness can be characterized in terms of two types of local errors, viz.
deadlock and lack of synchronization: a workflow graph is sound if it contains neither
a deadlock nor a lack of synchronization [28] [29]. Thus, a sound workflow is always
safe. In BPMN instead there are unsafe processes that are sound.

Summing up, being collaboration an open field of study, result (i) together with
result (ii) and (iii) are novel and influenced also the reasoning at process level. This
is mainly due to the effects of the terminate end event and sub-processes behaviour
impacting on models classification, both at process and collaborations levels, as shown
in the following.

Advance in Classifying BPMN Models. Our BPMN formalisation considers as first-
class citizens BPMN specificities including in the semantics collaboration, process and
sub-process levels, an asynchronous communication models, and the completeness no-
tion distinguishing the effect of end event and the terminate event.

Considering collaboration models, we can observe pools that exchange message to-
kens, while in each pool the execution is rendered by the movements of the sequence
flow tokens at process level. In this setting, there is a clear difference between the no-
tion of safeness directly defined on BPMN collaborations with respect to that defined on
Petri Nets and applied to the Petri Nets resulting from the translation of BPMN collab-
orations. According to well know mapping, such as the one in [30] and in [31], safeness
of a BPMN collaboration only refers to tokens on the sequence edges of the involved
processes, while in its Petri Nets translation refers to token both on message and se-
quence edges. Indeed, such distinction is not considered in the considered mappings,
because a message is rendered as a (standard) token in a place. Hence, a safe BPMN
collaboration where the same message is sent more than once (e.g., via a loop), it is er-
roneously considered unsafe by relying on the Petri Nets notion (i.e., 1-boundedness),
because enqueued messages are rendered as a place with more than one token. There-
fore, the notion of safeness defined for Petri Nets cannot be safely applied as it is to
collaboration models. Similarly, regarding the soundness property, we are able to con-
sider different notions of soundness according to the requirements we impose on mes-
sage queues (e.g., ignoring or not pending messages). Again, due to lack of distinction
between message and sequence edges, these fine-grained reasoning are precluded using
the current translations from BPMN to Petri Nets.

The study of BPMN models via the Petri Nets based frameworks has another limita-
tion concerning the management of the terminate event. Most of the available mappings,
such as the ones in [31] and [32], do not consider the termination end event, while in the
one provided in [30], terminate events are treated as a special type of error events, which
however occur mainly on sub-processes, whose translation assumes safeness. This does
not allow reasoning on most models including the terminate event, and more in general
on all models including unsafe sub-processes. Anyway, given the local nature of Petri
Nets transitions, such cancellation patterns are difficult to handle. This is confirmed in
[33], stating that modelling a vacuum cleaner, i.e., a construct to remove all the tokens
from a given fragment of a net, is possible but results in a spaghetti-like diagram.

The ability of our formal framework to properly classify BPMN models both at pro-
cess and collaboration level, together with our treatment of the terminate event and sub-
processes without any of the restrictions mentioned above, has led us to provide a more

7

Sound Sound-Safe Safe

Terminate
Terminate

sub-process

Message
Disregarding

Sound

sub-process sub-process

Sound

sub-process

Sound Sound-Safe Safe

Terminate
Terminate

sub-process

Sound

sub-process sub-process

Message-Aware Sound

sub-process

(a) (b)
Fig. 5: Reasoning at process (a) and collaboration (b) level.

Task 1

Task 2

Task 3

Task 4

Task A

Task B

Task C

Task B

Task A

Task C

Fig. 6: Unsound process.

Task 1

Task 2

Task 3

Task 4

Task A

Task B

Task C

Task B

Task A

Task C

Fig. 7: Sound process with an unsound sub-process.

precise classification of the model as synthesised by the Euler diagrams in Fig. 5(a) and
Fig. 5(b).

In particular, Fig. 5(a) underlines reasoning that can be done at process level on
soundness. Here it emerges how the terminate event can affect model soundness, as
using it in place of an end event may render sound a model that was unsound. For
example, let us consider the process in Fig. 6; it is a simple process that first runs in
parallel Task A and Task B, then resulting in two possible executions of Task C, and
finally completes with an end event. According to the proposed classification the model
is unsound. In fact, from any reachable configuration of the process it is not possible to
arrive in a (completed) configuration where all marked end events are marked exactly
by a single token and all sequence edges are unmarked. Now, let us consider another
model, obtained from the one in Fig. 6 by replacing the end event with a terminate
event. The resulting model is sound. This is due to the behaviour of the terminate event
that, when reached, removes all tokens in the process. We underline that, although the
two models are quite similar, in terms of our classification they result to be significantly
different. Also the use of sub-processes can impact on the satisfaction of the soundness
property. Fig. 7 shows a simple process model where the unsound process in Fig. 6 is
included in the sub-process. Notably, a sub-process is not syntactic sugar that can be
removed via a sort of macro expansion. Indeed, according to the BPMN standard, a
sub-process completes only when all the internal tokens are consumed, and then just
one token is propagated along the including process [23]. Thus, it results that the model
in Fig. 7 is sound. Its behaviour would not correspond to that of the process obtained
by flattening it, as the resulting model could be unsound. Notice, this reasoning is not
affected by safeness and in particular, it cannot be extended to collaborations. In fact, as
we discuss in Sec. 7, when we compose two sound processes the resulting collaboration
could be either sound or unsound.

Interesting situations also arise when focussing on the collaboration level, as high-
lighted in Fig. 5(b). Worth to notice is the possibility to transform with a small change
an unsound collaboration into a sound one.

In Fig. 8, Fig. 9 and 10 we report a simple example showing the impact of sub-
processes. Also in this case the models are rather similar, but according to our classifica-
tion the result is completely different. The collaboration model in Fig. 8 is both unsound

8

O
R

G
 B

O
R

G
 A

Task D

Task B

Task A

Task C

Soundness: NO
Safeness: NO
Message-Disregarding Sound: NO

Fig. 8: An example of unsound and message-aware unsound.

O
R

G
 A

O
R

G
 B

Task D

Task B

Task A

Task C

Soundness: NO
Safeness: NO
Message-Disregarding Sound: SI

there are Message Disregarding Sound collaboration that are not safe

there are Message Disregarding Sound collaboration that are not SOUND

Fig. 9: Sound and message-aware unsound
collaboration.

O
R

G
 A

O
R

G
 B

Task D

Task B

Task A

Task C

Soundness: SI
Safeness:NO
Message-Disregarding Sound: SI

there are Message Disregarding Sound collaboration that are not safe
Fig. 10: Sound and message-aware sound

collaboration.

and message-aware unsound. Now let consider another model obtained by Fig. 8 intro-
ducing a sub-process the resulting collaboration in Fig. 9 is message-aware unsound,
since the use of the sub-process mitigates the causes. In fact, when the two processes
reach a complete configuration, there will be a pending message, since task C sends
two messages and only one will be consumed by task D. Differently, Fig. 10 shows
that enclosing within a sub-process the part of the model generating multiple tokens it
has also in this case a positive effect on the message-aware soundness of the model.
The collaboration is message-aware sound, since only one message is sent and there are
no pending messages. Soundness is also satisfied since it is implied by message-aware
soundness.

4 Formal Framework

This section presents our formalisation of the BPMN semantics. Specifically, we first
present the syntax and operational semantics we defined for a relevant subset of BPMN
elements. The direct semantics proposed in this paper is inspired by [34], but its techni-
cal definition is significantly different. In particular, configuration states are here defined
according to a global perspective, and the formalisation now includes choreography di-
agrams, which were overlooked in the previous semantics definition.

In selecting the elements we followed a pragmatic approach as, even if we deal with
a restricted number of elements, we focus on those regularly used to design process
models in practice (corresponding to less than 20% of the BPMN vocabulary [15]).
Anyway, extending the framework to include further elements is not particularly chal-
lenging (even a tricky element as the OR-join can be conveniently added to our formal-
isation, see [35]).

9

C ::“ poolpp, P q | C ||C

P ::“ startpeenb, eoq | endpei, ecmpq | startRcvpeenb,m, eoq | endSndpei,m, ecmpq

| terminatepeiq | eventBasedpei, pm1, eo1q, . . . , pmh, eohqq

| andSplitpei, Eoq | xorSplitpei, Eoq | andJoinpEi, eoq | xorJoinpEi, eoq

| taskpei, eoq | taskRcvpei,m, eoq | taskSndpei,m, eoq | emptypei, eoq

| interRcvpei,m, eoq | interSndpei,m, eoq | subProcpei, P, eoq | P ||P

Fig. 11: Syntax of BPMN Collaboration Structures.

4.1 Syntax of BPMN Collaborations

To enable the formal treatment of collaborations’ semantics, we defined a BNF syntax
of their model structure (Fig. 11). In the proposed grammar, the non-terminal symbols
C and P represent Collaborations Structure and Processes Structure, respectively. The
two syntactic categories directly refer to the corresponding notions in BPMN. The ter-
minal symbols, denoted by the sans serif font, are the typical elements of a BPMN
model, i.e. pools, events, tasks, sub-processes and gateways.

It is worth noticing that our syntax is too permissive with respect to the BPMN no-
tation, as it allows to write collaborations that cannot be expressed in BPMN. Limiting
such expressive power would require to extend the syntax (e.g., by imposing processes
having at least one end event), thus complicating the definition of the formal semantics.
However, this is not necessary in our work, as we are not proposing an alternative mod-
elling notation, but we are only using a textual representation of BPMN models, which
is more manageable for writing operational rules than the graphical notation. Therefore,
in our analysis we will only consider terms of the syntax that are derived from BPMN
models.

Intuitively, a BPMN collaboration model is rendered in our syntax as a collection of
pools and each pool contains a process. More formally, a Collaboration C is a composi-
tion, by means of operator || of pools of the form poolpp, P q, where: p is the name that
uniquely identifies the Pool; P is the Process included in the specific pool, respectively.

In the following, m P M denotes a message edge, enabling message exchanges
between pairs of participants in the collaboration, while M P 2M. Moreover, m denote
names uniquely identifying a message edge. We also observe e P E denotes a sequence
edge, while E P 2E a set of edges; we require |E| ą 1 when E is used in joining and
splitting gateways. Similarly, we require that an event-based gateway should contain
at least two message events, i.e. h ą 1 in each eventBased term. For the convenience
of the reader, we refer with ei the edge incoming in an element and with eo the edge
outgoing from an element. In the edge set E we also include spurious edges denoting
the enabled status of start events and the complete status of end events, named enabling
and completing edges, respectively. In particular, we use edge eenb, incoming to a start
event, to enable the activation of the process, while ecmp is an edge outgoing from
the end events suitable to check the completeness of the process. They are needed to
activate sub-processes as well as to check their completion. Moreover, as well as for the
message edge we have that e denotes names uniquely identifying a sequence edge.

10

The correspondence between the syntax used here to represent a Process Structure
and the graphical notation of BPMN is as follows.

– startpeenb, eoq represents a start event that can be activated by means of the enabling
edge eenb and it has an outgoing edge eo.

– endpei, ecmpq represents an end event with an incoming edge ei and a completing
edge ecmp.

– startRcvpeenb,m, eoq represents a start message event that can be activated by
means of the enabling edge eenb as soon as a message m is received and it has
an outgoing edge eo.

– endSndpei,m, ecmpq represents an end message event with an incoming edge ei, a
message m to be sent, and a completing edge ecmp.

– terminatepeiq represents a terminate event with an incoming edge ei.
– eventBasedpei, pm1, eo1q, . . . , pmh, eohqq represents an event based gateway with

incoming edge ei and a list of possible (at least two) message edges, with the related
outgoing edges that are enabled by message reception.

– andSplitpei, Eoq - resp. xorSplitpei, Eoq - represents an AND - resp. XOR - split
gateway with incoming edge ei and outgoing edges Eo.

– andJoinpEi, eoq - resp. xorJoinpEi, eoq - represents an AND - resp. XOR - join
gateway with incoming edges Ei and outgoing edge eo.

– taskpei, eoq represents a task with incoming edge ei and outgoing edge eo; we can
also observe taskRcvpei,m, eoq - resp. taskSndpei,m, eoq - to consider a task re-
ceiving - resp. sending - a message m.

– interRcvpei,m, eoq (resp. interSndpei,m, eoq) represents an intermediate receiving
- resp. sending - event with an incoming edge ei and an outgoing edge eo that are
able to receive - resp. sending - a message m.

– subProcpei, P, eoq represents a sub-process element with incoming edge ei and
outgoing edge eo. When activated, the enclosed sub-processP behaves according to
the elements it consists of, including nested sub-process elements (used to describe
collaborations with a hierarchical structure).

– P1||P2 represents a composition of elements in order to render a process structure
in terms of a collection of elements.

Moreover, to simplify the definition of well-structured processes (given later), we in-
clude an empty task in our syntax. It permits to connect two gateways with a sequence
flow without activities in the middle.

To achieve a compositional definition, each sequence (resp. message) edge of the
BPMN model is split in two parts: the part outgoing from the source element and the
part incoming into the target element. The two parts are correlated since edge names in
the BPMN model are unique. To avoid malformed structure models, we only consider
structures in which for each edge labeled by e (resp. m) outgoing from an element,
there exists only one corresponding edge labeled by e (resp. m) incoming into another
element, and vice versa.

Here in the following we define some auxiliary functions defined on the collabo-
ration structure and the process structure. Considering BPMN collaborations they may
include one or more participants; function participantpCq returns the process structures

11

included in a given collaboration structure. Formally, it is defined as follows.

participantpC1 || C2q “ participantpC1q Y participantpC1q

participantppoolpp, P qq “ P

Since we also consider process including nested sub-processes to refer to the enabling
edges of the start events of the current layer we resort to functions startpP q.

startpP1 || P2q “ startpP1q Y startpP2q

startpstartpeenb, eoqq “ teenbu startpstartRcvpeenb,m, eoqq “ teenbu

startpP q “ H for any element P ‰ startpeenb, eoq or P ‰ startRcvpeenb,m, eoq

Notably, we assume that each process/sub-processes in the collaboration has only one
start event. Function start applied toC will return as many enabling edges as the number
of participants involved.

startpC1 || C2q “ startpparticipantpC1qq Y startpparticipantpC2qq

startppoolpp, P qq “ startpP q

We similarly define functions endpP q and endpCq on the structure of processes and
collaborations in order to refer to end events in the current layer.

endpP1 || P2q “ endpP1q Y endpP2q

endSndpei,m, ecmpq “ tecmpu endpendpei, ecmpqq “ tecmpu

endpP q “ H for any element P ‰ endpei, ecmpq or P ‰ endSndpei,m, ecmpq

The function endpCq on the collaboration structure is defined as follow.

endpC1 || C2q “ endpparticipantpC1qq Y endpparticipantpC2qq

endppoolpp, P qq “ endpP q

12

We also define the function edgespP q to refer the edges in the scope of P .

edgespP1 || P2q “ edgespP1q Y edgespP2q

edgespstartpeenb, eoqq “ teenb, eou edgespendpei, ecmpqq “ tei, ecmpu

edgespstartRcvpeenb,m, eoqq “ teenb, eou edgespendSndpei,m, ecmpqq “ tei, ecmpu

edgespterminatepeiqq “ teiu

edgespeventBasedpei, pm1, eo1q, . . . , pmh, eohqqq “ tei, eo1, . . . , eohu

edgespandSplitpei, eo1, . . . , eohqq “ tei, eo1, . . . , eohu

edgespxorSplitpei, eo1, . . . , eohqq “ tei, eo1, . . . , eohu

edgespandJoinpei1, . . . , eih, , eoqq “ tei1, . . . , eih, eou

edgespxorJoinpei1, . . . , eih, eoqq “ tei1, . . . , eih, eou

edgesptaskpei, eoqq “ tei, eou

edgesptaskRcvpei,m, eoqq “ tei, eou edgesptaskSndpei,m, eoqq “ tei, eou

edgespemptypei, eoqq “ tei, eou edgespinterRcvpei,m, eoqq “ tei, eou

edgespinterSndpei,m, eoqq “ tei, eou edgespsubProcpei, P, eoqq “ tei, eou Y edgespP q

Running Example (2/9). The BPMN model in Fig. 1 is expressed in our syntax as the
following collaboration structure (at an unspecified step of execution):

poolpCustomer, PCq || poolpTravelAgency, PTAq

with PC expressed as follows (process structure PTA is defined in a similar way) where
for simplicity we identify the edges in progressive order ei (with i “ 0..10):

startpe0, e1q
|| xorJoinpte1, e3u, e2q || taskRcvpe2,Offer, e4q || xorSplitpe4, te3, e5uq
|| taskSndpe5,Travel, e6q || interRcvpe6,Confirmation, e7q || taskSndpe7,Payment, e8q
|| interRcvpe8,Ticket, e9q || endpe9, e10q

Moreover, considering functions we define on the structure we can observe the fol-
lowing: participantppoolpCustomer, PCq || poolpTravelAgency, PTAqq “ tPC , PTAu,
startpPCq “ te0u, and endpPCq “ te10u. The others are defined in a similar way. [\

Notice, the correspondence between the syntax used here to represent a BPMN model
and the graphical notation of BPMN, that is exemplified by means of (an excerpt of)
our running example in Fig. 1, is also reported in detail in the Appendix 11 considering
the detailed one-to-one correspondence.

4.2 Semantics of BPMN Collaborations

The syntax presented so far permits to describe the mere structure of a collaboration and
a process. To describe its semantics we need to enrich it with a notion of execution state,

13

defining the current marking of sequence and message edges. We call collaboration
configuration and process configuration these stateful descriptions.

Formally, a collaboration configuration has the form xC, σ, δy, where: C is a collab-
oration structure; σ is the part of the execution state at process level, storing for each
sequence edge the current number of tokens marking it (notice it refers to the edges
included in all the process of the collaboration), and δ is the part of the execution state
at collaboration level, storing for each message edge the current number of message
tokens marking it. Moreover, a process configuration has the form xP, σy, where: P is
a process structure; and σ is the execution state at process level. Specifically, a state
σ : E Ñ N is a function mapping edges to a number of tokens. The state obtained by
updating in the state σ the number of tokens of the edge e to n, written as σ ¨ te ÞÑ nu,
is defined as follows: pσ ¨ te ÞÑ nuqpe1q returns n if e1 “ e, otherwise it returns σpe1q.
Moreover, a state δ : M Ñ N is a function mapping message edges to a number of
message tokens; so that δpmq “ n means that there are n messages of type m sent by a
participant to another that have not been received yet. Update for δ are defined in a way
similar to σ’s definitions.

Given the notion of configuration, a collaboration is in the initial state when each
process it includes is in the initial state, meaning that the start event of each process
must be enabled, i.e. it has a token in its enabling edge, while all other sequence edges
(included the enabling edges for the activation of nested sub-processes), and messages
edges must be unmarked.

Definition 1 (Initial state of process). Let xP, σy be a process configuration. Predicate
isInitpP, σq holds, if σpstartpP qq “ 1, and @ e P edgespP qzstartpP q . σpeq “ 0, then
process configuration is initial if isInitpP, σq holds.

Definition 2 (Initial state of collaboration). Let xC, σ, δy be a collaboration con-
figuration. Predicate isInitpC, σ, δq holds, if @ P P participantpCq we have that
isInitpP, σq, and @ m P M . δpmq “ 0, then a collaboration configuration is initial
if isInitpC, σ, δq holds.

Running Example (3/9). The initial configuration of the collaboration in Fig. 1 is as
follows. Given participantpCq “ tPC , PTAu, we have that xPC , σy, σpe0q “ 1
σpeiq “ 0 @ei with i “ 1..10, and xPTA, σy, σpe11q “ 1 and σpejq “ 0 @ej with
j “ 12..22. We also have that δpOffer,Confirmation,Ticket,Travel,Paymentq “ 0.

[\

The operational semantics is defined by means of a labelled transition system (LTS)
on collaboration configuration and formalises the execution of message marking evo-
lution according to the process evolution. Its definition relies on an auxiliary transition
relation on the behaviour of process.

The auxiliary transition relation is a triple xP,A,Ñy where: P , ranged over by
xP, σy, is a set of process configurations; A, ranged over by α, is a set of labels (of
transitions that process configurations can perform); andÑĎ PˆAˆP is a transition
relation. We will write xP, σy α

ÝÑ xP, σ1y to indicate that pxP, σy, α, xP, σ1yq PÑ and

say that process configuration xP, σy performs a transition labelled by α to become
process configuration xP, σ1y. Since process execution only affects the current states,

14

and not the process structure, for the sake of readability we omit the structure from the
target configuration of the transition. Thus, a transition xP, σy α

ÝÑ xP, σ1y is written as
xP, σy

α
ÝÑ σ1. The labels used by this transition relation are generated by the following

production rules.

pActionsq α ::“ τ | !m | ?m pInternal Actionsq τ ::“ ε | kill

The meaning of labels is as follows. Label τ denotes an action internal to the process,
while !m and ?m denote sending and receiving actions, respectively. The meaning of
internal actions is as follows: ε the movement of a token through the process unless the
termination action denoted by kill.

The transition relation over process configurations formalises the execution of a
process; it is defined by the rules at the top of Fig. 12.

Before commenting on the rules, we introduce the auxiliary functions they exploit.
Specifically, function inc : S ˆ E Ñ S (resp. dec : S ˆ E Ñ S), where S is the
set of states, allows updating a state by incrementing (resp. decrementing) by one the
number of tokens marking an edge in the state. Formally, they are defined as follows:
incpσ, eq “ σ ¨ te ÞÑ σpeq ` 1u and decpσ, eq “ σ ¨ te ÞÑ σpeq ´ 1u. These functions
extend in a natural ways to sets of edges as follows: incpσ,Hq “ σ and incpσ, teu Y
Eqq “ incpincpσ, eq, Eq; the cases for dec are similar. As usual, the update function for
δ are defined in a way similar to σ’s definitions. We also use the function zero : SˆEÑ
S that allows updating a state by setting to zero the number of tokens marking an edge
in the state. Formally, it is defined as follows: zeropσ, eq “ σ ¨ te ÞÑ 0u. Also in this
case the function extends in a natural ways to sets of edges as follows: zeropσ,Hq “ σ
and zeropσ, teu Y Eqq “ zeropzeropσ, eq, Eq.

To check the completion of a process and sub-process we exploit the boolean pred-
icate completedpP, σq. It is defined according to the prescriptions of the BPMN stan-
dard, which states that “a process instance is completed if and only if [...] there is no
token remaining within the process instance; no activity of the process is still active.
For a process instance to become completed, all tokens in that instance must reach an
end node” and “a sub-process instance completes when there are no more tokens in
the Sub-Process and none of its Activities is still active” [23, pp. 426, 431]. Thus, the
process/sub-process completion can be formalised as follows.

Definition 3. Let P be a process, having the form endpei, ecmpq || P 1 or
endSndpei,m, ecmpq || P

1, the predicate completedpP, σq is defined as
σpecmpq ą 0^ σpeiq “ 0^ isZeropP 1, σq

where isZerop¨q is inductively defined on the structure of its first argument as follows:

– isZeropstartpeenb, eoq, σq if σpeenbq “ 0 and σpeoq “ 0;
– isZeropendpei, ecmpq, σq if σpeiq “ 0;
– isZeropstartRcvpeenb,m, eoqq if σpeenbq “ 0 and σpeoq “ 0;
– isZeropendSndpei,m, ecmpqq if σpeiq “ 0;
– isZeropterminatepeiq, σq if σpeiq “ 0;
– isZeropeventBasedpei, pm1, eo1q, . . . , pmk, eohqq, σq if σpeiq “ 0

and @j P t1, ..., hu . σpeojq “ 0;

15

– isZeropandSplitpei, Eoq, σq if σpeiq “ 0 and @e P Eo . σpeq “ 0;
– isZeropxorSplitpei, Eoq, σq if σpeiq “ 0 and @e P Eo . σpeq “ 0;
– isZeropandJoinpEi, eoq, σq if @e P Ei . σpeq “ 0 and σpeoq “ 0;
– isZeropxorJoinpEi, eoq, σq if @e P Ei . σpeq “ 0 and σpeoq “ 0;
– isZeroptaskpei, eoq, σq if σpeiq “ 0 and σpeoq “ 0;
– isZeroptaskRcvpei,m, eoq, σq if σpeiq “ 0 and σpeoq “ 0;
– isZeroptaskSndpei,m, eoq, σq if σpeiq “ 0 and σpeoq “ 0;
– isZeropemptypei, eoq, σq if σpeiq “ 0 and σpeoq “ 0;
– isZeropinterRcvpei,m, eoq, σyq if σpeiq “ 0 and σpeoq “ 0;
– isZeropinterSndpei,m, eoq, σq if σpeiq “ 0 and σpeoq “ 0;
– isZeropsubProcpei, P, eoq, σq if σpeiq “ σpeoq “ 0 and @e P edgespP q . σpeq “ 0;
– isZeropP1||P2, σq if isZeropP1, σq and isZeropP2, σq.

Notably, the completion of a process does not depend on the exchanged messages, and
it is defined considering the arbitrary topology of the model, which hence may have one
or more end events with possibly more than one token in the completing edges.

Finally, we use the function markedpσ,Eq to refer to the set of edges in E with at
least one token, which is defined as follows:

markedpσ, teu Y Eq “

#

teu Ymarkedpσ,Eq if σpeq ą 0;

markedpσ,Eq otherwise.
markedpσ,Hq “ H.
We now briefly comment on some of the operational rules in Fig. 12. Rule P -Start

starts the execution of a process/(sub-)process when it has been activated (i.e., the en-
abling edge eenb is marked). The effect of the rule is to increment the number of tokens
in the edge outgoing from the start event. Rule P -End is enabled when there is at least
one token in the incoming edge of the end event, which is then moved to the complet-
ing edge. Rule P -StartRcv start the execution of a process when it is in its initial state.
The effect of the rule is to increment the number of tokens in the edge outgoing from
the start event and remove the token from the enabling edge. A label corresponding to
the consumption of a message is observed. Rule P -EndSnd is enabled when there is
at least a token in the incoming edge of the end event, which is then removed which
is then moved to the completing edge. At the same time a label corresponding to the
production of a message is observed. Rule P -Terminate starts when there is at least
one token in the incoming edge of the terminate event, which is then removed. Rule
P -EventG is activated when there is a token in the incoming edge and there is a mes-
sage mj to be consumed, so that the application of the rule moves the token from the
incoming edge to the outgoing edge corresponding to the received message. A label
corresponding to the consumption of a message is observed. Rule P -AndSplit is ap-
plied when there is at least one token in the incoming edge of an AND split gateway;
as result of its application the rule decrements the number of tokens in the incoming
edge and increments that in each outgoing edge. Similarly, rule P -XorSplit is applied
when a token is available in the incoming edge of a XOR split gateway, the rule decre-
ments the token in the incoming edge and increment the token in one of the outgoing
edges, non-deterministically chosen. Rule P -AndJoin decrements the tokens in each
incoming edge and increments the number of tokens of the outgoing edge, when each
incoming edge has at least one token. Rule P -XorJoin is activated every time there is

16

a token in one of the incoming edges, which is then moved to the outgoing edge. Rule
P -Task deals with simple tasks, acting as a pass through. It is activated only when
there is a token in the incoming edge, which is then moved to the outgoing edge. Rule
P -TaskRcv is activated when there is a token in the incoming edge and a label cor-
responding to the consumption of a message is observed. Similarly, rule P -TaskSnd ,
instead of consuming, send a message before moving the token to the outgoing edge. A
label corresponding to the production of a message is observed. Rule P -InterRcv (resp.
P -InterSnd) follows the same behaviour of rule P -TaskRcv (resp. P -TaskSnd). Rule
P -Empty simply propagates tokens, it acts as a pass through. Rules P -SubProcStart ,
P -SubProcEvolution , P -SubProcEnd and P -SubProcKill deal with the behaviour of
a sub-process element. The former rule is activated only when there is a token in the
incoming edge of the sub-process, which is then moved to the enabling edge of the start
event in the sub-process body. Then, the sub-process behaves according to the behaviour
of the elements it contains according to the rules P -SubProcEvolution . When the sub-
process completes the rule P -SubProcEnd is activated. It removes all the tokens from
the sequence edges of the sub-process body1, and adds a token to the outgoing edge
of the sub-process. Rule P -SubProcKill deals with a sub-process element observing a
killing action in its behaviour due to an occurrence of Terminate end event. This rule
is activated only when there is a token in the incoming edge of termination event by
the rule P -Terminate . Then, the sub-process stop its internal behaviours and passes
the control to the upper layer, indeed the rule removes all the tokens in the sub-process
and adds a token to the outgoing edge of the sub-process. Rule P -Kill deal with the
propagation of killing action on the scope of P and rule P -Int deal with interleaving
in a standard way for process elements. Notice that we do not need symmetric versions
of the last two rules, as we identify processes up to commutativity and associativity of
process collection.

1 Actually, due to the completion definition, only the completing edges of the end events within
the sub-process body need to be set to zero.

17

xstartpeenb, eoq, σy
ε
ÝÑ incpdecpσ, eenbq, eoq σpeenbq ą 0 pP -Startq

xendpei, ecmpq, σy
ε
ÝÑ incpdecpσ, eiq, ecmpq σpeiq ą 0 pP -Endq

xstartRcvpeenb,m, eoq, σy
?m
ÝÝÑ incpdecpσ, eenbq, eoq σpeenbq ą 0 pP -StartRcvq

xendSndpei,m, ecmpq, σy
!m
ÝÑ incpdecpσ, eiq, ecmpq σpeiq ą 0 pP -EndSndq

xterminatepeiq, σy
kill
ÝÝÑ decpσ, eiq σpeiq ą 0 pP -Terminateq

xeventBasedpei, pm1, eo1q, . . . , pmh, eohqq, σy
?mj
ÝÝÑ

incpdecpσ, eiq, eojq
σpeiq ą 0, 1 ď j ď h pP -EventGq

xandSplitpei, Eoq, σy
ε
ÝÑ incpdecpσ, eiq, Eoq σpeiq ą 0 pP -AndSplitq

xxorSplitpei, teu Y Eoq, σy
ε
ÝÑ incpdecpσ, eiq, eq σpeiq ą 0 pP -XorSplitq

xandJoinpEi, eoq, σy
ε
ÝÑ incpdecpσ,Eiq, eoq @e P Ei . σpeq ą 0 pP -AndJoinq

xxorJoinpteu Y Ei, eoq, σy
ε
ÝÑ incpdecpσ, eq, eoq σpeq ą 0 pP -XorJoinq

xtaskpei, eoq, σy
ε
ÝÑ incpdecpσ, eiq, eoq σpeiq ą 0 pP -Taskq

xtaskRcvpei,m, eoq, σy
?m
ÝÝÑ incpdecpσ, eiq, eoq σpeiq ą 0 pP -TaskRcvq

xtaskSndpei,m, eoq, σy
!m
ÝÑ incpdecpσ, eiq, eoq σpeiq ą 0 pP -TaskSndq

xinterRcvpei,m, eoq, σy
?m
ÝÝÑ incpdecpσ, eiq, eoq σpeiq ą 0 pP -InterRcvq

xinterSndpei,m, eoq, σy
!m
ÝÑ incpdecpσ, eiq, eoq σpeiq ą 0 pP -InterSndq

xemptypei, eoq, σy
ε
ÝÑ incpdecpσ, eiq, eoq σpeiq ą 0 pP -Emptyq

xsubProcpei, P, eoq, σy
ε
ÝÑ incpdecpσ, eiq, startpP qq σpeiq ą 0 pP -SubProcStartq

xP, σy
α
ÝÑ σ1

pP -SubProcEvolutionq
xsubProcpei, P, eoq, σy

α
ÝÑ σ1

xsubProcpei, P, eoq, σy
ε
ÝÑ incpzeropσ, endpP qq, eoq completedpP, σq pP -SubProcEndq

xP, σy
kill
ÝÝÑ σ1

pP -SubProcKillq
xsubProcpei, P, eoq, σy

kill
ÝÝÑ incpzeropσ1, edgespP qq, eoq

xP1, σy
kill
ÝÝÑ σ1

pP -Killq
xP1 || P2, σy

kill
ÝÝÑ zeropσ1, edgespP1 || P2qq

xP1, σy
α
ÝÑ σ1 α ‰ kill

pP -Intq
xP1 || P2, σy

α
ÝÑ σ1

xP, σy
τ
ÝÑ σ1

pC -Internalq
xpoolpp, P q, σ, δy

τ
ÝÑ xσ1, δy

xP, σy
?m
ÝÝÑ σ1 δpmq ą 0

pC -Receiveq
xpoolpp, P q, σ, δy

?m
ÝÝÑ xσ1, decpδ,mqy

xP, σy
!m
ÝÑ σ1

pC -Deliverq
xpoolpp, P q, σ, δy

!m
ÝÑ xσ1, incpδ,mqy

xC1, σ, δy
α
ÝÑ xσ1, δ1y

pC -Intq
xC1 || C2, σ, δy

α
ÝÑ xσ1, δ1y

Fig. 12: BPMN Semantics.
18

Now, the labelled transition relation on collaboration configurations formalises the
execution of message marking evolution according to process evolution. In the case of
collaborations, this is a triple xC,A,Ñy where: C, ranged over by xC, σ, δy, is a set
of collaboration configurations; A, ranged over by α, is a set of labels (of transitions
that collaboration configurations can perform as well as the process configuration); and
ÑĎ CˆAˆC is a transition relation. We will write xC, σ, δy α

ÝÑ xC, σ1, δ1y to indicate

that pxC, σ, δy, α, xC, σ1, δ1yq PÑ and say that collaboration configuration xC, σ, δy per-
forms transition labelled by α to become collaboration configuration xC, σ1, δ1y. Since
collaboration execution only affects the current states, and not the collaboration struc-
ture, for the sake of readability we omit the structure from the target configuration of the
transition. Thus, a transition xC, σ, δy α

ÝÑ xC, σ1, δ1y is written as xC, σ, δy α
ÝÑ xσ1, δ1y.

We recall α are the following: label τ denotes an action internal to the process, while
!m and ?m denote sending and receiving actions, respectively. The rules related to the
collaboration are defined at the bottom of Fig. 12

The first three rules allow a single pool, representing organisation p, to evolve ac-
cording to the evolution of its enclosed process P . In particular, if P performs an inter-
nal action, rule C-Internal, or a receiving/delivery action, rule C-Receive/C-Deliver, the
pool performs the corresponding action at collaboration layer. Notably, rule C-Receive
can be applied only if there is at least one message available (premise δpmq ą 0); of
course, one token is consumed by this transition. Recall indeed that at process level
label ?m just indicates the willingness of a process to consume a received message,
regardless the actual presence of messages. Moreover, when a process performs a send-
ing action, represented by a transition labelled by !m, such message is delivered to the
receiving organization by applying rule C-Deliver. The resulting transition has the ef-
fect of increasing the number of tokens in the message edge m. The C-Int rule permits
to interleave the execution of actions performed by pools of the same collaboration,
so that if a part of a larger collaboration evolves, the whole collaboration evolves ac-
cordingly. Notice that we do not need symmetric versions of rule C-Int, as we identify
collaborations up to commutativity and associativity of pools collection.

5 Properties of BPMN Collaborations

We provide here a rigorous characterisation, with respect to the BPMN formalisation
presented so far, of the key concepts studied in this work: well-structuredness, safe-
ness and soundness. We characterise these properties both at the level of processes and
collaborations.

5.1 Well-Structured BPMN Collaborations

Common process modelling notations, such as BPMN, allow process models to have
almost any topology. However, it is often desirable that models abide by some struc-
tural rules. In this respect, a well-known property of a process model is that of
well-structuredness. In this paper we have been inspired by the definition of well-
structuredness given by Kiepuszewski et. al. [17]. Such definition was given on work-
flow model and it is not expressive enough for BPMN, so we extend it to well-
structuredness collaboration including all the elements defined in our semantics (i.e.

19

not only based element included in workflow model but also event based gateway and
sub-processes).

Before providing a formal characterisation of well-structured BPMN processes and
collaborations, we need to introduce some auxiliary definitions. In particular, we induc-
tively define functions inpP q and outpP q, which determine the incoming and outgoing
sequence edges of a process element P as follows:

inpstartpeenb, eoqq “ H outpstartpeenb, eoqq “ teou
inpendpei, ecmpqq “ teiu outpendpei, ecmpqq “ H
inpstartRcvpeenb,m, eoqq “ H outpstartRcvpeenb,m, eoqq “ teou
inpendSndpei,m, ecmpqq “ teiu outpendSndpei,m, ecmpqq “ H
inpterminatepeiqq “ teiu outpterminatepeiqq “ H
inpandSplitpei, Eoqq “ teiu outpandSplitpei, Eoqq “ Eo
inpxorSplitpei, Eoqq “ teiu outpxorSplitpei, Eoqq “ Eo
inpandJoinpEi, eoqq “ Ei outpandJoinpEi, eoqq “ teou
inpxorJoinpEi, eoqq “ Ei outpxorJoinpEi, eoqq “ teou
inpeventBasedpei, pm1, eo1q, . . . , pmh, eohqqq outpeventBasedpei, pm1, eo1q, . . . , pmh, eohqqq

“ teiu “ teoju with 1 ă j ă h
inptaskpei, eoqq “ teiu outptaskpei, eoqq “ teou
inptaskRcvpei,m, eoqq “ teiu outptaskRcvpei,m, eoqq “ teou
inptaskSndpei,m, eoqq “ teiu outptaskSndpei,m, eoqq “ teou
inpemptypei, eoqq “ teiu outpemptypei, eoqq “ teou
inpinterRcvpei,m, eoqq “ teiu outpinterRcvpei,m, eoqq “ teou
inpinterSndpei,m, eoqq “ teiu outpinterSndpei,m, eoqq “ teou
inpsubProcpei, P1, eoqq “ teiu outpsubProcpei, P1, eoqq “ teou
inpP1 || P2q “ pinpP1q Y inpP2qq outpP1 || P2q “ poutpP1q Y outpP2qq

z poutpP1q Y outpP2qq z pinpP1q Y inpP2qq

Moreover, to simplify the definition of well-structuredness for processes, we also
provide the definition of well-structured core by means of the boolean predicate
isWSCorep¨q.

20

Definition 4 (Well-structured processes). A process P is well-structured (WS) if P
has one of the following forms:

startpeenb, eoq || P
1 || endpei, ecmpq (1)

startpeenb, eoq || P
1 || terminatepeiq (2)

startpeenb, eoq || P
1 || endSndpei,m, ecmpq (3)

startRcvpeenb,m, eoq || P
1 || endpei, ecmpq (4)

startRcvpeenb,m, eoq || P
1 || terminatepeiq (5)

startRcvpeenb,m, eoq || P
1 || endSndpei,m, ecmpq (6)

where inpP 1q “ teou, outpP 1q “ teiu, and isWSCorepP 1q.
isWSCorep¨q is inductively defined on the structure of its first argument as follows:

1. isWSCoreptaskpei, eoqq; 2. isWSCoreptaskRcvpei,m, eoqq;
3. isWSCoreptaskSndpei,m, eoqq; 4. isWSCorepemptypei, eoqq;
5. isWSCorepinterRcvpei,m, eoqq; 6. isWSCorepinterSndpei,m, eoqq;

@j P r1..ns isWSCorepPjq, inpPjq Ď Eo, outpPjq Ď Ei

7. isWSCorepandSplitpei, Eoq | P1 | . . . | Pn | andJoinpEi, eoqq
8. isWSCorepxorSplitpei, Eoq | P1 | . . . | Pn | xorJoinpEi, eoqq

9.
@j P r1..ns isWSCorepPjq, inpPjq “ eoj , outpPjq Ď Ei

isWSCorepeventBasedpei, tpmj , eojq|j P r1..nsuq | P1 | . . . | Pn | xorJoinpEi, eoqq

10.
isWSCorepP1q, isWSCorepP2q, inpP1q “ te1u, outpP1q “ te4u, inpP2q “ te6u, outpP2q “ te2u

isWSCorepxorJoinpte2, e3u, e1q | P1 | P2 | xorSplitpe4, te5, e6uqq

isWSCorepP 11q

11paq. isWSCorepsubProcpei, startpeenb, eoq || P
1
1 || endpei, ecmpq, eoqq

11pbq. isWSCorepsubProcpei, startpeenb, eoq || P
1
1 || terminatepeiq, eoqq

11pcq. isWSCorepsubProcpei, startpeenb, eoq || P
1
1 || endSndpei,m, ecmpq, eoqq

11pdq. isWSCorepsubProcpei, startRcvpeenb,m, eoq || P
1
1 || endpei, ecmpq, eoqq

11peq. isWSCorepsubProcpei, startRcvpeenb,m, eoq || P
1
1 || terminatepeiq, eoqq

11pfq. isWSCorepsubProcpei, startRcvpeenb,m, eoq || P
1
1 || endSndpei,m, ecmpq, eoqq

12.
isWSCorepP1q, isWSCorepP2q, outpP1q “ inpP2q

isWSCorepP1 | P2q

According to the definition 4, Well-structured processes is given in the forms (1-6)
such as a possible combination of starting or end event according to the one included in
the semantics. We allow a start event or a start message event and one end event such
as simple end event or termination or end messege event. The start is connected to the
body and the body to the end. In the middle the process body can be composed by any

21

element up to the well-structured core definition. Any single task or intermediate event
is a well-structured core (cases 1-6); a composite node starting with an AND (resp.
XOR, resp. Event-based) split and closing with an AND (resp. XOR, resp. XOR) join
is well-structured core if each edge of the split is connected to a given edge of the join
by means of a well-structured sub-node (cases 7-9); a loop of sequence edges (e1 Ñ
e4 Ñ e6 Ñ e2) formed by means of a XOR split and a XOR join is well-structured core
if the body of the loop consists of well-structured sub-nodes (case 10). Notably, only
loops formed by XOR gateways are well-structured. For a better understanding, cases 7
- 10 are graphically depicted in Fig. 13. A subprocess is well structure core if it include

P1

…

Pn

ei

e1

en

e’i

e’1

e’n

ei

e1

en
- Case 7 - - Case 8 -

e’i

e’1

e’n

ei

e1

en
- Case 9 -

e’i

e’1

e’n
P1

P2

e1 e4 e5

e6e2

e3

- Case 10 -

e e’

P1

…

Pn

P1

…

Pn

e

e

e’

e’

Fig. 13: Well-structured nodes (cases 7-10).

a well-structured process (case 11). A process element collection is well-structured core
if its process are well-structured and sequentially composed (case 12).

Well-structuredness can be also simply extended to collaborations, by requiring
each process involved in a collaboration to be well-structured.

Definition 5 (Well-structured collaborations). Let C be a collaboration, isWS pCq
is inductively defined as follows:

– isWS ppoolpp, P qq if P is well-structured;
– isWS pC1 || C2q if isWS pC1q and isWS pC2q.

Running Example (4/9). Considering the proposed running example and according
to the above definitions, process PC is well-structured, while process PTA is not well-
structured, due to the presence of the unstructured loop formed by the XOR join and an
AND split. Thus, the overall collaboration is not well-structured. [\

5.2 Safe BPMN Collaborations

Another important condition usually required is safeness, i.e the occurrence of no more
than one token along the same sequence edge during process execution.

22

Before providing a formal characterisation of safeness BPMN processes and col-
laborations, we need to introduce the auxiliary function maxMarkingp¨q that, given a
configuration xP, σy, determines the maximum number of tokens marking the sequence
edges of elements in P according to the state σ (this function relies on the standard
function max p¨q returning the maximum in a list of natural numbers).

maxMarkingpstartpeenb, eoq, σq “ σpeoq
maxMarkingpendpei, ecmpq, σq “ σpeiq
maxMarkingpstartRcvpeenb,m, eoq, σq “ σpeoq
maxMarkingpendSndpei,m, ecmpq, σq “ σpeiq
maxMarkingpterminatepeiq, σq “ σpeiq
maxMarkingpandSplitpei, Eoq, σq “ max pσpeiq, σpEoqq
maxMarkingpxorSplitpei, Eoq, σq “ max pσpeiq, σpEoqq
maxMarkingpandJoinpEi, eoq, σq “ max pσpEiq, σpeoqq
maxMarkingpxorJoinpEi, eoq, σq “ max pσpEiq, σpeoqq
maxMarkingptaskpei, eoq, σq “ max pσpeiq, σpeoqq
maxMarkingptaskRcvpei,m, eoq, σq “ max pσpeiq, σpeoqq
maxMarkingptaskSndpei,m, eoq, σq “ max pσpeiq, σpeoqq
maxMarkingpemptypei, eoq, σq “ max pσpeiq, σpeoqq
maxMarkingpinterRcvpei,m, eoq, σq “ max pσpeiq, σpeoqq
maxMarkingpinterSndpei,m, eoq, σq “ max pσpeiq, σpeoqq
maxMarkingpsubProcpei, P, eoq, σq “ max pσpeiq, σpedgespP qq, σpeoqq
maxMarkingpP1 || P2, σq “ max pmaxMarkingpP1, σq,maxMarkingpP2, σqq

maxMarkingp¨q can be also simply extended to collaborations xC, σy, determines the
maximum number of tokens marking the sequence edges of elements in all the process
P included in the collaboration.

maxMarkingppoolpp, P q, σq “ maxMarkingpP, σq
maxMarkingpC1 || C2, σq “

max pmaxMarkingpparticipantpC1q, σq,maxMarkingpparticipantpC2q, σqq

We also need the following definition determining the safeness of a process in a given
state.

Definition 6 (Current state safe process). A process configuration xP, σy is current
state safe (cs-safe) if and only if maxMarkingpP, σq ď 1.

We can finally conclude with the definition of safe processes and collaborations which
requires that cs-safeness is preserved along the computations. Now, a process is defined
to be safe if it is preserved that the maximum marking does not exceed one along the
process execution. We use ÝÑ˚ to denote the reflexive and transitive closure of ÝÑ.

Definition 7 (Safe processes). A process P is safe if and only if, given σ such that
isInitpP, σq, for all σ1 such that xP, σyÝÑ˚σ1 we have that xP, σ1y is cs-safe.

Definition 8 (Safe collaborations). A collaboration C is safe if and only if, given σ
and δ such that isInitpC, σ, δq, for all for all σ1 and δ1 such that xC, σ, δyÝÑ˚xσ1, δ1y

we have that maxMarkingpC, σ1q ď 1.

23

Running Example (5/9). Let us consider again our running example depicted in
Fig. 1. Process PC is safe since there is not any process fragment capable of producing
more than one token. Process PTA instead is not safe. In fact, if task Make Travel Offer
is executed more than once, we would have that the AND split gateway will produce
more than one token in the sequence flow connected to the Booking Received event.
Thus, also the resulting collaboration is not safe. [\

5.3 Sound BPMN Collaborations

Here we refer to the soundness as the need that from any reachable configuration it is
possible to arrive in a (completed) configuration. This is possible under two different
scenarios, the first one (i) where all marked end events are marked exactly by a single
token and all sequence edges are unmarked, while the second (ii) when no token are
observed in the configuration (i.e. the case of termination with terminate end event).
This refers to the current state sound process we following define.

Definition 9 (Current state sound process). A process configuration xP, σy is current
state sound (cs-sound) if and only if one of the following hold:

(i) @ ecmp P markedpσ,endpP qq . σpecmpq “ 1 and isZeropP, σq;
(ii) @ e P edgespP q . σpeq “ 0.

Definition 10 (Sound process). A process P is sound if and only if, given σ such that
isInitpP, σq, for all σ1 such that xP, σyÝÑ˚σ1 we have that there exists σ2 such that

xP, σ1yÝÑ˚σ2, and xP, σ2y is cs-sound.

Definition 11 (Sound collaboration). A collaboration C is sound if and only if, given
σ and δ such that isInitpC, σ, δq, for all σ1 and δ1 such that xC, σ, δyÝÑ˚xσ1, δ1y we

have that there exist σ2 and δ2 such that xC, σ1, δ1yÝÑ˚xσ2, δ2y, and @ P in C we have

that xP, σ2y is cs-sound.

Thanks to the expressibility of our formalisation to distinguish sequence tokens
from message tokens we provide a novel property, named message-aware soundness,
that extend the usual soundness notion by considering sound those collaborations in
which asynchronously sent messages are properlly handled by the receiver.

Definition 12 (Message-Aware sound collaboration). A collaborationC is Message-
Disregarding sound if and only if, given σ and δ such that isInitpC, σ, δq, for all
σ1 and δ1 such that xC, σ, δyÝÑ˚xσ1, δ1y we have that there exist σ2 and δ2 such

that xC, σ1, δ1yÝÑ˚xσ2, δ2y, and @ P in C we have that xP, σ2y is cs-sound, and

@m PM . δ2pmq “ 0.

Running Example (6/9). Let us consider again our running example. It is easily to see
that process PC is sound, since it is always possible to reach the end event and when
reached there is no token marking the sequence flows. Also process PTA is sound, since
when a token reaches the terminate event, all the other tokens are removed from the

24

edges by means of the killing effect. However, the resulting collaboration is not sound.
In fact, when a travel offer is accepted by the customer, we would have that the AND-
Split gateway will produce two tokens, one of which re-activates the task Make Travel
Offer. Thus, even if the process completes, the message lists are not empty. However,
the collaboration satisfied the Message-Disregarding sound property we define. [\

6 Relationships among Properties

In this section we study the relationships among the considered properties. In particular
we investigate the relationship between (i) well-structuredness and safeness, (ii) well-
structuredness and soundness, and (iii) safeness and soundness. The proofs of these
results are relegated to the Appendix 11.

6.1 Well-structuredness vs. Safeness in BPMN

In this section we present some of the main results of this work concerning the correla-
tion between well-structuredness and safeness, both at process and collaboration level.
Specifically, we demonstrate that all well-structured models are safe (Theorem 1), and
that the vice versa does not hold. To this aim, first we show that a process in the initial
state is cs-safe (Lemma 1). Then, we show that cs-safeness is preserved by the evo-
lution of well-structured core process elements (Lemma 2) and processes (Lemma 3).
These latter two lemmas rely on the notion of reachable processes. In fact, the syntax in
Fig. 11 is too liberal, as it allows terms that cannot be obtained (by means of transitions)
from a process in its initial state.

Definition 13 (Reachable processes). A process configurations xP, σy is reachable if
there exists xP, σ1y configurations such that isInitpP, σ1q and xP, σ1y ÝÑ*σ.

Lemma 1. Let P be a process, if isInitpP, σq then xP, σy is cs-safe.

Proof (sketch). Trivially, from definition of isInitpP, σq. [\

Lemma 2. Let isWSCorepP q, and let xP, σy be reachable and cs-safe process config-
uration, if xP, σy α

ÝÑ σ1 then xP, σ1y is cs-safe.

Proof (sketch). We proceed by induction on the structure of well-structured core process
elements. [\

Lemma 3. Let P be WS, and let xP, σy be a process configuration reachable and cs-
safe, if xP, σy α

ÝÑ σ1 then xP, σ1y is cs-safe.

Proof (sketch). We proceed by case analysis on the structure of P , which is a WS
process (see Definition 4). [\

Theorem 1. Let P be a process, if P is well-structured then P is safe.

25

O
R

G
 A

O
R

G
 B

Task A
Task B

Task C

Task D

Fig. 14: A safe BPMN collaboration not well-structured

Proof (sketch). We show that if xP, σy ÝÑ˚σ1 then xP, σ1y is cs-safe, by induction on
the length n of the sequence of transitions from xP, σy to xP, σ1y. [\

The reverse implication of Theorem 1 is not true. In fact there are safe processes
that are not well-structured. The collaboration diagram represented in Fig. 14 is an
example. The involved processes are trivially safe, since there are not fragments capable
of generating multiple tokens; however they are not well-structured.

We now extend the previous results to collaborations.

Theorem 2. Let C be a collaboration, if C is well-structured then C is safe.

Proof (sketch). We proceed by contradiction. [\

6.2 Well-structuredness vs. Soundness in BPMN

In this section we present the relationship between well-structuredness and soundness,
both at process and collaboration level. Specifically, we prove that a well-structured
process is always sound (Theorem 3), but there are sound processes that are not well-
structured. To this aim, first we show that a reachable well-structured core process ele-
ment can always complete its execution (Lemma 4). This latter Lemma is based on the
auxiliary definition of the final state of core elements in a process, given for all elements
with the exception of start and end events.

Definition 14 (Final state of core elements in P .). Let P be a process, then
isCompleteElpP, σq is inductively defined on the structure of process P as follows:

26

isCompleteElptaskpei, eoq, σq if σpeiq “ 0 and σpeoq “ 1
isCompleteElptaskRcvpei,m, eoq, σq if σpeiq “ 0 and σpeoq “ 1
isCompleteElptaskSndpei,m, eoq, σq if σpeiq “ 0 and σpeoq “ 1
isCompleteElpemptypei, eoq, σq if σpeiq “ 0 and σpeoq “ 1
isCompleteElpinterRcvpei,m, eoq, σq if σpeiq “ 0 and σpeoq “ 1
isCompleteElpinterSndpei,m, eoq, σq if σpeiq “ 0 and σpeoq “ 1
isCompleteElpandSplitpei, Eoq, σq if σpeiq “ 0 and @e P Eo . σpeq “ 1
isCompleteElpxorSplitpei, Eoq, σq if σpeiq “ 0 and De P Eo . σpeq “ 1

and @ek P Eoze . σpeq “ 0
isCompleteElpandJoinpEi, eoq, σq if @e P Ei . σpeq “ 0 and σpeoq “ 1
isCompleteElpxorJoinpEi, eoq, σq if @e P Ei . σpeq “ 0 and σpeoq “ 1
isCompleteElpeventBasedpei, pm1, eo1q, . . . , pmk, eokqq, σq if σpeiq “ 0

and De P teo1, . . . , eoku . σpeq “ 1 and @ek P teo1, . . . , eokuze . σpeq “ 0
isCompleteElpsubProcpei, P, eoqq if σpeiq “ 0, σpeoq “ 1 and @e P edgespP q . σpeq “ 0
isCompleteElpP1|P2, σq if @e P outpP1 | P2q : isCompleteElpgetElpe, P1 | P2qq

and @e P pedgespP1 | P2qzoutpP1 | P2qq : σpeq “ 0

where getElpe, P q returns the element in P with incoming edge e:

– getElpe, interRcvpei,m, eoqq “

"

interRcvpei,m, eoq if e “ eo
ε otherwise

– getElpe, interSndpei,m, eoqq “

"

interSndpei,m, eoq if e “ eo
ε otherwise

– getElpe, taskpei, eoqq “

"

taskpei, eoq if e “ eo
ε otherwise

– getElpe, taskRcvpei,m, eoqq “

"

taskRcvpei,m, eoq if e “ eo
ε otherwise

– getElpe, taskSndpei,m, eoqq “

"

taskSndpei,m, eoq if e “ eo
ε otherwise

– getElpe, emptypei, eoqq “

"

emptypei, eoq if e “ eo
ε otherwise

– getElpe, andSplitpei, Eoqq “

"

andSplitpei, Eoq if e P Eo
ε otherwise

– getElpe, andJoinpEi, eoqq “

"

andJoinpEi, eoq if e “ eo
ε otherwise

– getElpe, xorSplitpei, Eoqq “

"

xorSplitpei, Eoq if e P Eo
ε otherwise

– getElpe, xorJoinpEi, eoqq “

"

xorJoinpEi, eoq if e “ eo
ε otherwise

27

– getElpe, eventBasedpei, pm1, eo1q, . . . , pmk, eokqqq “
"

eventBasedpei, pm1, eo1q, . . . , pmk, eokqq if e P teo1, . . . , eoku
ε otherwise

– getElpe, P1 | P2q “ getElpe, P1q, getElpe, P2q

Lemma 4. Let xP, σy be a reachable process configuration and isWSCorepP q, then
there exists σ1 such that xP, σy ÝÑ˚σ1 and isCompleteElpP, σ1q.

Proof (sketch). We proceed by induction on the structure of well-structured core pro-
cess. [\

Theorem 3. Let P be a WS process, then P is sound.

Proof (sketch). We proceed by case analysis. [\

The reverse implication of Theorem 3 is not true. In fact there are sound processes
that are not well-structured; see for example the process represented in Fig. 15. This
process is surely unstructured, and it is also trivially sound, since it is always possible
to reach an end event without leaving tokens marking the sequence flows.

Task D

Task CTask A

Task B

Fig. 15: An example of sound process not Well-Structured.

However, Theorem 3 does not extend to the collaboration level. In fact, when we
put well-structured processes together in a collaboration, this could be either sound or
unsound. This is also valid for message-disregarding soundness.

Theorem 4. Let C be a collaboration, C is WS does not imply C is sound.

Proof (sketch). We proceed by contradiction. [\

Theorem 5. Let C be a collaboration, C is WS does not imply C is message-aware
sound.

Proof (sketch). We proceed by contradiction. [\

6.3 Safeness vs. Soundness in BPMN

In this section we present the relationship between safeness and soundness, both at pro-
cess and collaboration level. Specifically we demonstrate that there are unsafe models
that are sound. This is a peculiarity of BPMN, faithfully implemented in our semantics,
thank to its capability to support the terminate end event and (unsafe) sub-processes.
Let us first reason at process level considering some examples.

28

Example 1. Fig. 16 shows an example of unsafe process, since the AND split gateway
produces two tokens that are then merged by the XOR join gateway producing two
tokens on the outgoing edge of the XOR join. However, after Task C is executed and
one token enables the terminate end event, the kill label is produced and the second
token in the sequence flow is removed (rule P-Terminate), rendering the process sound.

[\

Task A

Task B

Task C

Fig. 16: An example of unsafe but sound process.

Theorem 6. Let P be a process, P is unsafe does not imply P is unsound.

Proof (sketch). We proceed by contradiction. [\

Let us consider now the collaboration level. We have that unsafe collaborations
could either sound or unsound, as proved by the following Theorem.

Theorem 7. Let C be a collaboration, C is unsafe does not imply C is unsound.

Proof (sketch). We proceed by contradiction. [\

Running Example (9/9). Considering the collaboration in our running example, Cus-
tomer is both safe and sound, while the process of the Travel Agency is unsafe but
sound, since the terminate event permits a successfully termination of the process. The
collaboration is not safe, and it is also sound but message-aware unsound, since there
could be messages in the message lists.

Example 2. Let us consider the example in Fig. 17. The process in ORG A is unsafe
but it is sound, since the terminate event permits a correct completion of the process.
However, if the XOR split gateway of ORG B produces a token on the bottom sequence
flow and Task E is executed, Task B will never received the message from Task D. Thus,
even if each process has a token that reaches the terminate event and all the other tokens
in the process are removed by the killing action, the message lists are not empty. Indeed,
the collaboration is sound, but message-aware unsound. [\

7 Properties Compositionality

In this section we study safeness and soundness compositionality, i.e. how the behaviour
of processes affects that of the entire resulting collaboration. In particular, we show the
interrelationship between the studied properties at collaboration and at process level. At
process level we also consider the compositionality of sub-processes, investigating how
sub-processes behaviour impacts on the safeness and soundness of process including
them.

29

O
R

G
 A

O
R

G
 B

Task C

Task E

Task D

Task F

Task A

Task B

Fig. 17: An unsafe but sound collaboration.

7.1 On Safeness Compositionality

We show here that safeness is compositional, that is the composition of safe processes
always results in a safe collaboration.

Theorem 8. Let C be a collaboration, if all processes in C are safe then C is safe.

Proof (sketch). We proceed by contradiction (see Appendix 11). [\

We also show that the unsafeness of a collaboration cannot be in general determined
by information about the unsafeness of the processes that compose it. Indeed, putting
together an unsafe process with a safe or unsafe one, the obtained collaboration could
be either safe or unsafe. Let us consider now some cases.

Running Example (7/9). In our example, the collaboration is composed by a safe process
and an unsafe one. In fact, focussing on the process of the Travel Agency, we can imme-
diately see that it is not safe: the loop given by a XOR join and an AND split produces
multiple tokens on one of the outgoing edges of the AND split. Now, if we consider this
process together with the safe process of Customer, the resulting collaboration is not
safe. Indeed, the XOR split gateway, which checks if the offer is interesting, forwards
only one token on one of the two paths. As soon as a received offer is considered inter-
esting, the Customer process proceeds and completes. Thus, due to the lack of safeness,
the travel agency will continue to make offers to the customer, but no more offer mes-
sages arriving from the Travel Agency will be considered by the customer. [\

Example 3. Another example refers to the case in which a collaboration composed by a
safe process and an unsafe one results in a safe collaboration, as shown in Fig. 18. If we
focus only on the process in ORG B we can immediately notice that it is not safe: again
the loop given by a XOR join and an AND split produces multiple tokens on the same
edge. However, if we consider this process together with the safe process of ORG A, the
resulting collaboration is safe. In fact, task D receives only one message, producing a
token that is successively split by the AND gateway. No more message arrives from the
send task, so, although there is a token is blocked, we have no problem of safeness. [\

Example 4. In Fig. 19 we have two unsafe processes, since each of them contains a
loop capable of generating an unbounded number of tokens. However, if we consider

30

O
R

G
 A

O
R

G
 B

Task C

Task D

Fig. 18: Safe collaboration with safe and unsafe processes.
O

R
G

 A
O

R
G

 B

Task C

Task A

Task D

Task B

Fig. 19: Safe collaboration with unsafe processes.

the collaboration obtained by the combination of these processes, it turns out to be
safe. Indeed, as in the previous example, tasks C and B are executed only once, as
they receive only one message. Thus, the two loops are blocked and cannot effectively
generate multiple tokens. [\

Example 5. Also the collaboration in Fig. 20 is composed by two unsafe processes:
process in ORG A contains an AND split followed by a XOR join that produces two
tokens on the outgoing edge of the XOR gateway; process in ORG B contains the same
loop as in the previous examples. In this case the collaboration composed by these two
processes is unsafe. Indeed, the XOR join in ORG A will effectively produce two tokens
since the sending of task B is not blocking. [\

Let us now to consider processes including sub-processes. We show that the com-
position of unsafe sub-processes always results in un-safe processes, but the vice versa
does not hold. There are also un-safe processes including safe sub-process when the
unsafeness does not depend from the behaviour of the sub-process.

O
R

G
 A

O
R

G
 B

Task A

Task C

Task B

Fig. 20: Unsafe collaboration with unsafe processes.

31

Theorem 9. Let P be a process including a sub-process subProcpei, P1, eoq, if P1 is
unsafe then P is unsafe.

Proof (sketch). We proceed by contradiction (see Appendix 11). [\

7.2 On Soundness Compositionality

As well as for the safeness property, we show now that it is not feasible to detect the
soundness of a collaboration by relying only on information about soundness of pro-
cesses that compose it. However, the unsoundness of processes implies the unsoundness
of the resulting collaboration.

Theorem 10. Let C be a collaboration, if all processes in C are unsound then C is
unsound.

Proof (sketch). We proceed by contradiction (see Appendix 11). [\

On the other hand, when we put together sound processes, the obtained collabora-
tion could be either sound or unsound, since we have also to consider messages. It can
happen that either a process waits for a message that will never be received or it receive
more than the number of messages it is able to process. Let us consider some examples.

Running Example (8/9). In our running example, the collaboration is composed by
two sound processes. In fact, the Customer process is well-structured, thus sound. Fo-
cussing on the process of the Travel Agency, it is also sound since when it completes
the terminate end event aborts all the running activities and removes all the tokens still
present (more details will follow in Section 3). However, the resulting collaboration is
not message-aware sound, since the message lists could not be empty. [\

O
R

G
 A

O
R

G
 B

Task A

Task B

Task D

Task C

Fig. 21: An example of unsound collaboration with sound processes.

Example 6. In Fig. 21 we have a collaboration resulting from the composition of two
sound processes. If we focus only on the processes in ORG A and ORG B we can
immediately note that they are sound. However, the resulting collaboration is not sound.

32

In fact, for instance, if Task A is executed, Task C in ORG B will never receive the
message and the AND-Join gateway cannot be activated, thus the process of ORG B
cannot complete its execution. [\

Example 7. Also the collaboration in Fig. 22 is trivially composed by two sound pro-
cesses. However, in this case also the resulting collaboration is sound. In fact, Task E
will always receive the message by Task B and the processes of ORG A and ORG B can
correctly complete. [\

O
R

G
 A

O
R

G
 B

Task D

Task C

Task F

Task E

Task A

Task B

Fig. 22: Sound collaboration with sound processes.

Let’s now to consider soundness in a multi-layer structure. We show that the com-
position of unsound sub-processes does not results in un-sound processes. There are
also sound processes including unsound sub-process. In fact, when we put unsound
sub-process together in a process, this could be either sound or unsound.

Theorem 11. Let P be a process including a sub-process subProcpei, P1, eoq, if P1 is
unsound does not imply P is unsound.

Proof (sketch). We proceed by contradiction (see Appendix 11). [\

8 Related Works

In this paper we provide a formal characterisation of well-structuredness BPMN mod-
els. To do that we have been inspired by the definition of well-structuredness given in
[17]. Other attempts are also available in the literature. Van der Aalst et al. [36] state
that a workflow net is well-structured if the split/join constructions are properly nested.
El-Saber and Boronat [37] propose a formal definition of well-structured processes, in
terms of a rewriting logic, but they do not extend this definition at collaboration level.

We than consider safeness, showing that this is a significant correctness property.
Dijkman et al. [30] discuss about safeness in Petri Nets resulting from the translation
of BPMN. In such work, safeness of BPMN terms means that no activity will ever
be enabled or running more than once concurrently. This definition is given using the
natural language, while in our work we give a precise characterisation of safeness for
both BPMN processes and collaborations. Other approaches introducing mapping from

33

BPMN to formal languages, such as YAWL [38] and COWS [39], do not consider
safeness, even if it is recognised as an important characteristic [40].

Moreover, soundness is considered as one of the most important correctness criteria.
There is a jungle of definitions different notions of soundness in the literature, referring
to different process languages and even for the same process language, e.g. for EPC
soundness definition is given by Mendling in [41], and for Workflow Nets van der Aalst
[19] provides two equivalent soundness definitions. However, these definitions cannot
be used directly for BPMN because of its peculiarities. In fact, although the BPMN
process flow resembles to some extent the behaviour of Petri Nets, it is not the same.
BPMN 2.0 provides a comprehensive set of elements that go far beyond the definition
of mere place/transition flows and enable modelling at an higher level of abstraction.
For example, using Petri Nets it is difficult to describe certain operations typical of the
business process domain, such as the termination event, and often it is required to rely
on some limiting assumptions (e.g., safeness and well-structureness).

Other studies try to characterize inter-organizational soundness are available. A first
attempt was done using a framework based on Petri Nets [20]. The authors investigate
IO-soundness presenting an analysis technique to verify the correctness of an interorga-
nizational workflow. However, the study is restricted to structured models. Soundness
regarding collaborative processes is also given in [42] in the field of the Global Inter-
action Nets, in order to detect errors in technology-independent collaborative business
processes models. However, differently from our work, this approach does not apply
to BPMN, which is the modelling notation aimed by our study. Therefore, our inves-
tigation of properties at collaboration level provides novel insights with respect to the
state-of-the-art of BPMN formal studies.

9 Relevance into Practice

To get a clearer idea of the impact of well-structuredness, safeness, and soundness
on the real-world modelling practice, we have analyzed the BPMN 2.0 collaboration
models available in a well-known, public, well-populated repository provided by the
BPM Academic Initiative (http://bpmai.org). From the raw dataset, to avoid un-
completed models and low quality ones, we have selected only those with 100% of
connectedness (i.e., all model elements are connected). This results on 2.740 models
suitable for our investigation. To better understand the trend in Table 1, the models are
grouped in terms of number of contained elements. From the technical point of view,
well-structuredness has been checked using the PromniCAT platform2, while safeness
and soundness have been checked using the S3 tool3.

We have found that 86% of models in the repository are well-structured. Anyway,
more interesting is the trend of the number of well-structured models with respect to
their size. It shows that in practice BPMN models starts to become unstructured when
their size grows. This means that structuredness should be regarded as a general guide-
line but one can deviate from it if necessary, especially in modelling complex scenarios.
The balancing between the two classes motivates, on the one hand, our design choice

2 https://github.com/tobiashoppe/promnicat
3 http://pros.unicam.it/s3/

34

http://bpmai.org
https://github.com/tobiashoppe/promnicat
http://pros.unicam.it/s3/

Size Dataset WS Non-WS Safe MA-Sound Sound
0 - 9 1668 1551(93%) 117(7%) 1647 1077 1133

10 - 19 910 692(76%) 218 (24%) 883 462 487
20 - 29 137 95(69%) 42(31%) 134 51 57
30 - 39 13 4 (27%) 9 (73%) 13 4 4
40 - 49 9 1(14%) 8 (86%) 9 3 3
50 - 59 1 0 (0%) 1 (100%) 1 0 0
60 - 69 0 0 0 0 0 0
70 - 79 2 0 (0%) 2 (100%) 2 0 0
0 - 79 2740 2342 (86%) 398 (14%) 2689 1597 1684

Table 1: Classification of the models in the BPM Academic Initiative repository.

of considering in our formalisation BPMN models with an arbitrary topology and, on
the other hand, the necessity of studying well-structuredness and the related properties.

Concerning safeness, it results that 2.689 models are safe. The classes that surely
cannot be neglected in our study, as they are suitable to model realistic scenarios, are
those with size 20-29, 30-39 and 40-49 including 156 models, of which only 3 are
unsafe. This makes evident that modelling safe models is part of the practice, and that
imposing well-structuredness is sometimes too restrictive, since there is a huge class of
models that are safe even if with an unstructured topology.

Concerning soundness, it results that there are 1.684 sound models. It results that
modelling in a sound way is a common practice, recognizing soundness as one of
the most important correctness criteria. Moreover, the data show that there are well-
structured models that are not sound this confirm the limitation of well-structuredness.
Concerning message-aware soundness, it results that the number of models satisfying
this property is 87 less than the sound ones. This highlights the relevance of a set of
models, up to now, not considered.

10 Concluding Remarks

Our study formally defines some important correctness properties, namely well-
structuredness, safeness, and soundness, both at process and collaboration level. We
demonstrate the relationships between the studied properties, with the aim of classify-
ing BPMN collaboration diagrams according to the properties they satisfy. Rather than
converting the BPMN model to a Petri or Workflow Net and studying relevant prop-
erties on the model resulting from the mapping we directly report such properties on
BPMN considering its complexity. In doing this the approach is based an uniform for-
mal framework and it is not limited to models of a specific topology, i.e., the models do
not need to be block-structured.

Specifically, we show that well-structured collaborations represent a subclass of safe
ones. In fact, there is a class of collaborations that are safe, even if with an unstructured
topology. We also show there are well-structured collaborations that are neither sound
nor message-aware sound. These models are typically discarded by the modelling ap-
proaches in the literature, as they are over suspected of carrying bugs. However, we

35

have shown that some of these models, hence they can play a significant role in prac-
tice. Finally, we demonstrate there are sound and message-aware sound collaborations
that are not safe. Resulting classification provide a novel contribution by extending the
reasoning from process to BPMN collaborations. Moreover, being close to the BPMN
standard give use to catch the language peculiarities as the asynchronous communica-
tion models, and the completeness notion distinguishing the effect of end event and the
terminate event.

References

1. Lindsay, A., Downs, D., Lunn, K.: Business processes—attempts to find a definition. Infor-
mation and Software Technology 45(15) (2003) 1015–1019

2. OMG: Business Process Model and Notation (BPMN V 2.0) (2011)
3. Suchenia, A., Potempa, T., Ligeza, A., Jobczyk, K., Kluza, K.: Selected Approaches Towards

Taxonomy of Business Process Anomalies. In: Advances in Business ICT: New Ideas from
Ongoing Research. Volume 658 of SCI. Springer (2017) 65–85

4. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models
in BPMN. Information and Software Technology 50(12) (2008) 1281–1294

5. Dumas, M., La Rosa, M., Mendling, J., Mäesalu, R., Reijers, H.A., Semenenko, N.: Un-
derstanding business process models: the costs and benefits of structuredness. In: CAISE.
Volume 7328 of LNCS. Springer (2012) 31–46

6. Polyvyanyy, A., García-Bañuelos, L., Dumas, M.: Structuring acyclic process models. In-
formation Systems 37(6) (2012) 518–538

7. Polyvyanyy, A., Garcia-Banuelos, L., Fahland, D., Weske, M.: Maximal Structuring of
Acyclic Process Models. The Computer Journal 57(1) (2014) 12–35

8. Polyvyanyy, A., Bussler, C.: The structured phase of concurrency. In: Information Systems
Engineering. Springer (2013) 257–263

9. Corradini et al., F.: Classification of BPMN Collaborations. Tech.Rep., University of
Camerino (2018) Available at: http://pros.unicam.it/documents/.

10. van der Aalst, W.M.: Workflow Verification: Finding Control-Flow Errors Using Petri-Net-
Based Techniques. In: Business Process Management, Models, Techniques, and Empirical
Studies. Volume 1806 of LNCS. Springer (2000) 161–183

11. van der Aalst, W., van Hee, K., ter Hofstede, A., Sidorova, N., Verbeek, H., Voorhoeve, M.,
Wynn, M.: Soundness of workflow nets: classification, decidability, and analysis. FAC 23(3)
(2011) 333–363

12. van der Aalst, W.M.: Process-oriented architectures for electronic commerce and interorga-
nizational workflow. Information Systems 24(8) (1999) 639–671

13. Murata, T.: Petri nets: Properties, analysis and applications. IEEE Proceedings 77(4) (1989)
541–580

14. Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Lectures on Petri Nets I: Basic
Models. Springer (1998) 12–121

15. Muehlen, M.z., Recker, J.: How Much Language Is Enough? Theoretical and Practical Use
of the Business Process Modeling Notation. In: Advanced Information Systems Engineering.
Volume 5074 of LNCS. Springer (2008) 465–479

16. Corradini, F., Ferrari, A., Fornari, F., Gnesi, S., Polini, A., Re, B., Spagnolo, G.O.: A guide-
lines framework for understandable BPMN models. Data Knowl. Eng. 113 (2018) 129–154

17. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On structured workflow modelling.
In: Seminal Contributions to Information Systems Engineering, 25 Years of CAiSE. Volume
9539 of LNCS. Springer (2000) 431–445

36

http://pros.unicam.it/documents/

18. van der Aalst, W.M.: Workflow Verification: Finding Control-Flow Errors Using Petri-Net-
Based Techniques. In: Business Process Management, Models, Techniques, and Empirical
Studies. Volume 1806 of LNCS. Springer (2000) 161–183

19. van der Aalst, W.M., van Hee, K.M., ter Hofstede, A.H., Sidorova, N., Verbeek, H.M.W.,
Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification, decidability, and
analysis. Formal Aspects of Computing 23(3) (2011) 333–363

20. van der Aalst, W.M.: Process-oriented architectures for electronic commerce and interorga-
nizational workflow. Information Systems 24(8) (December 1999) 639–671

21. El-Saber, N.A.: CMMI-CM compliance checking of formal BPMN models using Maude.
PhD thesis, Department of Computer Science (2015)

22. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management, Second Edition. Springer (2018)

23. OMG: Business Process Model and Notation (BPMN V 2.0) (2011)
24. Dehnert, J., Zimmermann, A.: On the suitability of correctness criteria for business process

models. In: BPM. Volume 3649 of LNCS. Springer (2005) 386–391
25. van der Aalst, W.M.: Structural characterizations of sound workflow nets. Computing Sci-

ence Reports 96(23) (1996) 18–22
26. van Hee, K., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve, M.: History-based joins:

Semantics, soundness and implementation. In: International Conference on Business Process
Management, Springer (2006) 225–240

27. Van der Aalst, W.M.: Verification of workflow nets. In: International Conference on Appli-
cation and Theory of Petri Nets, Springer (1997) 407–426

28. Favre, C., Völzer, H.: Symbolic execution of acyclic workflow graphs. Business Process
Management (2010) 260–275

29. Prinz, T.M.: Fast soundness verification of workflow graphs. In: ZEUS. Volume 1029 of
LNCS. Springer (2013) 31–38

30. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models
in BPMN. Information and Software Technology 50(12) (2008) 1281–1294

31. Kunze, M., Weske, M.: Behavioural Models - From Modelling Finite Automata to Analysing
Business Processes. Springer (2016)

32. Kheldoun, A., Barkaoui, K., Ioualalen, M.: Formal verification of complex business pro-
cesses based on high-level Petri nets. Information Sciences 385-386 (April 2017) 39–54

33. Ter Hofstede, A.: Workflow patterns: On the expressive power of (petri-net-based) workflow
languages. PhD thesis, University of Aarhus (2002)

34. Corradini, F., Polini, A., Re, B., Tiezzi, F.: An Operational Semantics of BPMN Collabora-
tion. In: FACS. Volume 9539 of LNCS., Springer (2015) 161 – 180

35. Corradini, F., Muzi, C., Re, B., Rossi, L., Tiezzi, F.: Global vs. Local Semantics of BPMN
2.0 OR-Join. In: 44th International Conference on Current Trends in Theory and Practice of
Computer Science. Volume 10706 of LNCS. Springer (2018) 321–336

36. Van Der Aalst, W.M.: The Application of Petri Nets to Workflow Management. Journal of
Circuits, Systems and Computers 08(01) (1998) 21–66

37. El-Saber, N., Boronat, A.: BPMN Formalization and Verification Using Maude. In: Work-
shop on Behaviour Modelling-Foundations and Applications, ACM (2014) 1–12

38. Decker, G., Dijkman, R., Dumas, M., García-Bañuelos, L.: Transforming BPMN diagrams
into YAWL nets. In: BPM. Volume 5240 of LNCS. Springer (2008) 386–389

39. Prandi, D., Quaglia, P., Zannone, N.: Formal Analysis of BPMN Via a Translation into
COWS. In: Coordination Models and Languages. Volume 5052 of LNCS. Springer (2008)
249–263

40. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. In: Foundations of
Software Technology and Theoretical Computer Science. Volume 761 of LNCS. Springer
(1993) 326–337

37

41. Mendling, J.: Detection and prediction of errors in EPC business process models. PhD thesis,
Wirtschaftsuniversität Wien Vienna (2007)

42. Roa, J., Chiotti, O., Villarreal, P.: A verification method for collaborative business pro-
cesses. In: International Conference on Business Process Management. Volume 99 of LNBIP.
Springer (2011) 293–305

38

11 Appendix: Correspondence

Graphical Representation Textual Notation

p P

eo

m

ei

m

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

ei

eo1

eo2

e4

m2

m3

m4

m

m

eo

ei

ei

ei

ei

ei

eo

eo

eo

startpeenb, eoq

p P

eo

m

ei

m

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

ei

eo1

eo2

e4

m2

m3

m4

m

m

eo

ei

ei

ei

ei

ei

eo

eo

eo

endpei, ecmpq
p P

eo

m

ei

m

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

ei

eo1

eo2

eo3

m2

m3

m4

m

m

eo

ei

ei

ei

ei

ei

eo

eo

eo

m

ei eo

m

ei eoP

startRcvpeenb,m, eoq

p P

eo

m

ei

m

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

ei

eo1

eo2

eo3

m2

m3

m4

m

m

eo

ei

ei

ei

ei

ei

eo

eo

eo

m

ei eo

m

ei eoP

endSndpei,m, ecmpq

p P

eo

m

ei

m

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

ei

eo1

eo2

e4

m2

m3

m4

m

m

eo

ei

ei

ei

ei

ei

eo

eo

eo

terminatepeiq

p P

eo

m

ei

m

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

ei

eo1

eo2

eo3

m2

m3

m4

m

m

eo

ei

ei

ei

ei

ei

eo

eo

eo

m

ei eo

m

ei eoP

eventBasedpei, pm1, eo1q, pm2, eo2q, pm3, eo3qq

p P

p P

e0

e0

m

ei

ei

m

ei

e1

e2

e3

e4

e1
query

e2

e3

e4

v1

v2

v3

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

m2

m3

m4

e1 e2

d1 d2 d3andSplitpe1, te2, e3, e4uq

p P

eo

m

ei

m

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

ei

eo1

eo2

e4

m2

m3

m4

m

m

eo

ei

ei

ei

ei

ei

eo

eo

eo

m

ei eo

m

ei eoP

xorSplitpe1, te2, e3, e4uq

p P

p P

e0

e0

m

ei

ei

m

ei

e1

e2

e3

e4

e1
query

e2

e3

e4

v1

v2

v3

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

m2

m3

m4

e1 e2

d1 d2 d3

andJoinpte1, e2, e3u, e4q

p P

p P

e0

e0

m

ei

ei

m

ei

e1

e2

e3

e4

e1
query

e2

e3

e4

v1

v2

v3

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

m2

m3

m4

e1 e2

d1 d2 d3

xorJoinpte1, e2, e3u, e4q

p P

eo

m

ei

m

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

ei

eo1

eo2

e4

m2

m3

m4

m

m

eo

ei

ei

ei

ei

ei

eo

eo

eo

taskpei, eoq

p P

eo

m

ei

m

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

ei

eo1

eo2

e4

m2

m3

m4

m

m

eo

ei

ei

ei

ei

ei

eo

eo

eo

taskRcvpei,m, eoq

p P

eo

m

ei

m

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

ei

eo1

eo2

e4

m2

m3

m4

m

m

eo

ei

ei

ei

ei

ei

eo

eo

eo

taskSndpei,m, eoq
´´ emptypei, eoq

p P

eo

m

ei

m

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

ei

eo1

eo2

e4

m2

m3

m4

m

m

eo

ei

ei

ei

ei

ei

eo

eo

eo

m

ei eo

m

ei eo

interRcvpei,m, eoq

p P

eo

m

ei

m

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

ei

eo1

eo2

e4

m2

m3

m4

m

m

eo

ei

ei

ei

ei

ei

eo

eo

eo

m

ei eo

m

ei eo interSndpei,m, eoq

p P

eo

m

ei

m

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

ei

eo1

eo2

e4

m2

m3

m4

m

m

eo

ei

ei

ei

ei

ei

eo

eo

eo

m

ei eo

m

ei eoP

subProcpei, P, eoq

p P

eo

m

ei

m

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

ei

eo1

eo2

e4

m2

m3

m4

m

m

eo

ei

ei

ei

ei

ei

eo

eo

eo

poolpp, P q
Here we reported the complete correspondence between the BPMN graphical notation and our
syntax. For the sake of presentation, join and split gateways include only three incoming/outgoing
branching respectively.

39

Appendix: Proofs

In this appendix we report the proofs of the results presented in the paper.

Lemma 1 Let P be a process, if isInitpP, σq then xP, σy is cs-safe.

Proof. Trivially, from definition of isInitpP, σq. By definition of isInitpP, σq, we have that
σpeenbq “ 1 where eenb P startpP q and @ e P EzstartpP q . σpeq “ 0, i.e. only the start event
has a marking and all the other edges are unmarked. Hence, we have that maxMarkingpP, σq ď
1, which allows us to conclude. [\

Lemma 2 Let isWSCorepP q, and let xP, σy be reachable and cs-safe process configuration, if
xP, σy

α
ÝÑ σ1 then xP, σ1y is cs-safe.

Proof. We proceed by induction on the structure of WSCore process elements.
Base cases: we show here only few interesting cases among the multiple base cases; since by
hypothesis N is WS, it can only be either a task or an intermediate event. Let us consider the
simple task, since all the other cases are similar. [\

– P “ taskpei, eoq. By hypothesis xP, σy is cs-safe, then maxMarkingpP, σq “

max pσpeiq, σpeoqq ď 1. The only rule that can be applied to infer the transition xP, σy α
ÝÑ

σ1 is P -Task . In order to apply the rule there must be 0 ă σpeiq; hence 0 ă σpeiq ď 1 ,
i.e. σpeiq “ 1. We can exploit the fact that xP, σy be is a reachable process configuration to
prove that σpeoq “ 0. The application of the rule produces σ1 “ xincpdecpσ, eiq, eoqy, i.e.
σpeiq “ 0 and σpeoq “ 1. Thus, maxMarkingpP, σ1q “ σpeoq. Since σpeoq “ 1 we have
that maxMarkingpP, σ1q ď 1, which allows us to conclude.

Inductive cases: we consider the following cases, the other are deal with similarly.

– Let us consider xandSplitpei, Eoq | P1 | . . . | Pn | andJoinpEi, eoq, σy. There are the
following possibilities:
‚ xandSplitpei, Eoq, σy evolves by means of rule P -AndSplit . We can exploit the fact

that this is a reachable well-structured process configuration to prove that σpeiq “
1 and @e P Eo .σpeq “ 0. Thus, xandSplitpei, Eoq, σy

ε
ÝÑ xincpdecpσ, eiq, Eoqy.

Hence, maxMarkingpandSplitpei, Eoq, σ
1
q “ 1. By hypostesis xandSplitpei, Eoq |

P1 | . . . | Pn | andJoinpEi, eoq, σy is cs-safe, i.e. if there is a token on the state
xandSplitpei, Eoq, σ

1
y all the other edges do not have token. This means that cs-safeness

is not affected. Therefore, the overall term is cs-safe.
‚ Node P1 | . . . | Pn evolves without affecting the split and join gateways. In this case

we can easily conclude by inductive hypothesis.
‚ Node P1 | . . . | Pn evolves and affects the split and/or join gateways. In this case we

can reason like in the first case, by relying on inductive hypothesis.
‚ xandJoinpEi, eoq, σy evolves by means of rule P-AndJoin . We can exploit the

fact that this is a reachable well-structure node to prove that @e P Ei .σpeq “
1 and σpeoq “ 0. Thus xandJoinpEi, eoq, σy

ε
ÝÑ xincpdecpσ,Eiq, eoqy. Hence,

maxMarkingpandJoinpEi, eoq, σ
1
q “ 1. By hypothesis xandJoinpEi, eoq | P1 |

. . . | Pn | andJoinpEi, eoq, σy is cs-safe, i.e. if there is a token on the state
xandJoinpEi, eoq, σ

1
y all the other edges do not have token. This means that cs-safeness

is not affected. Therefore, the overall term is cs-safe.
– Let us consider xorJoinpte2, e3u, e1q | P1 | P2 | xorSplitpe4, te5, e6uqwith inpP1q “ te1u,
outpP1q “ te4u, inpP2q “ te6u, outpP2q “ te2u

40

‚ xxorJoinpte2, e3u, e1q, σy evolves by means of rule P-XorJoin . We can exploit the
fact that this is a reachable well-structured process configuration to prove that the term
is marked σpe1q “ 0 and either σpe2q “ 1 or σpe3q “ 1; let us assume the mark-
ing is σpe3q “ 1 (since the other case is similar). Thus xxorJoinpte2, e3u, e1q, σy

ε
ÝÑ

xincpdecpσ, e2q, e1qy. Hence, maxMarkingpxorJoinpte2, e3u, e1q, σ
1
yq “ 1. By hy-

pothesis xxorJoinpte2, e3u, e1qσy is cs-safe, i.e. if there is a token on the state
xxorJoinpteu Y Ei, eoq, σ

1
y all the other edges do not have token. This means that

cs-safeness is not affected. Therefore, the overall term is cs-safe.
‚ Node P1 | P2 evolves without affecting the split and join gateways. In this case we can

easily conclude by inductive hypothesis.
‚ Node P1 | P2 evolves and affects the split xor join and xor split gateways. In this case

we can reason like in the first case, by relying on inductive hypothesis.
‚ xxorSplitpe4, te5, e6uq, σy evolves by means of rule P-XorSplit . We can exploit the

fact that this is a reachable well-structure node to prove that the term is marked ei-
ther as σpe4q “ 1. Hence, it evolves in a cs-safe term; in fact let us assume that
it evolves in this way xxorSplitpei, teu Y Eoq, σy

ei
ÝÑ xincpdecpσ, eiq, eqy. Hence,

maxMarkingpxorSplitpei, teu Y Eoq, σ
1
q “ 1. By hypostesis xxorJoinpte2, e3u, e1q |

P1 | P2 | xorSplitpe4, te5, e6uq, σy is cs-safe, i.e. if there is a token on the state
xxorSplitpe4, te5, e6uq, σ

1
y all the other edges do not have token. This means that cs-

safeness is not affected. Therefore, the overall term is cs-safe.
– Let us consider xP, σy “ xP1 | P2, σy. The relevant case for cs-safeness is

when P evolves by applying P -Int1 . We have that xP1 | P2, σy
α
ÝÑ σ1 with

xP1, σy
α
ÝÑ σ1. By definition of maxMarking function we have that maxMarkingpP, σq

= maxpmaxMarkingpP1, σq,maxMarkingpP2, σqq. By inductive hypothesis we have that
maxMarkingpP1, σq “ maxMarkingpP1, σ

1
q ď 1 which is cs-safe. Since P2 is well struc-

tured and cs-safe, then also xP2, σ
1
y is cs-safe, which permits us to conclude.

[\

Lemma 3 Let P be WS, and let xP, σy be a process configuration reachable and cs-safe, if
xP, σy

α
ÝÑ σ1 then xP, σ1y is cs-safe.

Proof. According to Definition 4, P can have 6 different forms. We proceed by case analysis on
the parallel component of xP, σy that causes the transition xP, σy α

ÝÑ σ1.

We show now the case P“ startpeenb, eoq || P
1
|| endpei, ecmpq.

– startpeenb, eoq evolves by means of the rule P-Start . In order to apply the rule there must
be σpeenblq ą 0, hence, by cs-safeness, σpeenblq “ 1. We can exploit the fact that this is
a reachable well-structured configuration to prove that σpeoq “ 0. The rule produces the
following transition xstartpeenb, eoq, σy

ε
ÝÑ xincpdecpσ, eenbq, eoqy where σpeenbq “ 0 and

σpeoq “ 1. Now, xP, σy “ xstartpeenb, eoq || P
1
|| endpei, ecmpq, σy can evolve only

through the application of P -Int1 producing xP, σ1y with σpinpP 1qq “ 1.
By hypothesis xP, σy is cs-safe, thus σpeiq ď 1, σpecmpq ď 1 and maxpσpedgespP 1qqq ď
1. Now maxMarkingpP 1, σq ď 1 and maxMarkingpP 1, σ1q ď 1. Therefore
maxMarkingpP, σ1q “ max p0, 1, σpinpP 1qq, σpoutpP 1qq, σpeiq, σpecmpqq ď 1, then
xP, σ1y is cs-safe.

– endpei, ecmpq evolves by means of the rule P-End . We can exploit the fact that this is
a reachable well-structured configuration to prove that the term is marked as σpeiq “ 1
and σpecmpq “ 0. The rule produces the following transition xendpei, ecmpq, σy

ε
ÝÑ

xincpdecpσ, eiq, ecmpqy. Now, xP, σy can only evolve by applying P -Int1 producing
xP, σ1y.

41

By hypothesis xP, σy is cs-safe, then σpeiq ď 1, σpecmpq ď 1 and P 1 is cs-safe. Reasoning
as previously we can conclude that xP, σ1y is cs-safe.

– P 1 moves, that is xP 1, σy α
ÝÑ σ1. By Lemma 2 xP 1, σ1y is safe, thus maxMarkingpP 1, σ1q ď

1. By hypothesis, P is cs-safe therefore maxMarkingpstartpeenb, eoq, σ
1
q ď 1,

maxMarkingpendpei, ecmpq, σ
1
q ď 1. We can conclude that xP, σ1y is safe.

Now we consider the case P“ startpeenb, eoq || P
1
|| terminatepeiq.

– The start event evolves: like the previous case.
– The end terminate event evolves: the only transition we can apply is P-Terminate . By ap-

plying the rule we havexterminatepeiq, σy
kill
ÝÝÑ decpσ, eiq with σpeiq ą 0. Now, xP, σy

can only evolve by applying P -Kill1 producing xP, σ1y where σ1 is completed unmarked;
therefore it is cs-safe.

– P 1 moves: similar to the previous case.
[\

Theorem 1 Let P be a process, if P is well-structured then P is safe.

Proof. We have to show that if xP, σy ÝÑ˚ σ1 then xP, σ1y is cs-safe. We proceed by induction
on the length n of the sequence of transitions from xP, σy to xP, σ1y.
Base Case (n “ 0): In this case σ “ σ1, then isInitpP, σ1q is satisfied. By Lemma 1 we conclude
xP, σ1y is cs-safe.
Inductive Case: In this case xP, σy ÝÑ˚

xP, σ2y
α
ÝÑ xP, σ1y for some process xP, σ2y. By in-

duction, xP, σ2y is cs-safe. By applying Lemma 3 to xP, σ2y α
ÝÑ xP, σ1y, we conclude xP, σ1y is

cs-safe. [\

Theorem 2 Let C be a collaboration, if C is well-structured then C is safe.

Proof. By contradiction, let us assume C is well-structured and C is unsafe. By Definition 8,
there exists a collaboration configuration xC, σ1, δ1y such that xC, σ, δy ÝÑ˚

xC, σ1, δ1y and
maxMarkingpC, σ1q ą 1 and xP, σ1y not cs-safe. Thus, there exists P in C such that
xP, σy ÝÑ˚

xP, σ1y. From hypothesis isInitpC, δq, we have isInitpP, σq. From hypothesis C
is well-structured, we have that P is WS. Therefore, by Theorem 1, P is safe. By Definition 7,
xP, σ1y is cs-safe, which is a contradiction. [\

Lemma 4 Let xP, σy be a reachable process configuration and isWSCorepP q, then there exists
σ1 such that xP, σy ÝÑ˚σ1 and isCompleteElpP, σ1q.

Proof. We proceed by induction on the structure of isWSCorepP q. Base cases: by definition of
isWSCorepq , P can only be either a task or an intermediate event; we show here only the case
in which it is a non communicating task, the other are dealt with similarly.

– P “ taskpei, eoq. The only rule we can apply is P-Task . In order to apply the rule there
must be σpeiq ą 0. Since isWSCorepP q, xP, σy is safe, hence σpeiq “ 1. Since the
process configuration is reachable we have σpeoq “ 0. The application of the rule produces
xtaskpei, eoq, σy

ε
ÝÑ xincpdecpσ, eiq, eoqy. Thus, we have σpeiq “ 0 and σpeoq “ 1, which

permits us to conclude.

Inductive cases: we consider one case, the other are dealt with similarly.

– Let us consider P “ xandSplitpei, Eoq | P1 | . . . | Pn | andJoinpEi, eoq, σy. There are the
following possibilities:

42

‚ xandSplitpei, Eoq, σy evolves by means of rule P -AndSplit . We can exploit the fact
that this is a reachable well-structured process configuration to prove that σpeiq “ 1
and @e P Eo .σpeq “ 0. Thus, xandSplitpei, Eoq, σy

ε
ÝÑ xincpdecpσ, eiq, Eoqy.

Now, P can evolve only through the application of P -Int1 producing xP, σ11y with
σ11pinpP1qq “ . . . “ σ2pinpPnqq “ 1. By inductive hypothesis there exists a state
σ11 such that isCompleteElpP1 | . . . | Pn, σ

1
1q. Now, P can only evolve by applying

rule P -Int1 , producing xP, σ12y with σ12pedgespEiqq “ 1. Now, xandJoinpEi, eoq, σ12y
can evolve by means of rule P -AndJoin . The application of the rule produces
xandJoinpEi, eoq, σy

ε
ÝÑ xincpdecpσ,Eiq, eoqy, i.e. σpeoq “ 1 and @e P Ei .σpeq “ 0.

This permits us to conclude.
‚ P1 | . . . | Pn evolves without affecting the split and join gateways. In this case we can

easily conclude by inductive hypothesis.
‚ P1 | . . . | Pn evolves and affects the split and/or join gateways. In this case we can

reason like in the first case
[\

Theorem 3 Let xP, σy be a WS process configuration, then xP, σy is sound.

Proof. According to Definition 4, P can have 6 different forms. We consider now the case P“
startpeenb, eoq || P

1
|| endpei, ecmpq.

Let us assume that isInitpP, σq. Thus we have that σpstartpP qq “ 1, and @ e P

edgespP qzstartpP q . σpeq “ 0. Therefore the only parallel component of P that can infer a
transition is the start event. In this case we can apply only the rule P -Start . The rule produces
the following transition, xstartpeenb, eoq, σy

ε
ÝÑ xincpdecpσ, eenbq, eoqy where σpeenbq “ 0 and

σpeoq “ 1. Now xP, σy can evolve through the application of rule P -Int1 producing xP, σ11y,
with σ11pinpP 1qq “ 1. Now P 1 moves. By hypothesis isWSCorepP 1q, thus by Lemma 4 there
exists a process configuration xP 1, σ12y such that xP, σy ÝÑ˚σ12 and isCompleteElpP 1, σ12q. The
process can now evolve thorough rule P -Int1 . By hypothesis the process is WS, thus, after the
application of the rule we obtain xstartpeenb, eoq || P 1 || endpei, ecmpq, σ13y, where σ13peiq “ 1
and @e P edgespP 1q . σ13peq “ 0. We can now apply rule P -End that decrements the token in ei
and produces a token in ecmp, which permits us to conclude. [\

Theorem 4 Let C be a collaboration, C is WS does not imply C is sound.

Proof. Let C be a WS collaboration, and let us suppose that C is sound. Then, it is sufficient to
show a counter example, i.e. a WS collaboration that is not sound. Let us consider, for instance,
the collaboration in Fig. 23. By Definition, the collaboration is WS. The soundness of the collab-
oration instead depends on the evaluation of the condition of the XOR-Split gateway in ORG A.
If a token is produced on the upper flow and Task A is executed then Task C in ORG B will never
receive the message and the AND-Join gateway can not be activated, thus the process of ORG B
can not complete its execution. [\

Theorem 5 Let C be a collaboration, C is WS does not imply C is message-aware sound.

Proof. Let C be a WS collaboration, and let us suppose that C is message-aware sound. Then, it
is sufficient to show a counter example, i.e. a WS collaboration that is not message-aware sound.
We can consider again the collaboration in Fig. 23. By reasoning as previously, the message-
aware soundness of the collaboration depends on the evaluation of the condition of the XOR-Split
gateway in ORG A. This permits us to conclude. [\

Theorem 6 Let C be a collaboration, C is unsafe does not imply C is unsound.

43

O
R

G
 A

O
R

G
 B

Task A

Task B

Task D

Task C

Fig. 23: An example of unsound collaboration with sound WS processes.

Proof. LetC be a unsafe collaboration, and let us suppose thatC is unsound. Then, it is sufficient
to show a counter example, i.e. a unsafe collaboration that is sound. We can consider the collabo-
ration in Fig. 24. Process in ORG A and ORG B are trivially unsafe, since the AND split gateway
produces two tokens that are then merged by the XOR join gateway producing two tokens on the
outgoing edge of the XOR join. By definition of safeness collaboration the considered collabora-
tion is unsafe. Concerning soundness, processes of ORG B and ORG A are sound. In fact, in each
process, after one token enables the terminate end event, the kill label is produced and the second
token in the sequence flow is removed (rule P-Terminate), permits the successfully termination
of the collaboration. Thus, the resulting collaboration is sound. [\

O
R

G
 A

O
R

G
 B

Task D

Task C

Task A

Task B

Fig. 24: An example of unsafe but sound collaboration.

Theorem 7 Let C be a collaboration, if all processes in C are safe then C is safe.

Proof. By contradiction let C be unsafe, i.e. there exists a collaboration xC, σ1, δ1y such that
xC, σ, δyÝÑ˚

xσ1, δ1y with poolpp, P q in C and xP, σ1y not cs-safe. By hypothesis all processes

of C are safe, hence it is safe the process, say P , of organisation p. As xC, σ1, δ1y results from the
evolution of xC, σ, δy, the process xP, σ1y must derive from xP, σy as well, that is xP, σyÝÑ˚σ1.

By safeness of P , we have that xP, σ1y is cs-safe, which is a contradiction. [\

Theorem 8 Let P be a process including a sub-process subProcpei, P1, eoq, if P1 is unsafe then
P is unsafe.

Proof. Let us suppose P “ subProcpei, P1, eoq || P2 By contradiction let P be safe, i.e.
given σ such that isInitpP, σq, for all σ1 such that xP, σyÝÑ˚σ1 we have that xP, σ1y is

cs-safe. By hypothesis P1 is unsafe, i.e. given σ11 such that isInitpP1, σ
1
1q, there exists σ12

44

such that xP1, σ
1
1yÝÑ

˚σ12 and xP1, σ
1
2y not cs-safe. Thus, we have maxMarkingpP1, σ

1
2q ě

1. By definition of function maxMarkingpq, we have that maxMarkingpP, σ12q “

maxpmaxMarkingpsubProcpei, P1, eoqq,maxMarkingpP2qq “ maxMarkingpP1, σ
1
2q ě 1.

Thus, P is not cs-safe, which is a contradiction. [\

Theorem 9 Let C be a collaboration, if all processes in C are unsound then C is unsound.

Proof. Let P1 and P2 be two unsound processes and let C be the collaboration obtained putting
together P1 and P2. By contradiction let C be sound, i.e., given σ and δ such that isInitpC, σ, δq,
for all σ1 and δ1 such that xC, σ, δyÝÑ˚

xσ1, δ1y we have that there exist σ2 and δ2 such that

xC, σ1, δ1yÝÑ˚
xσ2, δ2y, and @ P in C we have that xP, σ2y is cs-sound. Since P1 and P2 are

unsound, we have, for instance, that, given σ11, such that isInitpP1, σ
1
1q, for all σ12 such that

xP, σyÝÑ˚σ12 we have that there not exists σ13 such that xP, σ12yÝÑ˚σ13, and xP, σ13y is cs-sound.

Choosing xC, σ1, δ1y such that poolpp, P1q in C 1, by unsoundness of P1 we have that there exists
a process in C 1 that is not cs-sound, which is a contradiction. [\

Theorem 10 Let P be a process including a sub-process subProcpei, P1, eoq, if P1 is unsound
does not imply P is unsound.

Proof. Let P1 be a unsound, and let us suppose that P is unsound. Then, it is sufficient to show
a counter example, i.e. an sound process including an unsound sub-process. We can consider
process in Fig. 25. The process is unsound since when there is a token in the end event of ORG
A there is still a pending sequence token to be consumed. If we include the part of the model
generating multiple tokens in the scope of a sub-process, as it is shown in Fig. 26, that is when
the process includes a sub-process, the process is sound. In fact, when there is a token in the end
event of ORG A no other pending sequence token need to be processed. [\

O
R

G
 A

Task B

Task A

Task C

Soundness: NO
Safeness: NO
Message-Disregarding Sound: SI

there are Message Disregarding Sound collaboration that are not safe

there are Message Disregarding Sound collaboration that are not SOUND

Fig. 25: An example of unsound process.

O
R

G
 A

Task B

Task A

Task C

Soundness: NO
Safeness: NO
Message-Disregarding Sound: SI

there are Message Disregarding Sound collaboration that are not safe

there are Message Disregarding Sound collaboration that are not SOUND

Fig. 26: An example of sound process with unsound sub-processes.

45

	A Classification of BPMN Collaborations based on Safeness and Soundness Notions

