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Abstract

BPMN standard has a huge uptake in modelling business processes within the
same organisation or involving multiple ones. It results that providing a solid
foundation to enable BPMN designers to understand their models in a consistent
way is becoming more and more important. In our investigation we define and
exploit a formal characterisation of the collaborations’ semantics, specifically and
directly given for BPMN models, to provide their classification. In particular,
we refer to collaborations involving processes with arbitrary topology, thus over-
coming the well-structuredness limitations. The proposed classification is based
on some of the most important correctness properties in the business process do-
main, namely, safeness and soundness. We prove, with a uniform formal frame-
work, some conjectured and expected results and, most of all, we achieve novel
results for BPMN collaborations concerning the relationships between safeness
and soundness, and their compositionality, that represent major advances in the
state-of-the-art.

Keywords: Business Process Modelling, BPMN Collaboration, Operational
Semantics, Safeness, Soundness, Classification.

1. Introduction

Modern organisations recognise the importance of having tools to describe
how to behave in order to make sense of their complex reality to better achieve
their objective. This is generally reflected in a business process model that is char-
acterised as “a collection of related and structured activities undertaken by one or
more organisations in order to pursue some particular goal. [. . . ] Business pro-
cesses are often interrelated since the execution of a business process often results
in the activation of related business processes within the same or other organisa-
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tions” [1]. Up to now, several languages have been proposed to represent business
process models. The Object Management Group (OMG) standard Business Pro-
cess Model and Notation (BPMN) [2] is the most prominent language, since it is
widely accepted in both academia and industry. In particular, BPMN collabora-
tion models are used to describe distributed and complex scenarios where multiple
participants interact via messages exchange. It results that a BPMN collaboration
model gives both a global view on the messages exchange as well as a local view
on internal behaviour.

Eventhough widely accepted, BPMN’s major drawback is related to the pos-
sible misunderstanding of its execution semantics, defined by means of natural
text descriptions, sometimes containing misleading information [3]. To overcome
this issue, much effort has been devoted to formalise BPMN semantics by means
of mapping it to other formal languages. The most relevant attempt is the one
to Petri Nets provided by Dijkman et al. [4]. However, models resulting from a
mapping inherit constraints given by the target formal language and so far none
of them considers BPMN features such as different abstraction levels (i.e., collab-
oration, process, and sub-process), the asynchronous communication model, and
the notion of completion due to different types of end event (i.e., simple, message
throwing, and terminate).

Our investigation is based on a formal characterisation of the BPMN semantics
specifically given for collaboration models. It is used to formally define a classi-
fication of these BPMN collaboration models according to relevant properties of
the business process domain. It is worth noticing that our work aims at provid-
ing a classification specific for BPMN models. To this aim, our formal semantics
is directly defined on BPMN elements. Our intention is to introduce a unique
formal framework to allow BPMN designers to achieve a better understanding of
their models, and relative properties. This results in a systematic methodological
approach to improve the design of BPMN collaborations.

As a distinctive aspect, the proposed semantics supports models with arbitrary
topology, including of course also ‘well-structured’ ones [5]. This is necessary
to enable a classification of both structured and unstructured models with respect
to specific properties. Our choice to consider model with an arbitrary topology
is also motivated by the following reasons. Unstructured models can often be
studied via their transformation into their structured version at the cost of increas-
ing the model size [6]. However, this transformation is not always possible [7, 8].
Moreover, looking at the public repository of BPMN models provided by the BPM
Academic Initiative (http://bpmai.org) we noticed that unstructured mod-
els are largely used in practice, especially when the models size is significant (this
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is wider discussed at the end of the paper).
Regarding the considered properties, our classification relies on a well-known

class of properties in the domain of business process management, namely safe-
ness [9] and soundness [10, 11]. So far, despite the large body of work on this
topic, no formal definition of such properties directly given on BPMN is provided.
We reconcile in our single framework properties taken into account by different
languages, like Petri Nets [12], Workflow Nets [9], and Elementary Nets [13].
Studying different properties in the same framework does not leave any room for
ambiguity, and increases the potential for formal reasoning on their relationship.
Differently from other formal notations, our framework primitively allows to ex-
press important features of the BPMN notation, such as message passing and its
impact on soundness.

Hence, the main contribution of the paper is a classification of BPMN col-
laborations according to relevant properties of the domain. More in detail, we
prove that a well-structured collaboration is always safe, but the reverse does not
hold. Moreover, well-structuredness implies soundness only at the process level,
while there are well-structured collaborations that are not sound. Regarding the
relationships between soundness and safeness, we prove that soundness does not
imply safeness. Indeed, there are unsafe models that are sound. Similarly, sound
models are not necessarily safe.

Moreover, we study safeness and soundness compositionality in the domain of
business process modelling, and we show how specific BPMN element, namely
terminate event and sub-processes, can move certain BPMN models from one
class to another. To illustrate both our formal framework and the considered prop-
erties as well as relationships we rely on a running example concerning a travel
agency.

The rest of the paper is organised as follows. Sec. 2 provides background
notions on BPMN and the considered properties. Sec. 3 introduces a first insight
into the obtained results. Sec. 4 introduces the proposed formal framework, Sec. 5
provides the definition of properties, and Sec. 6 makes it clear the relationships
between these properties. Sec. 7 presents the study on safeness and soundness
compositionality. Finally, Sec. 8 discusses related works, and Sec. 9 concludes
the paper.

2. Background

In this section we first provide some basic notions on BPMN elements that
can be included in a collaboration diagrams. Then, we present a travel agency

3



scenario, used throughout the paper as a running example.

2.1. Basic Notions on BPMN
Here we do not aim to provide a complete presentation of the standard, but a

discussion of the main concepts of BPMN [2] we use in the following. Our choice
of the BPMN fragment is driven by practical aspects. Indeed, as shown in [14],
even if the BPMN specification is quite wide, only less than 20% of its vocabulary
is used regularly in designing business process models.
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Figure 1: Considered BPMN 2.0 elements.

In the following we report the BPMN elements we consider. They are briefly
described below and reported in Fig. 1. Pools are used to represent participants or
organisations involved in the collaboration, and include details on internal process
specifications. Connecting Edges are used to connect BPMN elements. Message
Edge is a dashed connector used to visualise communication flows between or-
ganisations, while Sequence Edge is a solid connector used to specify the internal
flow of the process, thus ordering elements in the same pool. Activities are used
to represent specific work to be performed within a process. In particular, a task
is an atomic activity which represents work that can not be interrupted. It can
be also used to send and receive messages. A sub-process represents work that
broken down to a finer level of detail. Gateways are used to manage the flow
of a process both for parallel activities and choices. Gateways act as either join
nodes (merging incoming sequence edges) or split nodes (forking into outgoing
sequence edges). Different types of gateways are available. A XOR gateway gives
the possibility to describe choices. In particular, a XOR-split gateway is used af-
ter a decision to fork the flow into branches. When executed, it activates exactly
one outgoing edge. A XOR-join gateway acts as a pass-through, meaning that it
is activated each time the gateway is reached. An AND gateway enables parallel
execution flows. An AND-split gateway is used to model the parallel execution
of two or more branches, as all outgoing sequence edges are activated simultane-
ously. An AND-join gateway synchronises the execution of two or more parallel
branches, as it waits for all incoming sequence edges to complete before trigger-
ing the outgoing flow. An Event-Based gateway is used after a decision to fork
the flow into branches according to external choice. Its outgoing branches activa-
tion depends on taking place of catching events. Basically, such events are in a
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race condition, where the first event that is triggered wins and disables the other
ones. Events are used to represent something that can happen. An event can be
a Start Event representing the point from which a process starts, an Intermediate
Event representing something that happens during process execution, or an End
Event representing the process termination. Events are drawn as circles. When an
event is source or target of a message edge, it is called Message Event. According
to the different kinds of message edge connections, we distinguish between: (i)
Start Message Event is a start event with an incoming message edge; the event
element catches a message and starts a process; (ii) Throw Intermediate Event is
an intermediate event with an outgoing message edge; the event element sends a
message; (iii) Catch Intermediate Event is an intermediate event with an incoming
message edge; the event element receives a message, (iv) End Message Event is
an end event with an outgoing message edge; the event element sends a message
and ends the process. We also refer to a particular type of end event, the Terminate
Event able to stop and abort the running process.

Finally, a key concept related to the BPMN process execution refers to the no-
tion of token. The BPMN standard states that “a token is a theoretical concept that
is used as an aid to define the behaviour of a process that is being performed” [2,
Sec. 7.1.1]. A token is commonly generated by a start event, traverses the se-
quence edges of the process and passes through its elements enabling their execu-
tion, and it is consumed by an end event when process completes. The distribution
of tokens in the process elements is called marking, therefore the process execu-
tion is defined in terms of marking evolution. In the collaboration, the process
execution also triggers message flow able to genere messages. We will refer them
as message flow token.
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Figure 2: BPMN collaboration model of a travel agency scenario.
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2.2. Travel Agency Collaboration Scenario
Considering some of the introduced BPMN elements we obtain the travel

agency scenario combining in a collaboration model the activities of a Customer
and a Travel Agency reported in Fig. 2.
Running Example (1/9). The Travel Agency continuously offers travels to the
Customer, until an offer is accepted. If the Customer is interested in one offer, she
decides to book the travel and refuses all the other offers that the Travel Agency
insistently proposes. As soon as the booking is received by the Travel Agency, it
sends back a confirmation message, and asks for the payment of the travel. When
this is completed the ticket is sent to the Customer, and the Travel Agency activi-
ties end. The processes of the Customer and of the Travel agency are represented
inside two pools. Considering the Customer pool, from left to right, we have that
as soon as the process starts, due to the presence of a start event, the Customer
checks the travel offer. This is done by executing a receiving task. Then, she
decides either to book the travel or to wait for other offers, by means of a cycle
composed of two XOR gateways. After the Customer finds the interesting offer,
she books the travel, by sending a message to the Travel Agency by executing
a sending task, and waits for the booking confirmation. As soon as she receives
the booking confirmation, through an intermediate receiving event, she pays the
travel, receives the ticket from the Agency and her specific works terminate by
means of an end event. Considering the work of the Travel Agency, as soon as its
process starts, it makes travel offers to the Customer, by means of a sending task,
until an offer is accepted. Thanks to the behaviour of the AND-split combined
with the XOR-join in a cycle, it continuously makes offers. At the same time, it
proceeds in order to receive a booking via an intermediate receiving event. Then,
it confirms the booking and sends a notification to the Customer. Finally, after
receiving the payment, it orders and sends the ticket, thus completing its activi-
ties by means of a terminate event which stops and aborts the running process,
including the offering of travels.

3. Classification Results

In this section, we informally introduce the considered properties and how our
classification advances the state of the art respect to other available classification
in the litterature. We also discuss how our framework enables a more precise
classification of the BPMN models considering language peculiarities.
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3.1. Well-structuredness, Safeness and Soundness for BPMN
Here, we introduce an informal definition of well-structuredness, safeness and

soundness for BPMN models, while their formalisation is provided in Section 5.
In particular, well-structuredness relates to the way the model elements are con-
nected with each other, while safeness and soundness relate to the way a process
model can be executed.

A BPMN proces model is well-structured, if for every split gateway there is a
corresponding join gateway such that the fragment of the model between the split
and the join forms a single-entry-single-exit process fragment (see Def. 4). The
notion is inspired by the one defined on WF-Net [5]. As an example, the process
in Fig. 3 is the well-structured version of the unstructured process in Fig. 4. It can
be extended to process collaborations (see Def. 5) requiring that processes of all
involved organisations are well-structured.

A BPMN process model is safe1, if during its execution no more than one
token occurs along the same sequence edge (see Def. 7). It is inspired by the
Petri Net formalisation where safeness means that the Petri Net does not contain
more than one token in all reachable markings [9]. Safeness property naturally
extends to process collaborations, considering that the collaboration execution has
no more than one token occur on the same sequence edge (see Def. 8).

A BPMN process model is sound, if once its execution starts, it is always
possible to reach a marking where either (i) each marked end event is marked by
at most one token and there are no other tokens around, or (ii) all edges are un-
marked (see Def. 10). Also soundness is inspired by the literature that since the
mid nineties presents several versions of soundness [9] [10] [11] [15]. The notion
can be extended to process collaborations (see Def. 11), reasoning on the whole
collaboration execution and requiring also that all sent messages are properly han-
dled (i.e. when sent are properlly received). Finally, at collaboration level we also
relax the soundness notion toward the message-relaxed version, inspired by [16],

1Notably, the notion of safeness is different from that of safety, since it is a standard term in
the BPM literature
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allowing pending messages (see Def. 12).

3.2. Advances with respect to already available classifications.
Differently from other classifications reasoning at the process level by means

of Workflow Nets [17] [18] and π-calculus [19], our study directly addresses
BPMN collaboration models. By relying on a uniform formal framework, we
achieved novel results are synthesized in the Euler diagram in Fig. 5, in particular
showing that:

(i) all well-structured collaborations are safe, but the reverse does not hold;

(ii) there are well-structured collaborations that are neither sound nor message-
relaxed sound;

(iii) there are sound and message-relaxed sound collaborations that are not safe.

Safe

Sound
Message-Relaxed

Sound Well - Structured

Figure 5: Classification of BPMN collaborations.

Result (i) demonstrates that well-structured collaborations represent a subclass
of safe collaborations. We also show that such relation is valid at process level,
where the classification relaxes the existing results on Workflow Nets, stating that
a process model to be safe has to be not only well-structured, but also sound [18].

Result (ii) shows that there are well-structured collaborations that are not
sound. This is also valid at the process level confirming results provided on Work-
flow Nets, where well-structuredness implies soundness [20], but relaxing the one
obtained in Petri Nets [17], where relaxed soundness and well-structuredness to-
gether imply soundness.

Results (i) and (ii) together confirm limits of well-structuredness as a correct-
ness criterion. Indeed, considering only well-structuredness is too strict, as some
safe and sound models that are not well-structured result discarded right from the
start.

Result (iii) shows that there are sound and message-relaxed sound collabora-
tions that are not safe. This can also be observed at process level resulting in a
novel contribution strictly related to the expressiveness of BPMN and its differ-
ences with respect to other workflow languages. In fact, Van der Aalst shows that
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soundness of a Workflow Net is equivalent to liveness and boundedness of the
corresponding short-circuited Petri Net [21]. Similarly, in workflow graphs and,
equivalently, free-choice Petri Nets, soundness can be characterized in terms of
two types of local errors, viz. deadlock and lack of synchronization: a workflow
graph is sound if it contains neither a deadlock nor a lack of synchronization [22]
[23]. Thus, a sound workflow is always safe. In BPMN instead there are unsafe
processes that are sound.

Summing up, result (i) together with result (ii) and (iii) are novel and influ-
enced also the reasoning at process level. This is mainly due to the effects of the
behaviour of the terminate event and sub-processes, impacting on the classifica-
tion of the models, both at the process and collaboration level, as shown in the
following.

3.3. Advance in Classifying BPMN Models
Our formalisation considers as first-class citizens BPMN specificities such

as: different levels of abstraction (collaboration, process and sub-process levels),
asynchronous communication models between pools and the completeness notion
able to distinguish the effect of end event from the one of terminate event.

Considering collaboration models, by means of our formalisation we can ob-
serve pools that exchange message flow tokens, while in each pool the execution
is rendered by the movements of the sequence flow tokens in the process. In this
setting, there is a clear difference between the notion of safeness directly defined
on BPMN collaborations with respect to that defined on Petri Nets and applied
to the Petri Nets resulting from the translation of BPMN collaborations. Safe-
ness of a BPMN collaboration only refers to tokens on the sequence edges of the
involved processes, while in its Petri Nets translation it refers to token both on
message and sequence edges. Indeed, such distinction is not considered in the
available mappings [4] [24], because a message is rendered as a (standard) to-
ken in a place. Hence, a safe BPMN collaboration, where the same message is
sent more than once (e.g., via a loop), is erroneously considered unsafe by relying
on the Petri Nets notion (i.e., 1-boundedness), because enqueued messages are
rendered as a place with more than one token. Therefore, the notion of safeness
defined for Petri Nets cannot be safely applied as it is to collaboration models.
Similarly, regarding the soundness property, we are able to consider different no-
tions of soundness according to the requirements we impose on message queues
(e.g., ignoring or not pending messages). Again, due to lack of distinction be-
tween message and sequence edges, these fine-grained reasoning are precluded
using the current translations from BPMN to Petri Nets.
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The study of BPMN models via the Petri Nets based frameworks has another
limitation concerning the management of the terminate event. Most of the avail-
able mappings, such as the ones in [24] and [25], do not consider the terminate
event, while in the one provided in [4], terminate events are treated as a spe-
cial type of error events, which however occur mainly on sub-processes, whose
translation assumes safeness. This does not allow reasoning on most models in-
cluding the terminate event, and more in general on all models including unsafe
sub-processes. Nevertheless, given the local nature of Petri Nets transitions, such
cancellation patterns are difficult to handle. This is confirmed in [26], stating that
modelling a vacuum cleaner, (i.e., a construct to remove all the tokens from a
given fragment of a net) is possible but results in a spaghetti-like model.

The ability of our formal framework to properly distinguish sequence flow
token and message flow tokens, together with our treatment of the terminate event
and sub-processes without any of the restrictions mentioned above, has led us to
provide a more precise classification of the BPMN models as synthesised by the
Euler diagrams in Fig. 6(a) and Fig. 6(b).

In particular, Fig. 6(a) underlines reasoning that can be done at process level on
soundness. Here it emerges how the terminate event can affect model soundness,
as using it in place of an end event may render sound a model that was unsound.
For example, let us consider the process in Fig. 7; it is a simple process that first
runs in parallel Task A and Task B, then executes two times Task C. According to
the proposed classification the model is unsound. In fact, there is a marking where
the end event has two tokens.
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Now, let us consider another model, obtained from the one in Fig. 7 by replac-
ing the end event with a terminate event. The resulting model is sound. This is
due to the behaviour of the terminate event that, when reached, removes all tokens
in the process. We underline that, although the two models are quite similar, in
terms of our classification they result to be significantly different.

Also the use of sub-processes can impact on the satisfaction of the soundness
property. Fig. 8 shows a simple process model where the unsound process in Fig. 7
is included in the sub-process. Notably, a sub-process is not syntactic sugar that
can be removed via a sort of macro expansion. Indeed, according to the BPMN
standard, a sub-process completes only when all the internal tokens are consumed,
and then just one token is propagated along the including process. Thus, it results
that the model in Fig. 8 is sound. Its behaviour would not correspond to that of
the process obtained by flattening it, as the resulting model is unsound. Notice,
this reasoning is not affected by safeness and in particular, it cannot be extended
to collaborations. In fact, as we discuss in Sec. 7, when we compose two sound
processes the resulting collaboration could be either sound or unsound.

Interesting situations also arise when focussing on the collaboration level, as
highlighted in Fig. 6(b). Worth to notice is the possibility to transform, with a
small change, an unsound collaboration into a sound one.

In Fig. 9, Fig. 10 and Fig. 11 we report a simple example showing the impact
of sub-processes. Also in this case the models are rather similar, but according
to our classification the result is completely different. The collaboration model in
Fig. 9 is both unsound and message-relaxed unsound since when ORG A there is
a configuration with two tokens on the end event and a pending message. Now
let consider another model obtained by Fig. 9 introducing a sub-process the re-
sulting collaboration in Fig. 10 is unsound and message-relaxed sound, since the
use of the sub-process mitigates the causes of message-relaxed unsoundness. In
fact there will be only the issue of a pending message, since Task C sends two
messages and only one will be consumed by Task D. Differently, Fig. 11 shows
that enclosing within a sub-process only the part of the model generating multiple
tokens we observe a positive effect on the soundness of the model. The collabo-
ration is both sound and message-relaxed sound.

4. Formal Framework

This section presents our BPMN formalisation. Specifically, we first present
the syntax and operational semantics we defined for a relevant subset of BPMN
elements. The direct semantics proposed in this paper is inspired by [27], but
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its technical definition is significantly different. In particular, configuration states
are here defined according to a global perspective, and the formalisation now in-
cludes sub-process elements, which were overlooked in the previous semantics
definition.

4.1. Syntax of BPMN Collaborations
To enable the formal treatment of collaborations’ semantics, we defined a

BNF syntax of their model structure (Fig. 12). In the proposed grammar, the
non-terminal symbols C and P represent Collaborations Structure and Processes
Structure, respectively. The two syntactic categories directly refer to the corre-
sponding notions in BPMN. The terminal symbols, denoted by the sans serif font,
are the typical elements of a BPMN model, i.e. pools, events, tasks, sub-processes
and gateways.

C ::“ poolpp, P q | C ||C

P ::“ startpeenb, eoq | endpei, ecmpq | startRcvpeenb,m, eoq | endSndpei,m, ecmpq

| terminatepeiq | eventBasedpei, pm1, eo1q, . . . , pmh, eohqq

| andSplitpei, Eoq | xorSplitpei, Eoq | andJoinpEi, eoq | xorJoinpEi, eoq

| taskpei, eoq | taskRcvpei,m, eoq | taskSndpei,m, eoq | emptypei, eoq

| interRcvpei,m, eoq | interSndpei,m, eoq | subProcpei, P, eoq | P ||P

Figure 12: Syntax of BPMN Collaboration Structures.
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It is worth noticing that our syntax is too permissive with respect to the BPMN
notation, as it allows to write collaborations that cannot be expressed in BPMN.
Limiting such expressive power would require to extend the syntax (e.g., by im-
posing processes having at least one end event), thus complicating the definition
of the formal semantics. However, this is not necessary in our work, as we are not
proposing an alternative modelling notation, but we are only using a textual rep-
resentation of BPMN models, which is more manageable for writing operational
rules than the graphical notation. Therefore, in our analysis we will only consider
terms of the syntax that are derived from BPMN models.

Intuitively, a BPMN collaboration model is rendered in our syntax as a collec-
tion of pools and each pool contains a process. More formally, a Collaboration C
is a composition, by means of operator || of pools of the form poolpp, P q, where:
p is the name that uniquely identifies the Pool; P is the Process included in the
specific pool, respectively.

In the following, m PM denotes a message edge, enabling message exchanges
between pairs of participants in the collaboration, while M P 2M. Moreover, m
denotes names uniquely identifying a message edge. We also observe e P E
denoting a sequence edge, while E P 2E a set of edges; we require |E| ą 1 when
it is used in joining and splitting gateways. Similarly, we require that an event-
based gateway should contain at least two message events, i.e. h ą 1 in each
eventBased term. For the convenience of the reader, we refer with ei to the edge
incoming in an element and with eo to the edge outgoing from an element. In
the edge set E we also include spurious edges denoting the enabled status of start
events and the completed status of end events, named enabling and completing
edges, respectively. In particular, we use edge eenb, incoming to a start event,
to enable the activation of the process, while ecmp is an edge outgoing from the
end events suitable to check the completeness of the process. They are needed to
activate sub-processes as well as to check their completion. Moreover, we have
that e denotes names uniquely identifying a sequence edge.

The correspondence between the syntax used here to represent a Process
Structure and the graphical notation of BPMN is as follows.

• startpeenb, eoq represents a start event that can be activated by means of the
enabling edge eenb and that has an outgoing edge eo.

• endpei, ecmpq represents an end event with an incoming edge ei and a com-
pleting edge ecmp.

• startRcvpeenb,m, eoq represents a start message event that can be activated
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by means of the enabling edge eenb as soon as a message m is received and
it has outgoing edge eo.

• endSndpei,m, ecmpq represents an end message event with incoming edge
ei, a message m to be sent, and a completing edge ecmp.

• terminatepeiq represents a terminate event with incoming edge ei.

• eventBasedpei, pm1, eo1q, . . . , pmh, eohqq represents an event based gateway
with incoming edge ei and a list of possible (at least two) message edges,
with the related outgoing edges that are enabled by message reception.

• andSplitpei, Eoq - resp. xorSplitpei, Eoq - represents an AND - resp. XOR
- split gateway with incoming edge ei and outgoing edges Eo.

• andJoinpEi, eoq - resp. xorJoinpEi, eoq - represents an AND - resp. XOR -
join gateway with incoming edges Ei and outgoing edge eo.

• taskpei, eoq represents a task with incoming edge ei and outgoing edge eo;
we can also observe taskRcvpei,m, eoq - resp. taskSndpei,m, eoq - to con-
sider a task receiving - resp. sending - a message m.

• interRcvpei,m, eoq (resp. interSndpei,m, eoq) represents an intermediate re-
ceiving - resp. sending - event with an incoming edge ei and an outgoing
edge eo that are able to receive - resp. sending - a message m.

• subProcpei, P, eoq represents a sub-process element with incoming edge ei
and outgoing edge eo. When activated, the enclosed sub-process P behaves
according to the elements it consists of, including nested sub-process ele-
ments (used to describe collaborations with a hierarchical structure).

• P1 || P2 represents a composition of elements in order to render a process
structure in terms of a collection of elements.

Moreover, to simplify the definition of well-structured processes (given later), we
include an empty task in our syntax. It permits to connect two gateways with a
sequence flow without activities in the middle.

In terms of collaboration the correspondence between the syntax and the
graphical notion is as follow.
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• poolpp, P q represents a pool element with a pool name p. When activated,
the enclosed P behaves according to the elements it consists of, including
nested process elements.

• C ||C represents a composition of elements in order to render a collaboration
structure in terms of a collection of elements.

To achieve a compositional definition, each sequence (resp. message) edge of
the BPMN model is split in two parts: the part outgoing from the source element
and the part incoming into the target element. The two parts are correlated since
edge names in the BPMN model are unique. To avoid malformed structure mod-
els, we only consider structures in which for each edge labeled by e (resp. m)
outgoing from an element, there exists only one corresponding edge labeled by e
(resp. m) incoming into another element, and vice versa.

Here in the following we define some auxiliary functions defined on the col-
laboration and the process structure. Considering BPMN collaborations they may
include one or more participants; function participantpCq returns the process
structures included in a given collaboration structure. Formally, it is defined as
follows.

participantpC1 || C2q “ participantpC1q Y participantpC1q

participantppoolpp, P qq “ P

Since we also consider process including nested sub-processes to refer to the en-
abling edges of the start events of the current level we resort to functions startpP q.

startpP1 || P2q “ startpP1q Y startpP2q

startpstartpe, e1qq “ teu startpstartRcvpe,m, e1qq “ teu

startpP q “ H for any element P ‰ startpe, e1q or P ‰ startRcvpe,m, e1q

Notably, we assume that each process/sub-process in the collaboration has only
one start event. Function startp¨q applied to C will return as many enabling edges
as the number of involved participants.

startpC1 || C2q “ startpparticipantpC1qq Y startpparticipantpC2qq

startppoolpp, P qq “ startpP q

We similarly define functions endpP q and endpCq on the structure of processes
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and collaborations in order to refer to end events in the current layer.

endpP1 || P2q “ endpP1q Y endpP2q

endpendSndpe,m, e1qq “ te1u endpendpe, e1qq “ te1u

endpP q “ H for any element P ‰ endpe, e1q or P ‰ endSndpe,m, e1q

Function endpCq on the collaboration structure is defined as follow.

endpC1 || C2q “ endpparticipantpC1qq Y endpparticipantpC2qq

endppoolpp, P qq “ endpP q

We also define function edgespP q to refer the edges in the scope of P .

edgespP1 || P2q “ edgespP1q Y edgespP2q

edgespstartpe, e1qq “ te, e1u

edgespendpe, e1qq “ te, e1u

edgespstartRcvpe,m, e1qq “ te, e1u

edgespendSndpe,m, e1qq “ te, e1u

edgespterminatepeqq “ teu

edgespeventBasedpe, pm1, e
1
1q, . . . , pmh, e

1
hqqq “ te, e

1
1, . . . , e

1
hu

edgespandSplitpe, e11, . . . , e
1
hqq “ te, e

1
1, . . . , e

1
hu

edgespxorSplitpe, e11, . . . , e
1
hqq “ te, e

1
1, . . . , e

1
hu

edgespandJoinpe1, . . . , eh, e
1qq “ te1, . . . , eh, e

1u

edgespxorJoinpe1, . . . , eh, e
1qq “ te1, . . . , eh, e

1u

edgesptaskpe, e1qq “ te, e1u

edgesptaskRcvpe,m, e1qq “ te, e1u

edgesptaskSndpe,m, e1qq “ te, e1u

edgespemptype, e1qq “ te, e1u

edgespinterRcvpe,m, e1qq “ te, e1u

edgespinterSndpe,m, e1qq “ te, e1u

edgespsubProcpe, P, e1qq “ te, e1u Y edgespP q
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Running Example (2/9). The BPMN model in Fig. 2 is expressed in our syntax as
the following collaboration structure (at an unspecified step of execution):

poolpCustomer, PCq || poolpTravelAgency, PTAq

with PC expressed as follows (process structure PTA is defined in a similar
way) where for simplicity we identify the edges in progressive order ei (with
i “ 0 . . . 10):

startpe0, e1q
|| xorJoinpte1, e3u, e2q || taskRcvpe2,Offer, e4q || xorSplitpe4, te3, e5uq
|| taskSndpe5,Travel, e6q || interRcvpe6,Confirmation, e7q
|| taskSndpe7,Payment, e8q || interRcvpe8,Ticket, e9q || endpe9, e10q

Moreover, considering functions we defined on the structure we have:
participantppoolpCustomer, PCq || poolpTravelAgency, PTAqq “ tPC , PTAu,
startpPCq “ te0u, and endpPCq “ te10u. Finally, edgespPCq “ te0, ..., e10u.
The others are defined in a similar way. l

Notice, the one-to-one correspondence between the syntax used here to represent
a BPMN model and the graphical notation of BPMN, that is exemplified by means
of (an excerpt of) our running example in Fig. 2, is also reported in detail in the
Appendix A.

4.2. Semantics of BPMN Collaborations
The syntax presented so far permits to describe the mere structure of a col-

laboration and a process. To describe their semantics we need to enrich it with a
notion of execution state, defining the current marking of sequence and message
edges. We use collaboration configuration and process configuration to indicate
these stateful descriptions.

Formally, a collaboration configuration has the form xC, σ, δy, where: C is a
collaboration structure; σ is the part of the execution state at process level, storing
for each sequence edge the current number of tokens marking it (notice it refers to
the edges included in all the processes of the collaboration), and δ is the part of the
execution state at collaboration level, storing for each message edge the current
number of message tokens marking it. Moreover, a process configuration has the
form xP, σy, where: P is a process structure; and σ is the execution state at process
level. Specifically, a state σ : EÑ N is a function mapping edges to a number of
tokens. The state obtained by updating in the state σ the number of tokens of the
edge e to n, written as σ ¨ te ÞÑ nu, is defined as follows: pσ ¨ te ÞÑ nuqpe1q returns
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n if e1 “ e, otherwise it returns σpe1q. Moreover, a state δ : M Ñ N is a function
mapping message edges to a number of message tokens; so that δpmq “ n means
that there are n messages of type m sent by a participant to another that have not
been received yet. Update for δ is defined in a way similar to σ’s definitions.

Given the notion of configuration, a collaboration is in the initial state when
each process it includes is in the initial state, meaning that the start event of
each process must be enabled, i.e. it has a token in its enabling edge, while all
other sequence edges (included the enabling edges for the activation of nested
sub-processes), and messages edges must be unmarked.

Definition 1 (Initial state of process). Let xP, σy be a process configura-
tion. Predicate isInitpP, σq holds, if σpstartpP qq “ 1, and @ e P

edgespP qzstartpP q . σpeq “ 0, then process configuration is initial if isInitpP, σq
holds.

Definition 2 (Initial state of collaboration). Let xC, σ, δy be a collaboration
configuration. Predicate isInitpC, σ, δq holds, if @ P P participantpCq we have
that isInitpP, σq, and @ m P M . δpmq “ 0, then a collaboration configuration is
initial if isInitpC, σ, δq holds.

Running Example (3/9). The initial configuration of the collaboration in Fig. 2 is
as follows. Given participantpCq “ tPC , PTAu, we have that xPC , σy, σpe0q “ 1
σpeiq “ 0 @ei with i “ 1 . . . 10, and xPTA, σy, σpe11q “ 1 and σpejq “ 0 @ej with
j “ 12..22. We also have that δpOffer,Confirmation,Ticket,Travel,Paymentq “
0. l

The operational semantics is defined by means of a labelled transition sys-
tem (LTS) on collaboration configuration and formalises the execution of message
marking evolution according to the process evolution. Its definition relies on an
auxiliary transition relation on the behaviour of process.

The auxiliary transition relation is a triple xP ,A,Ñy where: P , ranged
over by xP, σy, is a set of process configurations; A, ranged over by α, is a
set of labels (of transitions that process configurations can perform); and ÑĎ
P ˆ A ˆ P is a transition relation. We will write xP, σy α

ÝÑ xP, σ1y to indicate

that pxP, σy, α, xP, σ1yq PÑ and say that process configuration xP, σy performs
a transition labelled by α to become process configuration xP, σ1y. Since process
execution only affects the current states, and not the process structure, for the sake
of readability we omit the structure from the target configuration of the transition.
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Thus, a transition xP, σy α
ÝÑ xP, σ1y is written as xP, σy α

ÝÑ σ1. The labels used by
this transition relation are generated by the following production rules.

pActionsq α ::“ τ | !m | ?m pInternal Actionsq τ ::“ ε | kill

The meaning of labels is as follows. Label τ denotes an action internal to
the process, while !m and ?m denote sending and receiving actions, respectively.
The meaning of internal actions is as follows: ε denotes the movement of a token
through the process unless the termination action denoted by kill.

The transition relation over process configurations formalises the execution of
a process; it is defined by the rules in Fig. 13. Before commenting on the rules, we
introduce the auxiliary functions they exploit. Specifically, function inc : SˆEÑ
S (resp. dec : Sˆ EÑ S), where S is the set of states, allows updating a state by
incrementing (resp. decrementing) by one the number of tokens marking an edge
in the state. Formally, they are defined as follows: incpσ, eq “ σ ¨ te ÞÑ σpeq ` 1u
and decpσ, eq “ σ ¨ te ÞÑ σpeq ´ 1u. These functions extend in a natural ways to
sets of edges as follows: incpσ,Hq “ σ and incpσ, teuYEqq “ incpincpσ, eq, Eq;
the cases for dec are similar. As usual, the update function for δ are defined in a
way similar to σ’s definitions. We also use the function zero : S ˆ E Ñ S that
allows updating a state by setting to zero the number of tokens marking an edge
in the state. Formally, it is defined as follows: zeropσ, eq “ σ ¨ te ÞÑ 0u. Also
in this case the function extends in a natural ways to sets of edges as follows:
zeropσ,Hq “ σ and zeropσ, teu Y Eqq “ zeropzeropσ, eq, Eq.

To check the completion of a sub-process we exploit the boolean predicate
completedpP, σq. It is defined according to the prescriptions of the BPMN stan-
dard, which states that “a sub-process instance completes when there are no more
tokens in the Sub-Process and none of its Activities is still active” [2, pp. 426,
431]. Thus, the sub-process completion can be formalised as follows.

Definition 3. Let P be a process included in the sub-process, having the form
endpe, e1q || P 1 or endSndpe,m, e1q || P 1, or terminatepeq || P 1 the predicate
completedpP, σq is defined as

σpe1q ą 0^ σpeq “ 0^ isZeropP 1, σq

where isZerop¨q is inductively defined on the structure of its first argument as
follows:

• isZeropstartpe, e1q, σq if σpeq “ 0 and σpe1q “ 0;
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• isZeropendpe, e1q, σq if σpeq “ 0;

• isZeropstartRcvpe,m, e1qq if σpeq “ 0 and σpe1q “ 0;

• isZeropendSndpe,m, e1qq if σpeq “ 0;

• isZeropterminatepeq, σq if σpeq “ 0;

• isZeropeventBasedpe, pm1, e
1
1q, . . . , pmk, e

1
hqq, σq if σpeq “ 0

and @j P t1, ..., hu . σpe1jq “ 0;

• isZeropandSplitpe, Eq, σq if σpeq “ 0 and @e1 P E . σpe1q “ 0;

• isZeropxorSplitpe, Eq, σq if σpeq “ 0 and @e1 P E . σpe1q “ 0;

• isZeropandJoinpE, eq, σq if @e1 P E . σpe1q “ 0 and σpeq “ 0;

• isZeropxorJoinpE, eq, σq if @e1 P E . σpe1q “ 0 and σpeq “ 0;

• isZeroptaskpe, e1q, σq if σpeq “ 0 and σpe1q “ 0;

• isZeroptaskRcvpe,m, e1q, σq if σpeq “ 0 and σpe1q “ 0;

• isZeroptaskSndpe,m, e1q, σq if σpeq “ 0 and σpe1q “ 0;

• isZeropemptype, e1q, σq if σpeq “ 0 and σpe1q “ 0;

• isZeropinterRcvpe,m, e1q, σyq if σpeq “ 0 and σpe1q “ 0;

• isZeropinterSndpe,m, e1q, σq if σpeq “ 0 and σpe1q “ 0;

• isZeropsubProcpe, P, e1q, σq if σpeq “ σpe1q “ 0
and @e2 P edgespP q . σpe2q “ 0;

• isZeropP1||P2, σq if isZeropP1, σq and isZeropP2, σq.

Notably, the completion of a process does not depend on the exchanged messages,
and it is defined considering the arbitrary topology of the model, which hence may
have one or more end events with possibly more than one token in the completing
edges.

Finally, we use the function markedpσ,Eq to refer to the set of edges in E
with at least one token, which is defined as follows:

20



markedpσ, teu Y Eq “

#

teu Ymarkedpσ,Eq if σpeq ą 0;

markedpσ,Eq otherwise.

markedpσ,Hq “ H.

We now briefly comment on the operational rules in Fig. 13. Rule P -Start
starts the execution of a process/(sub-)process when it has been activated (i.e., the
enabling edge e is marked). The effect of the rule is to increment the number of to-
kens in the edge outgoing from the start event. Rule P -End is enabled when there
is at least one token in the incoming edge of the end event, which is then moved
to the completing edge. Rule P -StartRcv start the execution of a process when
it is in its initial state. The effect of the rule is to increment the number of tokens
in the edge outgoing from the start event and remove the token from the enabling
edge. A label corresponding to the consumption of a message is observed. Rule
P -EndSnd is enabled when there is at least a token in the incoming edge of the
end event, which is then moved to the completing edge. At the same time a label
corresponding to the production of a message is observed. Rule P -Terminate
starts when there is at least one token in the incoming edge of the terminate event,
which is then removed. Rule P -EventG is activated when there is a token in the
incoming edge and there is a message mj to be consumed, so that the application
of the rule moves the token from the incoming edge to the outgoing edge corre-
sponding to the received message. A label corresponding to the consumption of a
message is observed. Rule P -AndSplit is applied when there is at least one token
in the incoming edge of an AND split gateway; as result of its application the rule
decrements the number of tokens in the incoming edge and increments that in each
outgoing edge. Rule P -XorSplit is applied when a token is available in the incom-
ing edge of a XOR split gateway, the rule decrements the token in the incoming
edge and increment the token in one of the outgoing edges, non-deterministically
chosen. Rule P -AndJoin decrements the tokens in each incoming edge and in-
crements the number of tokens of the outgoing edge, when each incoming edge
has at least one token. Rule P -XorJoin is activated every time there is a token
in one of the incoming edges, which is then moved to the outgoing edge. Rule
P -Task deals with simple tasks, acting as a pass through. It is activated only
when there is a token in the incoming edge, which is then moved to the outgoing
edge. Rule P -TaskRcv is activated when there is a token in the incoming edge
and a label corresponding to the consumption of a message is observed. Simi-
larly, rule P -TaskSnd , instead of consuming, send a message before moving the
token to the outgoing edge. A label corresponding to the production of a message
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is observed. Rule P -InterRcv (resp. P -InterSnd ) follows the same behaviour
of rule P -TaskRcv (resp. P -TaskSnd ). Rule P -Empty simply propagates to-
kens, it acts as a pass through. Rules P -SubProcStart , P -SubProcEvolution,
P -SubProcEnd and P -SubProcKill deal with the behaviour of a sub-process ele-
ment. The former rule is activated only when there is a token in the incoming edge
of the sub-process, which is then moved to the enabling edge of the start event in
the sub-process body. Then, the sub-process behaves according to the behaviour
of the elements it contains according to the rules P -SubProcEvolution. When
the sub-process completes the rule P -SubProcEnd is activated. It removes all the
tokens from the sequence edges of the sub-process body2, and adds a token to the
outgoing edge of the sub-process. Rule P -SubProcKill deals with a sub-process
element observing a killing action in its behaviour due to an occurrence of Termi-
nate end event. This rule is activated only when there is a token in the incoming
edge of termination event by the rule P -Terminate. Then, the sub-process stops
its internal behaviours and passes the control to the upper layer, indeed the rule
removes all the tokens in the sub-process and adds a token to the outgoing edge
of the sub-process. Rule P -Kill deal with the propagation of killing action in the
scope of P and rule P -Int deal with interleaving in a standard way for process
elements. Notice that we do not need symmetric versions of the last two rules, as
we identify processes up to commutativity and associativity of process collection.

2Actually, due to the completion definition, only the completing edges of the end events within
the sub-process body need to be set to zero.
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xstartpe, e1q, σy
ε
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -Startq

xendpe, e1q, σy
ε
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -Endq

xstartRcvpe,m, e1q, σy
?m
ÝÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -StartRcvq

xendSndpe,m, e1q, σy
!m
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -EndSndq

xterminatepeq, σy
kill
ÝÝÑ decpσ, eq σpeq ą 0 pP -Terminateq

xeventBasedpe, pm1, e
1
1q, . . . , pmh, e

1
hqq, σy

?mj
ÝÝÑ

incpdecpσ, eq, e1jq
σpeq ą 0, 1 ď j ď hpP -EventGq

xandSplitpe, Eq, σy
ε
ÝÑ incpdecpσ, eq, Eq σpeq ą 0 pP -AndSplitq

xxorSplitpe, te1u Y Eq, σy
ε
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -XorSplitq

xandJoinpE, eq, σy
ε
ÝÑ incpdecpσ,Eq, eq @e1 P E . σpe1q ą 0 pP -AndJoinq

xxorJoinpteu Y E, e1q, σy
ε
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -XorJoinq

xtaskpe, e1q, σy
ε
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -Taskq

xtaskRcvpe,m, e1q, σy
?m
ÝÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -TaskRcvq

xtaskSndpe,m, e1q, σy
!m
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -TaskSndq

xinterRcvpe,m, e1q, σy
?m
ÝÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -InterRcvq

xinterSndpe,m, e1q, σy
!m
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -InterSndq

xemptype, e1q, σy
ε
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -Emptyq

xsubProcpe, P, e1q, σy
ε
ÝÑ incpdecpσ, eq, startpP qq

σpeq ą 0,
completedpP, σq

pP -SubProcStartq

xP, σy
α
ÝÑ σ1

pP -SubProcEvolutionq
xsubProcpe, P, e1q, σy

α
ÝÑ σ1

xsubProcpe, P, e1q, σy
ε
ÝÑ incpzeropσ, endpP qq, e1q completedpP, σq pP -SubProcEndq

xP, σy
kill
ÝÝÑ σ1

pP -SubProcKillq
xsubProcpe, P, e1q, σy

kill
ÝÝÑ incpzeropσ1, edgespP qq, e1q

xP1, σy
kill
ÝÝÑ σ1

pP -Killq
xP1 || P2, σy

kill
ÝÝÑ zeropσ1, edgespP1 || P2qq

xP1, σy
α
ÝÑ σ1 α ‰ kill

pP -Intq
xP1 || P2, σy

α
ÝÑ σ1

Figure 13: BPMN Semantics - Process Level.
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Now, the labelled transition relation on collaboration configurations formalises
the execution of message marking evolution according to process evolution. In
the case of collaborations, this is a triple xC,A,Ñy where: C, ranged over by
xC, σ, δy, is a set of collaboration configurations; A, ranged over by α, is a set
of labels (of transitions that collaboration configurations can perform as well as
the process configuration); and ÑĎ C ˆ A ˆ C is a transition relation. We will
write xC, σ, δy α

ÝÑ xC, σ1, δ1y to indicate that pxC, σ, δy, α, xC, σ1, δ1yq PÑ and

say that collaboration configuration xC, σ, δy performs transition labelled by α
to become collaboration configuration xC, σ1, δ1y. Since collaboration execution
only affects the current states, and not the collaboration structure, for the sake of
readability we omit the structure from the target configuration of the transition.
Thus, a transition xC, σ, δy α

ÝÑ xC, σ1, δ1y is written as xC, σ, δy α
ÝÑ xσ1, δ1y. We

recall α are the following: label τ denotes an action internal to the process, while
!m and ?m denote sending and receiving actions, respectively. The rules related to
the collaboration are defined in Fig. 14

xP, σy
τ
ÝÑ σ1

pC -Internalq
xpoolpp, P q, σ, δy

τ
ÝÑ xσ1, δy

xP, σy
?m
ÝÝÑ σ1 δpmq ą 0

pC -Receiveq
xpoolpp, P q, σ, δy

?m
ÝÝÑ xσ1, decpδ,mqy

xP, σy
!m
ÝÑ σ1

pC -Deliverq
xpoolpp, P q, σ, δy

!m
ÝÑ xσ1, incpδ,mqy

xC1, σ, δy
α
ÝÑ xσ1, δ1y

pC -Intq
xC1 || C2, σ, δy

α
ÝÑ xσ1, δ1y

Figure 14: BPMN Semantics - Collaboration Level.

The first three rules allow a single pool, representing organisation p, to evolve
according to the evolution of its enclosed process P . In particular, if P per-
forms an internal action, rule C-Internal, or a receiving/delivery action, rule C-
Receive/C-Deliver, the pool performs the corresponding action at collaboration
layer. Notably, rule C-Receive can be applied only if there is at least one message
available (premise δpmq ą 0); of course, one token is consumed by this transi-
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tion. Recall indeed that at process label ?m just indicates the willingness of a
process to consume a received message, regardless the actual presence of mes-
sages. Moreover, when a process performs a sending action, represented by a
transition labelled by !m, such message is delivered to the receiving organization
by applying rule C-Deliver. The resulting transition has the effect of increasing
the number of tokens in the message edge m. Rule C-Int permits to interleave
the execution of actions performed by pools of the same collaboration, so that if
a part of a larger collaboration evolves, the whole collaboration evolves accord-
ingly. Notice that we do not need symmetric versions of rule C-Int, as we identify
collaborations up to commutativity and associativity of pools collection.

5. Properties of BPMN Collaborations

In this section we provide a rigorous characterisation, with respect to the
BPMN formalisation presented so far, of the key properties studied in this work:
well-structuredness, safeness and soundness. We characterise these properties
both at process and collaboration levels.

5.1. Well-Structured BPMN Collaborations
The standard BPMN allows process models to have almost any topology.

However, it is often desirable that models abide some structural rules. In this re-
spect, a well-known property of a process model is that of well-structuredness. In
this paper we have been inspired by the definition of well-structuredness given by
Kiepuszewski et al. [5]. Such a definition was given on workflow models and it is
not expressive enough for BPMN, so we extend it to well-structured collaborations
including all the elements defined in our semantics (i.e. not only based element
included in workflow models but also event based gateway and sub-processes).

Before providing a formal characterisation of well-structured BPMN pro-
cesses and collaborations, we need to introduce some auxiliary definitions. In
particular, we inductively define functions inpP q and outpP q, which determine
the incoming and outgoing sequence edges of a process element P as follows:

25



inpstartpe, e1qq “ H outpstartpe, e1qq “ te1u
inpendpe, e1qq “ teu outpendpe, e1qq “ H
inpstartRcvpe,m, e1qq “ H outpstartRcvpe,m, e1qq “ te1u
inpendSndpe,m, e1qq “ teu outpendSndpe,m, e1qq “ H
inpterminatepeqq “ teu outpterminatepeqq “ H
inpandSplitpe, Eqq “ teu outpandSplitpe, Eqq “ E
inpxorSplitpe, Eqq “ teu outpxorSplitpe, Eqq “ E
inpandJoinpE, e1qq “ E outpandJoinpE, e1qq “ te1u
inpxorJoinpE, e1qq “ E outpxorJoinpE, e1qq “ te1u
inpeventBasedpe, pm1, e

1
1q, . . . , pmh, e

1
hqqq outpeventBasedpe, pm1, e

1
1q, . . . , pmh, e

1
hqqq

“ teu “ te1ju with 1 ă j ă h
inptaskpe, eqq “ teu outptaskpe, e1qq “ te1u
inptaskRcvpe,m, e1qq “ teu outptaskRcvpe,m, e1qq “ te1u
inptaskSndpe,m, eqq “ teu outptaskSndpe,m, e1qq “ te1u
inpemptype, e1qq “ teu outpemptype, e1qq “ te1u
inpinterRcvpe,m, e1qq “ teu outpinterRcvpe,m, e1qq “ te1u
inpinterSndpe,m, e1qq “ teu outpinterSndpe,m, e1qq “ te1u
inpsubProcpe, P1, e

1qq “ teu outpsubProcpe, P1, e
1qq “ te1u

inpP1 || P2q “ pinpP1q Y inpP2qq outpP1 || P2q “ poutpP1q Y outpP2qq

z poutpP1q Y outpP2qq z pinpP1q Y inpP2qq

Moreover, to simplify the definition of well-structuredness for processes, we
also provide the definition of well-structured core by means of the boolean predi-
cate isWSCorep¨q.
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Definition 4 (Well-structured processes). A process P is well-structured (WS)
if P has one of the following forms:

startpe, e1q || P 1 || endpe2, e3q (1)
startpe, e1q || P 1 || terminatepe2q (2)
startpe, e1q || P 1 || endSndpe2,m, e3q (3)

startRcvpe,m, e1q || P 1 || endpe2, e3q (4)
startRcvpe,m, e1q || P 1 || terminatepe2q (5)
startRcvpe,m, e1q || P 1 || endSndpe2,m, e3q (6)

where inpP 1q “ te1u, outpP 1q “ te2u, and isWSCorepP 1q.
isWSCorep¨q is inductively defined on the structure of its first argument as fol-
lows:

1. isWSCoreptaskpe, e1qq;
2. isWSCoreptaskRcvpe,m, e1qq;
3. isWSCoreptaskSndpe,m, e1qq;
4. isWSCorepemptype, e1qq;
5. isWSCorepinterRcvpe,m, e1qq;
6. isWSCorepinterSndpe,m, e1qq;

@j P r1..ns isWSCorepPjq, inpPjq Ď E, outpPjq Ď E 1

7. isWSCorepandSplitpe, Eq || P1 || . . . || Pn || andJoinpE 1, e2qq
8. isWSCorepxorSplitpe, Eq || P1 || . . . || Pn || xorJoinpE 1, e2qq

9.
@j P r1..ns isWSCorepPjq, inpPjq “ e1j, outpPjq Ď E

isWSCorepeventBasedpe, tpmj, e
1
jq|j P r1..nsuq || P1 || . . . | Pn || xorJoinpE, e2qq

10.

isWSCorepP1q, isWSCorepP2q,
inpP1q “ te

1u, outpP1q “ te
ivu,

inpP2q “ te
viu, outpP2q “ te

2u

isWSCorepxorJoinpte2, e3u, e1q || P1 || P2 || xorSplitpeiv, tev, eviuqq
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isWSCorepP 11q, inpP
1
1q “ te

2
u, outpP 11q “ te

3
u

11paq. isWSCorepsubProcpe, startpe1, e2q || P 11 || endpe3, eivq, evqq
11pbq. isWSCorepsubProcpe, startpe1, e2q || P 11 || terminatepe3q, eivqq
11pcq. isWSCorepsubProcpe, startpe1, e2q || P 11 || endSndpe3,m, eivq, evqq
11pdq. isWSCorepsubProcpe, startRcvpe1,m, e2q || P 11 || endpe3, eivq, evqq
11peq. isWSCorepsubProcpe, startRcvpe1,m, e2q || P 11 || terminatepe3q, eivqq
11pfq. isWSCorepsubProcpe, startRcvpe1,m, e2q || P 11 || endSndpe3,m, eivq, evqq

12.
isWSCorepP1q, isWSCorepP2q, outpP1q “ inpP2q

isWSCorepP1 || P2q

According to the definition 4, well-structured processes are given in the forms
(1-6), that is as a (core) process included between any possible combination of
different types of the start and end events included in the semantics. We allow a
start event or a start message event and one simple end event or terminate event
or end messege event. The (core) process between the start and end events can
be composed by any element up to the well-structured core definition. Any single
task or intermediate event is a well-structured core (cases 1-6); a composite pro-
cess starting with an AND (resp. XOR, resp. Event-based) split and closing with
an AND (resp. XOR, resp. XOR) join is well-structured core if each edge of the
split is connected to a given edge of the join by means of a well-structured core
processes (cases 7-9); a loop of sequence edges (e1 Ñ e4 Ñ e6 Ñ e2) formed
by means of a XOR split and a XOR join is well-structured core if the body of
the loop consists of well-structured core processes (case 10). Notably, only loops
formed by XOR gateways are well-structured. For a better understanding, cases
7 - 10 are graphically depicted in Fig. 15. A subprocess is well structure core
if it includes a well-structured core process (case 11). A process element collec-
tion is well-structured core if its processes are well-structured and sequentially
composed (case 12).

Well-structuredness can be also extended to collaborations, by requiring each
process involved in a collaboration to be well-structured.

Definition 5 (Well-structured collaborations). Let C be a collaboration,
isWS pCq is inductively defined as follows:

• isWS ppoolpp, P qq if P is well-structured;

• isWS pC1 || C2q if isWS pC1q and isWS pC2q.
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Figure 15: Well-structured nodes (cases 7-10).

Running Example (4/9). Considering the proposed running example and ac-
cording to the above definitions, process PC is well-structured, while process PTA
is not well-structured, due to the presence of the unstructured loop formed by the
XOR join and an AND split. Thus, the overall collaboration is not well-structured.

l

5.2. Safe BPMN Collaborations
A relevant property in business process domain is safeness, i.e the occurrence

of no more than one token along the same sequence edge during the process exe-
cution.

Before providing a formal characterisation of safeness BPMN processes and
collaborations, we need to introduce the auxiliary function maxMarkingp¨q that,
given a configuration xP, σy, determines the maximum number of tokens mark-
ing the sequence edges of elements in P according to the state σ (this function
relies on the standard function max p¨q returning the maximum in a list of natural
numbers).
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maxMarkingpstartpe, e1q, σq “ σpe1q
maxMarkingpendpe, e1q, σq “ σpeq
maxMarkingpstartRcvpe,m, e1q, σq “ σpe1q
maxMarkingpendSndpe,m, e1q, σq “ σpeq
maxMarkingpterminatepeq, σq “ σpeq
maxMarkingpandSplitpe, Eq, σq “ max pσpeq, σpe1q.@e1 P Eq
maxMarkingpxorSplitpe, Eq, σq “ max pσpeq, σpe1q.@e1 P Eq
maxMarkingpandJoinpE, eq, σq “ max pσpe1q.@e1 P E, σpeqq
maxMarkingpxorJoinpE, eq, σq “ max pσpe1q.@e1 P E, σpeqq
maxMarkingptaskpe, e1q, σq “ max pσpeq, σpe1qq
maxMarkingptaskRcvpe,m, e1q, σq “ max pσpeq, σpe1qq
maxMarkingptaskSndpe,m, e1q, σq “ max pσpeq, σpe1qq
maxMarkingpemptype, e1q, σq “ max pσpeq, σpe1qq
maxMarkingpinterRcvpe,m, e1q, σq “ max pσpeq, σpe1qq
maxMarkingpinterSndpe,m, e1q, σq “ max pσpeq, σpe1qq
maxMarkingpsubProcpe, P, e1q, σq “ max pσpeq,maxMarkingpP, σq, σpe1qq
maxMarkingpP1 || P2, σq “ max pmaxMarkingpP1, σq,maxMarkingpP2, σqq

maxMarkingp¨q can be also simply extended to collaborations xC, σy, to deter-
mine the maximum number of tokens marking the sequence edges of elements in
all the processes P included in the collaboration.

maxMarkingppoolpp, P q, σq “ maxMarkingpP, σq
maxMarkingpC1 || C2, σq “

max pmaxMarkingpparticipantpC1q, σq,maxMarkingpparticipantpC2q, σqq

We also need the following definition determining the safeness of a process in a
given state.

Definition 6 (Current state safe process). A process configuration xP, σy is cur-
rent state safe (cs-safe) if and only if maxMarkingpP, σq ď 1.

We can finally conclude with the definition of safe processes and collaborations
which requires that cs-safeness is preserved along the computations. Now, a pro-
cess (collaboration) is defined to be safe if it is preserved that the maximum mark-
ing does not exceed one along the process (collaboration) execution. We use ÝÑ˚

to denote the reflexive and transitive closure of ÝÑ.
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Definition 7 (Safe processes). A process P is safe if and only if, given σ such
that isInitpP, σq, for all σ1 such that xP, σyÝÑ˚σ1 we have that xP, σ1y is cs-safe.

Definition 8 (Safe collaborations). A collaboration C is safe if and only if,
given σ and δ such that isInitpC, σ, δq, for all for all σ1 and δ1 such that
xC, σ, δyÝÑ˚xσ1, δ1y we have that maxMarkingpC, σ1q ď 1.

Running Example (5/9). Let us consider again our running example depicted
in Fig. 2. Process PC is safe since there is not any process fragment capable of
producing more than one token. Process PTA instead is not safe. In fact, if task
Make Travel Offer is executed more than once, we would have that the AND split
gateway will produce more than one token in the sequence flow connected to the
Booking Received event. Thus, also the resulting collaboration is not safe. l

5.3. Sound BPMN Collaborations
Also soundness is considered as a relevant property. We defined it both at the

process and collaboration level. In a process it ensures that, if once its execution
starts with a token in the start event, it is always possible to reach one of these
scenarios. The first one (i) where all marked end events are marked exactly by
a single token and all sequence edges are unmarked. While the second (ii) when
no token are observed in the configuration (i.e. in the case of a token reaches
a terminate event). The definition extends to collaboration by considering the
combined execution of the included processes and taking into account that all the
messages are handled during the execution (i.e. no pending message tokens are
observed).

Definition 9 (Current state sound process). A process configuration xP, σy is
current state sound (cs-sound) if and only if one of the following hold:

(i) @ e P markedpσ,endpP qq . σpeq “ 1 and isZeropP, σq;

(ii) @ e P edgespP q . σpeq “ 0.

Definition 10 (Sound process). A process P is sound if and only if, given σ such
that isInitpP, σq, for all σ1 such that xP, σyÝÑ˚σ1 we have that there exists σ2 such

that xP, σ1yÝÑ˚σ2, and xP, σ2y is cs-sound.
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Definition 11 (Sound collaboration). A collaboration C is sound if and only
if, given σ and δ such that isInitpC, σ, δq, for all σ1 and δ1 such
that xC, σ, δyÝÑ˚xσ1, δ1y we have that there exist σ2 and δ2 such that

xC, σ1, δ1yÝÑ˚xσ2, δ2y, @ P in C we have that xP, σ2y is cs-sound, and @m P

M . δ2pmq “ 0.

Thanks to the expressibility of our formalisation to distinguish sequence to-
kens from message tokens we relax the soundness property by defining message-
relaxed soundness. It extends the usual soundness notion by considering sound
also those collaborations in which asynchronously sent messages are not handled
by the receiver.

Definition 12 (Message-relaxed sound collaboration). A collaboration C is
Message-relaxed sound if and only if, given σ and δ such that isInitpC, σ, δq,
for all σ1 and δ1 such that xC, σ, δyÝÑ˚xσ1, δ1y we have that there exist σ2 and δ2

such that xC, σ1, δ1yÝÑ˚xσ2, δ2y, and @ P in C we have that xP, σ2y is cs-sound.

Running Example (6/9). Let us consider again our running example. It is easily
to see that process PC is sound, since it is always possible to reach the end event
and when reached there is no token marking the sequence flows. Also process
PTA is sound, since when a token reaches the terminate event, all the other tokens
are removed from the edges by means of the killing effect. However, the resulting
collaboration is not sound. In fact, when a travel offer is accepted by the customer,
we would have that the AND-Split gateway will produce two tokens, one of which
re-activates the task Make Travel Offer. Thus, even if the process completes, the
message lists are not empty. However, the collaboration satisfied the message-
relaxed soundness property. l

6. Relationships among Properties

In this section we study the relationships among the considered properties both
at the process and collaboration level. In particular we investigate the relationship
between (i) well-structuredness and safeness, (ii) well-structuredness and sound-
ness, and (iii) safeness and soundness. The proofs of these results are reported in
the Appendix B.
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6.1. Well-structuredness vs. Safeness in BPMN
Considering well-structuredness and safeness we demonstrate that all well-

structured models are safe (Theorem 1), and that the vice versa does not hold.
To this aim, first we show that a process in the initial state is cs-safe (Lemma 1).
Then, we show that cs-safeness is preserved by the evolution of well-structured
core process elements (Lemma 2) and processes (Lemma 3). These latter two
lemmas rely on the notion of reachable processes/core elements of processes (that
is process elements different from start, end, and terminate events). In fact, the
syntax in Fig. 12 is too liberal, as it allows terms that cannot be obtained (by
means of transitions) from a process in its initial state. This last notion, in its own
turn, needs the definition of initial state for a core process element.

Definition 13 (Initial state of core elements in P ). Let P be a process, then
isInitElpP, σq is inductively defined on the structure of process P as follows:
isInitElptaskpe, e1q, σq if σpeq “ 1 and σpe1q “ 0
isInitElptaskRcvpe,m, e1q, σq if σpeq “ 1 and σpe1q “ 0
isInitElptaskSndpe,m, e1q, σq if σpeq “ 1 and σpe1q “ 0
isInitElpemptype, e1q, σq if σpeq “ 1 and σpe1q “ 0
isInitElpinterRcvpe,m, e1q, σq if σpeq “ 1 and σpe1q “ 0
isInitElpinterSndpe,m, e1q, σq if σpeq “ 1 and σpe1q “ 0
isInitElpandSplitpe, Eq, σq if σpeq “ 1 and @e1 P E . σpe1q “ 0
isInitElpxorSplitpe, Eq, σq if σpeq “ 1 and @e1 P E . σpe1q “ 0
isInitElpandJoinpE, eq, σq if @e1 P E . σpe1q “ 1 and σpeq “ 0
isInitElpxorJoinpE, eq, σq if De1 P E . σpe1q “ 1 and σpeq “ 0
isInitElpeventBasedpe, pm1, eo1q, . . . , pmk, eokqq, σq if σpeq “ 1

and @e1 P teo1, . . . , eoku . σpe
1q “ 0

isInitElpsubProcpe, P, e1qq if σpeq “ 1, σpe1q “ 0
and @e2 P edgespP q . σpe2q “ 0

isInitElpP1||P2, σq if @e P inpP1 || P2q : isInitElpgetElpe, P1 || P2qq

and @e P pedgespP1 || P2qzinpP1 || P2qq : σpeq “ 0

where getElpe, P q returns the element in P with incoming edge e:

• getElpe, taskpe1, e2qq “

"

taskpe1, e2q if e “ e1

ε otherwise

• getElpe, taskRcvpe1,m, e2qq “

"

taskRcvpe1,m, e2q if e “ e1

ε otherwise
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• getElpe, taskSndpe1,m, e2qq “

"

taskSndpe1,m, e2q if e “ e1

ε otherwise

• getElpe, emptype1, e2qq “

"

emptype1, e2q if e “ e1

ε otherwise

• getElpe, interRcvpe1,m, e2qq “

"

interRcvpe1,m, e2q if e “ e1

ε otherwise

• getElpe, interSndpe1,m, e2qq “

"

interSndpe1,m, e2q if e “ e1

ε otherwise

• getElpe, andSplitpe1, Eqq “

"

andSplitpe1, Eq if e “ e1

ε otherwise

• getElpe, andJoinpE, e1qq “

"

andJoinpE, e1q if e P E
ε otherwise

• getElpe, xorSplitpe1, Eqq “

"

xorSplitpe1, Eq if e “ e1

ε otherwise

• getElpe, xorJoinpE, e1qq “

"

xorJoinpE, e1q if e P E
ε otherwise

• getElpe, eventBasedpe1, pm1, e
2
1q, . . . , pmk, e

2
kqqq “

"

eventBasedpe1, pm1, e
2
1q, . . . , pmk, e

2
kqq if e “ e1

ε otherwise

• getElpe, subProcpe1, P, e2qq “

"

subProcpe1, P, e2q if e “ e1

ε otherwise

• getElpe, P1 || P2q “ getElpe, P1q, getElpe, P2q

Definition 14 (Reachable processes). A process configuration xP, σy is reach-
able if there exists a configuration xP, σ1y such that isInitpP, σ1q and xP, σ1y ÝÑ*σ.
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Figure 16: A safe BPMN collaboration not well-structured

Definition 15 (Reachable core process element). A process configuration
xP, σy is core reachable if there exists a configuration xP, σ1y such that
isInitElpP, σ1q and xP, σ1y ÝÑ*σ.

Lemma 1. Let P be a process, if isInitpP, σq then xP, σy is cs-safe.

Proof (sketch). Trivially, from definition of isInitpP, σq. l

Lemma 2. Let isWSCorepP q, and let xP, σy be a core reachable and cs-safe
process configuration, if xP, σy α

ÝÑ σ1 then xP, σ1y is cs-safe.

Proof (sketch). We proceed by induction on the structure of well-structured core
process elements. l

Lemma 3. Let P be WS, and let xP, σy be a process configuration reachable and
cs-safe, if xP, σy α

ÝÑ σ1 then xP, σ1y is cs-safe.

Proof (sketch). We proceed by case analysis on the structure of P , which is a WS
process (see Definition 4). l

Theorem 1. Let P be a process, if P is well-structured then P is safe.

Proof (sketch). We show that if xP, σy ÝÑ˚σ1 then xP, σ1y is cs-safe, by induction
on the length n of the sequence of transitions from xP, σy to xP, σ1y. l

The reverse implication of Theorem 1 is not true. In fact there are safe pro-
cesses that are not well-structured. The collaboration diagram represented in
Fig. 16 is an example. The involved processes are trivially safe, since there are
not fragments capable of generating multiple tokens; however they are not well-
structured.

We now extend the previous results to collaborations.

Theorem 2. Let C be a collaboration, if C is well-structured then C is safe.
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Proof (sketch). We proceed by contradiction. l

6.2. Well-structuredness vs. Soundness in BPMN
Considering the relationship between well-structuredness and soundness. We

prove that a well-structured process is always sound (Theorem 3), but there are
sound processes that are not well-structured. To this aim, first we show that a
reachable well-structured core process element can always complete its execution
(Lemma 4). This latter Lemma 4 is based on the auxiliary definition of the final
state of core elements in a process, given for all elements with the exception of
start and end events.

Definition 16 (Final state of core elements in P ). Let P be
a process, then isCompleteElpP, σq is inductively de-
fined on the structure of process P as follows:
isCompleteElptaskpe, e1q, σq if σpeq “ 0 and σpe1q “ 1
isCompleteElptaskRcvpe,m, e1q, σq if σpeq “ 0 and σpe1q “ 1
isCompleteElptaskSndpe,m, e1q, σq if σpeq “ 0 and σpe1q “ 1
isCompleteElpemptype, e1q, σq if σpeq “ 0 and σpe1q “ 1
isCompleteElpinterRcvpe,m, e1q, σq if σpeq “ 0 and σpe1q “ 1
isCompleteElpinterSndpe,m, e1q, σq if σpeq “ 0 and σpe1q “ 1
isCompleteElpandSplitpe, Eq, σq if σpeq “ 0 and @e1 P E . σpe1q “ 1
isCompleteElpxorSplitpe, Eq, σq if σpeq “ 0 and De1 P E . σpe1q “ 1

and @e2 P Eze1 . σpe2q “ 0
isCompleteElpandJoinpE, eq, σq if @e1 P E . σpe1q “ 0 and σpeq “ 1
isCompleteElpxorJoinpE, eq, σq if @e1 P E . σpe1q “ 0 and σpeq “ 1
isCompleteElpeventBasedpe, pm1, eo1q, . . . , pmk, eokqq, σq if σpeq “ 0

and De1 P teo1, . . . , eoku . σpe
1q “ 1

and @e2 P teo1, . . . , eokuze
1 . σpe2q “ 0

isCompleteElpsubProcpe, P, e1qq if σpeq “ 0, σpe1q “ 1
and @e2 P edgespP q . σpe2q “ 0

isCompleteElpP1||P2, σq if @e P outpP1 || P2q : isCompleteElpgetElpe, P1 || P2qq

and @e P pedgespP1 || P2qzoutpP1 || P2qq : σpeq “ 0

where getElpe, P q returns the element in P with outgoing edge e:

• getElpe, taskpe1, e2qq “

"

taskpe1, e2q if e “ e2

ε otherwise
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• getElpe, taskRcvpe1,m, e2qq “

"

taskRcvpe1,m, e2q if e “ e2

ε otherwise

• getElpe, taskSndpe1,m, e2qq “

"

taskSndpe1,m, e2q if e “ e2

ε otherwise

• getElpe, emptype1, e2qq “

"

emptype1, e2q if e “ e2

ε otherwise

• getElpe, interRcvpe1,m, e2qq “

"

interRcvpe1,m, e2q if e “ e2

ε otherwise

• getElpe, interSndpe1,m, e2qq “

"

interSndpe1,m, e2q if e “ e2

ε otherwise

• getElpe, andSplitpe1, Eqq “

"

andSplitpe1, Eq if e P E
ε otherwise

• getElpe, andJoinpE, e1qq “

"

andJoinpE, e1q if e “ e1

ε otherwise

• getElpe, xorSplitpe1, Eqq “

"

xorSplitpe1, Eq if e P E
ε otherwise

• getElpe, xorJoinpE, e1qq “

"

xorJoinpE, e1q if e “ e1

ε otherwise

• getElpe, eventBasedpe1, pm1, e
2
1q, . . . , pmk, e

2
kqqq “

"

eventBasedpe1, pm1, e
2
1q, . . . , pmk, e

2
kqq if e P te21, . . . , e

2
ku

ε otherwise

• getElpe, subProcpe1, P, e2qq “

"

subProcpe1, P, e2q if e “ e1

ε otherwise
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• getElpe, P1 || P2q “ getElpe, P1q, getElpe, P2q

Lemma 4. Let isWSCorepP q and let xP, σy be core reachable, then there exists
σ1 such that xP, σy ÝÑ˚σ1 and isCompleteElpP, σ1q.

Proof (sketch). We proceed by induction on the structure of well-structured core
process. l

Theorem 3. Let P be a WS process, then P is sound.

Proof (sketch). We proceed by case analysis. l

The reverse implication of Theorem 3 is not true. In fact there are sound
processes that are not well-structured; see for example the process represented in
Fig. 17. This process is surely unstructured, and it is also trivially sound, since
it is always possible to reach an end event without leaving tokens marking the
sequence flows.

Task D

Task CTask A

Task B
Figure 17: An example of sound process not Well-Structured.

However, Theorem 3 does not extend to the collaboration level. In fact, when
we put well-structured processes together in a collaboration, this could be either
sound or unsound. This is also valid for message-relaxed soundness.

Theorem 4. Let C be a collaboration, C is WS does not imply C is sound.

Proof (sketch). We proceed by contradiction. l

Theorem 5. Let C be a collaboration, C is WS does not imply C is message-
relaxed sound.

Proof (sketch). We proceed by contradiction. l
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6.3. Safeness vs. Soundness in BPMN
Considering the relationship between safeness and soundness. We demon-

strate that there are unsafe models that are sound. This is a peculiarity of BPMN,
faithfully implemented in our semantics, thank to its capability to support the ter-
minate end event and (unsafe) sub-processes. Let us first reason at process level
considering some examples.

Theorem 6. Let P be a process, P is unsafe does not imply P is unsound.

Proof (sketch). We proceed by contradiction. l

Let us consider now the collaboration level. We have that unsafe collabora-
tions could either sound or unsound, as proved by the following Theorem.

Theorem 7. Let C be a collaboration, C is unsafe does not imply C is unsound.

Proof (sketch). We proceed by contradiction. l

Running Example (7/9). Considering the collaboration in our running example,
Customer is both safe and sound, while the process of the Travel Agency is unsafe
but sound, since the terminate event permits a to reach a marking where all edges
are umarked. The collaboration is not safe, and it is also unsound but message-
relaxed sound, since there could be messages in the message lists.

7. Compositionality of Safeness and Soundness

In this section we study safeness and soundness compositionality, i.e. how the
behaviour of processes affects that of the entire resulting collaboration. In partic-
ular, we show the interrelationship between the studied properties at collaboration
and at process level. At process level we also consider the compositionality of sub-
processes, investigating how sub-processes behaviour impacts on the safeness and
soundness of process including them.

7.1. On Compositionality of Safeness
We show here that safeness is compositional, that is the composition of safe

processes always results in a safe collaboration.

Theorem 8. Let C be a collaboration, if all processes in C are safe then C is
safe.
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Figure 18: Safe collaboration with safe and unsafe processes.

Proof (sketch). We proceed by contradiction (see Appendix B). l

We also show that the unsafeness of a collaboration cannot be in general
determined by information about the unsafeness of the processes that compose it.
Indeed, putting together an unsafe process with a safe or unsafe one, the obtained
collaboration could be either safe or unsafe. Let us consider now some cases.

Running Example (8/9). In our example, the collaboration is composed by a safe
process and an unsafe one. In fact, focussing on the process of the Travel Agency,
we can immediately see that it is not safe: the loop given by a XOR join and an
AND split produces multiple tokens on one of the outgoing edges of the AND
split. Now, if we consider this process together with the safe process of Cus-
tomer, the resulting collaboration is not safe. Indeed, the XOR split gateway,
which checks if the offer is interesting, forwards only one token on one of the two
paths. As soon as a received offer is considered interesting, the Customer process
proceeds and completes. Thus, due to the lack of safeness, the travel agency will
continue to make offers to the customer, but no more offer messages arriving from
the Travel Agency will be considered by the customer. l

Example 1. Another example refers to the case in which a collaboration com-
posed by a safe process and an unsafe one results in a safe collaboration, as
shown in Fig. 18. If we focus only on the process in ORG B we can immediately
notice that it is not safe: again the loop given by a XOR join and an AND split
produces multiple tokens on the same edge. However, if we consider this process
together with the safe process of ORG A, the resulting collaboration is safe. In
fact, task D receives only one message, producing a token that is successively split
by the AND gateway. No more message arrives from the send task, so, although
there is a token is blocked, we have no problem of safeness. l
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Figure 20: Unsafe collaboration with unsafe processes.

Example 2. In Fig. 19 we have two unsafe processes, since each of them contains
a loop capable of generating an unbounded number of tokens. However, if we
consider the collaboration obtained by the combination of these processes, it turns
out to be safe. Indeed, as in the previous example, tasks C and B are executed
only once, as they receive only one message. Thus, the two loops are blocked and
cannot effectively generate multiple tokens. l

Example 3. Also the collaboration in Fig. 20 is composed by two unsafe pro-
cesses: process in ORG A contains an AND split followed by a XOR join that
produces two tokens on the outgoing edge of the XOR gateway; process in ORG
B contains the same loop as in the previous examples. In this case the collabora-
tion composed by these two processes is unsafe. Indeed, the XOR join in ORG A
will effectively produce two tokens since the sending of task B is not blocking. l

Let us now to consider processes including sub-processes. We show that the
composition of unsafe sub-processes always results in un-safe processes, but the
vice versa does not hold. There are also un-safe processes including safe sub-
process when the unsafeness does not depend from the behaviour of the sub-
process.
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Theorem 9. Let P be a process including a sub-process subProcpei, P1, eoq, if P1

is unsafe then P is unsafe.

Proof (sketch). We proceed by contradiction (see Appendix B). l

7.2. On Compositionality of Soundness
As well as for the safeness property, we show now that it is not feasible to de-

tect the soundness of a collaboration by relying only on information about sound-
ness of processes that compose it. However, the unsoundness of processes implies
the unsoundness of the resulting collaboration.

Theorem 10. Let C be a collaboration, if some processes in C are unsound then
C is unsound.

Proof (sketch). We proceed by contradiction (see Appendix B). l

On the other hand, when we put together sound processes, the obtained col-
laboration could be either sound or unsound, since we have also to consider mes-
sages. It can happen that either a process waits for a message that will never be
received or it receive more than the number of messages it is able to process. Let
us consider some examples.
Running Example (9/9). In our running example, the collaboration is composed
by two sound processes. In fact, the Customer process is well-structured, thus
sound. Focussing on the process of the Travel Agency, it is also sound since when
it completes the terminate end event aborts all the running activities and removes
all the tokens still present (more details will follow in Section 3). However, the
resulting collaboration is not sound, since the message lists could not be empty.
l

Example 4. In Fig. 21 we have a collaboration resulting from the composition of
two sound processes. If we focus only on the processes in ORG A and ORG B we
can immediately note that they are sound. However, the resulting collaboration
is not sound. In fact, for instance, if Task A is executed, Task C in ORG B will
never receive the message and the AND-Join gateway cannot be activated, thus
the process of ORG B cannot complete its execution. l

Example 5. Also the collaboration in Fig. 22 is trivially composed by two sound
processes. However, in this case also the resulting collaboration is sound. In fact,
Task E will always receive the message by Task B and the processes of ORG A
and ORG B can correctly complete. l
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Figure 22: Sound collaboration with sound processes.
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Let’s now to consider soundness in a multi-layer structure. We show that the
composition of unsound sub-processes does not results in un-sound processes.
There are also sound processes including unsound sub-process. In fact, when
we put unsound sub-process together in a process, this could be either sound or
unsound.

Theorem 11. Let P be a process including a sub-process subProcpei, P1, eoq, if
P1 is unsound does not imply P is unsound.

Proof (sketch). We proceed by contradiction (see Appendix B). l

8. Related Work

In this paper we provide a formal characterisation of well-structuredness
BPMN models. To do that we have been inspired by the definition of well-
structuredness given in [5]. Other attempts are also available in the literature. Van
der Aalst et al. [28] state that a workflow net is well-structured if the split/join
constructions are properly nested. El-Saber and Boronat [29] propose a formal
definition of well-structured processes, in terms of a rewriting logic, but they do
not extend this definition at collaboration level.

We then consider safeness, showing that this is a significant correctness prop-
erty. Dijkman et al. [4] discuss about safeness in Petri Nets resulting from the
translation of BPMN. In such work, safeness of BPMN terms means that no activ-
ity will ever be enabled or running more than once concurrently. This definition
is given using natural language, while in our work we give a precise characterisa-
tion of safeness for both BPMN processes and collaborations. Other approaches
introducing mapping from BPMN to formal languages, such as YAWL [30] and
COWS [31], do not consider safeness, even if it is recognised as an important
characteristic [32].

Moreover, soundness is considered as one of the most important correctness
criteria.

There is a jungle of other different notions of soundness in the literature, re-
ferring to different process languages and even for the same process language,
e.g. for EPC a soundness definition is given by Mendling in [33], and for Work-
flow Nets by van der Aalst [10] provides two equivalent soundness definitions.
However, these definitions cannot be used directly for BPMN because of its pe-
culiarities. In fact, although the BPMN process flow resembles to some extent the
behaviour of Petri Nets, it is not the same. BPMN 2.0 provides a comprehensive
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set of elements that go far beyond the definition of mere place/transition flows and
enable modelling at a higher level of abstraction.

Other studies try to characterize inter-organizational soundness are available.
A first attempt was done using a framework based on Petri Nets [11]. The authors
investigate IO-soundness presenting an analysis technique to verify the correct-
ness of an inter-organizational workflow. However, the study is restricted to struc-
tured models. Soundness regarding collaborative processes is also given in [34]
in the field of the Global Interaction Nets, in order to detect errors in technology-
independent collaborative business processes models. However, differently from
our work, this approach does not apply to BPMN, which is the modelling notation
aimed by our study. Concerning message-relaxed soundness, we have been moti-
vated by Puhlmann and Weske [16], who define interaction soundness, which in
turn is based on lazy soundness [19]. The use of a mapping into π-calculus, rather
than of a direct semantics, bases the reasoning on constrains given by the target
language. In particular, the authors refer to a synchronous communication model
not compliant with the BPMN standard. Our framework instead natively imple-
ments the BPMN communication model via an asynchronous approach. More-
over, the interaction soundness assumes structural soundness as a necessary con-
dition that we relax.

Therefore, our investigation of properties at collaboration level provides novel
insights with respect to the state-of-the-art of BPMN formal studies.

9. Concluding Remarks

Our study formally defines some important correctness properties, namely
well-structuredness, safeness, and soundness, both at the process and collabora-
tion level. We demonstrate the relationships between the studied properties, with
the aim of classifying BPMN collaboration diagrams according to the properties
they satisfy. Rather than converting the BPMN model to a Petri or Workflow Net
and studying relevant properties on the model resulting from the mapping we di-
rectly report such properties on BPMN considering its complexity. In doing this
the approach is based an uniform formal framework and it is not limited to models
of a specific topology.

Specifically, we show that well-structured collaborations represent a subclass
of safe ones. In fact, there is a class of collaborations that are safe, even if with
an unstructured topology. We also show there are well-structured collaborations
that are neither sound nor message-aware sound. These models are typically dis-
carded by the modelling approaches in the literature, as they are over suspected
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of carrying bugs. However, we have shown that some of these models, hence
they can play a significant role in practice. Finally, we demonstrate there are
sound and message-aware sound collaborations that are not safe. Resulting clas-
sification provide a novel contribution by extending the reasoning from process to
BPMN collaborations. Moreover, being close to the BPMN standard give use to
catch the language peculiarities as the asynchronous communication models, and
the completeness notion distinguishing the effect of end event and the terminate
event.
Relevance into Practice. To get a clearer idea of the impact of well-
structuredness, safeness, and soundness on the real-world modelling practice, we
have analyzed the BPMN 2.0 collaboration models available in a well-known,
public, well-populated repository provided by the BPM Academic Initiative
(http://bpmai.org). From the raw dataset, to avoid uncompleted models
and low quality ones, we have selected only those with 100% of connectedness
(i.e., all model elements are connected). This results on 2.740 models suitable
for our investigation. To better understand the trend in Table 1, the models are
grouped in terms of number of contained elements. From the technical point
of view, well-structuredness has been checked using the PromniCAT platform3,
while safeness and soundness have been checked using the S3 tool4.

We have found that 86% of models in the repository are well-structured. Any-
way, more interesting is the trend of the number of well-structured models with
respect to their size. It shows that in practice BPMN models starts to become
unstructured when their size grows. This means that structuredness should be
regarded as a general guideline but one can deviate from it if necessary, espe-
cially in modelling complex scenarios. The balancing between the two classes
motivates, on the one hand, our design choice of considering in our formalisation
BPMN models with an arbitrary topology and, on the other hand, the necessity of
studying well-structuredness and the related properties.

Concerning safeness, it results that 2.689 models are safe. The classes that
surely cannot be neglected in our study, as they are suitable to model realistic
scenarios, are those with size 20-29, 30-39 and 40-49 including 156 models, of
which only 3 are unsafe. This makes evident that modelling safe models is part of
the practice, and that imposing well-structuredness is sometimes too restrictive,
since there is a huge class of models that are safe even if with an unstructured

3https://github.com/tobiashoppe/promnicat
4http://pros.unicam.it/s3/
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Size Dataset WS Non-WS Safe MR-Sound Sound
0 - 9 1668 1551(93%) 117(7%) 1647 1077 1133

10 - 19 910 692(76%) 218 (24%) 883 462 487
20 - 29 137 95(69%) 42(31%) 134 51 57
30 - 39 13 4 (27%) 9 (73%) 13 4 4
40 - 49 9 1(14%) 8 (86%) 9 3 3
50 - 59 1 0 (0%) 1 (100%) 1 0 0
60 - 69 0 0 0 0 0 0
70 - 79 2 0 (0%) 2 (100%) 2 0 0
0 - 79 2740 2342 (86%) 398 (14%) 2689 1597 1684

Table 1: Classification of the models in the BPM Academic Initiative repository.

topology.
Concerning soundness, it results that there are 1.684 sound models. It results

that modelling in a sound way is a common practice, recognizing soundness as
one of the most important correctness criteria. Moreover, the data show that there
are well-structured models that are not sound this confirm the limitation of well-
structuredness. Concerning message-relaxed soundness, it results that the number
of models satisfying this property is 87 more than the sound ones. This highlights
the relevance of a set of models, up to now, not considered.
Future Work. We plan to continue our programme to effectively reason on the
whole set of of BPMN elements included in a collaborations. In particular, we
would like to check if the obtained results are still valid in an extended frame-
work.
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Appendix A. Correspondence
Here we reported the complete correspondence between the BPMN graphical notation
and our syntax. For the sake of presentation, join and split gateways include only three
incoming/outgoing branching respectively.
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Appendix B. Proofs

In this appendix we report the proofs of the results presented in the paper.

Lemma 1. Let P be a process, if isInitpP, σq then xP, σy is cs-safe.

Proof. Trivially, from definition of isInitpP, σq. By definition of isInitpP, σq, we have
that σpeq “ 1 where e P startpP q and @ e1 P EzstartpP q . σpe1q “ 0, i.e. only the
start event has a marking and all the other edges are unmarked. Hence, we have that
maxMarkingpP, σq ď 1, which allows us to conclude. l

Lemma 2. Let isWSCorepP q, and let xP, σy be a core reachable and cs-safe process
configuration, if xP, σy α

ÝÑ σ1 then xP, σ1y is cs-safe.

Proof. We proceed by induction on the structure of WSCore process elements.
Base cases: we show here only few interesting cases among the multiple base cases; since
by hypothesis isWSCorepP q, it can only be either a task or an intermediate event. Let us
consider the simple task, since all the other cases are similar. l

• P “ taskpe, e1q. By hypothesis xP, σy is cs-safe, then maxMarkingpP, σq “
max pσpeq, σpe1qq ď 1. The only rule that can be applied to infer the transi-
tion xP, σy α

ÝÑ σ1 is P -Task . In order to apply the rule there must be 0 ă

σpeq; hence 0 ă σpeq ď 1 , i.e. σpeq “ 1. We can exploit the fact that
xP, σy be is a core reachable configuration to prove that σpe1q “ 0. The ap-
plication of the rule produces σ1 “ xincpdecpσ, eq, e1qy, i.e. σ1peq “ 0 and
σ1pe1q “ 1. Thus, maxMarkingpP, σ1q “ σ1pe1q. Since σ1pe1q “ 1 we have
that maxMarkingpP, σ1q ď 1, which allows us to conclude.

Inductive cases: we consider the following cases, the other are deal with similarly.

• Let us consider xandSplitpe, Eq || P1 || . . . || Pn || andJoinpE
1, e1q, σy. There are

the following possibilities:

– xandSplitpe, Eq, σy evolves by means of rule P -AndSplit . We can exploit
the fact that this is a core reachable well-structured configuration to prove
that σpeq “ 1 and @e2 P E .σpe2q “ 0. Thus, xandSplitpe, Eq, σy ε

ÝÑ σ1 with
σ1 “ incpdecpσ, eq, Eq. Hence, maxMarkingpandSplitpe, Eq, σ1q “ 1. By
hypothesis xandSplitpe, Eq || P1 || . . . || Pn || andJoinpE

1, e1q, σy is cs-safe,
i.e. if @e2 P E .σ1pe2q “ 1, that is there is a token on the outgoing edges of
the AND-Split in the state xandSplitpe, Eq, σ1y, then all the other edges are
unmarked. This means that cs-safeness is not affected. Therefore, the overall
term is cs-safe.
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– Node P1 || . . . || Pn evolves without affecting the split and join gateways. In
this case we can easily conclude by inductive hypothesis.

– Node P1 || . . . || Pn evolves and affects the split and/or join gateways. In this
case we can reason like in the first case, by relying on inductive hypothesis.

– xandJoinpE1, e1q, σy evolves by means of rule P-AndJoin . We can exploit
the fact that this is a core reachable well-structured configuration to prove that
@e2 P E1 .σpe2q “ 1 and σpe1q “ 0. Thus xandJoinpE1, e1q, σy ε

ÝÑ σ1 with
σ1 “ incpdecpσ,E1q, e1q. Hence, maxMarkingpandJoinpE1, e1q, σ1q “ 1.
By hypothesis xandSplitpE, eq || P1 || . . . || Pn || andJoinpE

1, e1q, σy is cs-
safe, i.e. if there is a token on the outgoing edge of the AND-Join in the state
xandJoinpE1, e1q, σ1y all the other edges do not have tokens. This means that
cs-safeness is not affected. Therefore, the overall term is cs-safe.

• Let us consider xorJoinpte2, e3u, e1q || P1 || P2 || xorSplitpe4, te5, e6uq with
inpP1q “ te1u, outpP1q “ te4u, inpP2q “ te6u, outpP2q “ te2u

– xxorJoinpte2, e3u, e1q, σy evolves by means of rule P-XorJoin . We can
exploit the fact that this is a core reachable well-structured configuration
to prove that the term is marked σpe1q “ 0 and either σpe2q “ 1
or σpe3q “ 1; let us assume the marking is σpe3q “ 1 (since the
other case is similar). Thus xxorJoinpte2, e3u, e1q, σy

ε
ÝÑ σ1 with σ1 “

incpdecpσ, e2q, e1q. Hence, maxMarkingpxorJoinpte2, e3u, e1q, σ
1yq “ 1.

By hypothesis xxorJoinpte2, e3u, e1q, σy is cs-safe, i.e. if there is a token on
e1 in the state xxorJoinpte2, e3u, e1q, σ1y all the other edges do not have to-
ken. This means that cs-safeness is not affected. Therefore, the overall term
is cs-safe.

– Node P1 || P2 evolves without affecting the split and join gateways. In this
case we can easily conclude by inductive hypothesis.

– Node P1 || P2 evolves and affects the split xor join and xor split gateways. In
this case we can reason like in the first case, by relying on inductive hypoth-
esis.

– xxorSplitpe4, te5, e6uq, σy evolves by means of rule P-XorSplit . We
can exploit the fact that this is a core reachable well-structured config-
uration to prove that the term is marked as σpe4q “ 1. Hence, it
evolves in a cs-safe term; in fact let us assume that it evolves in this
way xxorSplitpe4, te5, e6uq, σy

ei
ÝÑ σ1 with σ1 “ incpdecpσ, e4q, e5q.

Hence, maxMarkingpxorSplitpe4, te5, e6uq, σ
1q “ 1. By hypothesis

xxorJoinpte2, e3u, e1q || P1 || P2 || xorSplitpe4, te5, e6uq, σy is cs-safe, i.e.
if there is a token on e5 in the state xxorSplitpe4, te5, e6uq, σ1y all the other
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edges do not have token. This means that cs-safeness is not affected. There-
fore, the overall term is cs-safe.

• Let us consider xP, σy “ xP1 || P2, σy. The relevant case for cs-safeness is when
P evolves by applying P -Int1 . We have that xP1 || P2, σy

α
ÝÑ σ1 with xP1, σy

α
ÝÑ

σ1. By definition of maxMarking function we have that maxMarkingpP, σq
= maxpmaxMarkingpP1, σq,maxMarkingpP2, σqq. By inductive hypothesis we
have that maxMarkingpP1, σq “ maxMarkingpP1, σ

1q ď 1 which is cs-safe.
Since P2 is well structured and cs-safe, then also xP2, σ

1y is cs-safe, which per-
mits us to conclude.

l

Lemma 3. Let P be WS, and let xP, σy be a process configuration reachable and cs-safe,
if xP, σy α

ÝÑ σ1 then xP, σ1y is cs-safe.

Proof. According to Definition 4, P can have 6 different forms. We proceed by case
analysis on the parallel component of xP, σy that causes the transition xP, σy α

ÝÑ σ1.

We show now the case P“ startpe, e1q || P 1 || endpe2, e3q.

• startpe, e1q evolves by means of the rule P-Start . In order to apply the rule there
must be σpeq ą 0, hence, by cs-safeness, σpeq “ 1. We can exploit the fact that this
is a reachable well-structured configuration to prove that σpe1q “ 0. The rule pro-
duces the following transition xstartpe, e1q, σy ε

ÝÑ σ11 with σ11 “ incpdecpσ, eq, e1q
where σ11peq “ 0 and σ11pe

1q “ 1. Now, xP, σ11y “ xstartpe, e1q || P 1 |
| endpe2, e3q, σ11y can evolve only through the application of P -Int1 producing
xP, σ1y with σ1pinpP 1qq “ 1.

By hypothesis xP, σy is cs-safe, thus σpe2q ď 1, σpe3q ď 1
and maxpσpedgespP 1qqq ď 1. Now maxMarkingpP 1, σq ď 1
and maxMarkingpP 1, σ1q ď 1. Therefore maxMarkingpP, σ1q “

max p0, 1, σ1pinpP 1qq, σ1poutpP 1qq, σ1pe2q, σ1pe3qq ď 1, then xP, σ1y is cs-
safe.

• endpe2, e3q evolves by means of the rule P-End . We can exploit the fact that
this is a reachable well-structured configuration to prove that the term is marked
as σpe2q “ 1 and σpe3q “ 0. The rule produces the following transition
xendpe2, e3q, σy

ε
ÝÑ xincpdecpσ, e2q, e3qy. Now, xP, σy can only evolve by ap-

plying P -Int1 producing xP, σ1y.

By hypothesis xP, σy is cs-safe, then σpe2q ď 1, σpe3q ď 1 and P 1 is cs-safe.
Reasoning as previously we can conclude that xP, σ1y is cs-safe.
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• P 1 moves, that is xP 1, σy
α
ÝÑ σ1. By Lemma 2 xP 1, σ1y is safe,

thus maxMarkingpP 1, σ1q ď 1. By hypothesis, P is cs-safe therefore
maxMarkingpstartpe, e1q, σ1q ď 1, maxMarkingpendpe2, e3q, σ1q ď 1. We can
conclude that xP, σ1y is safe.

Now we consider the case P“ startpe, e1q || P 1 || terminatepe2q.

• The start event evolves: like the previous case.

• The end terminate event evolves: the only transition we can apply is P-Terminate .
By applying the rule we havexterminatepe2q, σy

kill
ÝÝÑ decpσ, e2q with σpe2q ą 0.

Now, xP, σy can only evolve by applying P -Kill1 producing xP, σ1y where σ1 is
completed unmarked; therefore it is cs-safe.

• P 1 moves: similar to the previous case.

l

Theorem 1. Let P be a process, if P is well-structured then P is safe.

Proof. We have to show that if xP, σy ÝÑ˚ σ1 then xP, σ1y is cs-safe. We proceed by
induction on the length n of the sequence of transitions from xP, σy to xP, σ1y.
Base Case (n “ 0): In this case σ “ σ1, then isInitpP, σ1q is satisfied. By Lemma 1 we
conclude xP, σ1y is cs-safe.
Inductive Case: In this case xP, σy ÝÑ˚ xP, σ2y

α
ÝÑ xP, σ1y for some process xP, σ2y. By

induction, xP, σ2y is cs-safe. By applying Lemma 3 to xP, σ2y α
ÝÑ xP, σ1y, we conclude

xP, σ1y is cs-safe. l

Theorem 2. Let C be a collaboration, if C is well-structured then C is safe.

Proof. By contradiction, let us assume C is well-structured and C is unsafe. By Def-
inition 8, there exists a collaboration configuration xC, σ1, δ1y such that xC, σ, δy ÝÑ˚

xC, σ1, δ1y and maxMarkingpC, σ1q ą 1 and xP, σ1y not cs-safe. Thus, there exists P
in C such that xP, σy ÝÑ˚ xP, σ1y. From hypothesis isInitpC, δq, we have isInitpP, σq.
From hypothesis C is well-structured, we have that P is WS. Therefore, by Theorem 1,
P is safe. By Definition 7, xP, σ1y is cs-safe, which is a contradiction. l

Lemma 4. Let isWSCorepP q and let xP, σy be core reachable, then there exists σ1 such
that xP, σy ÝÑ˚σ1 and isCompleteElpP, σ1q.
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Proof. We proceed by induction on the structure of isWSCorepP q. Base cases: by defi-
nition of isWSCorepq , P can only be either a task or an intermediate event; we show here
only the case in which it is a non communicating task, the other are dealt with similarly.

• P “ taskpe, e1q. The only rule we can apply is P-Task . In order to apply the
rule there must be σpeq ą 0. Since isWSCorepP q, xP, σy is safe, hence σpeq “
1. Since the process configuration is core reachable we have σpe1q “ 0. The
application of the rule produces xtaskpe, e1q, σy ε

ÝÑ σ1 with σ1 “ incpdecpσ, eq, e1q.
Thus, we have σ1peq “ 0 and σ1pe1q “ 1, which permits us to conclude.

Inductive cases: we consider one case, the other are dealt with similarly.

• Let us consider P “ xandSplitpe, Eq || P1 || . . . || Pn || andJoinpE
1, e1q, σy. There

are the following possibilities:

– xandSplitpe, Eq, σy evolves by means of rule P -AndSplit . We can exploit
the fact that this is a core reachable well-structured configuration to prove
that σpeq “ 1 and @e2 P E .σpe2q “ 0. Thus, xandSplitpe, Eq, σy ε

ÝÑ

xincpdecpσ, eq, Eqy. Now, P can evolve only through the application of
P -Int1 producing xP, σ11y with σ11pinpP1qq “ . . . “ σ2pinpPnqq “ 1. By
inductive hypothesis there exists a state σ11 such that isCompleteElpP1 |

. . . | Pn, σ
1
1q. Now, P can only evolve by applying rule P -Int1 , pro-

ducing xP, σ12y with σ12pedgespE
1qq “ 1. Now, xandJoinpE1, e1q, σ12y can

evolve by means of rule P -AndJoin . The application of the rule produces
xandJoinpE1, e1q, σ2y

ε
ÝÑ σ13 with σ13 “ incpdecpσ12, E

1q, e1q, i.e. σ13pe
1q “ 1

and @e3 P E1 .σ13pe
3q “ 0. This permits us to conclude.

– P1 || . . . || Pn evolves without affecting the split and join gateways. In this
case we can easily conclude by inductive hypothesis.

– P1 || . . . || Pn evolves and affects the split and/or join gateways. In this case
we can reason like in the first case

l

Theorem 3. Let xP, σy be a WS process configuration, then xP, σy is sound.

Proof. According to Definition 4, P can have 6 different forms. We consider now the
case P“ startpe, e1q || P 1 || endpe2, e3q.

Let us assume that isInitpP, σq. Thus we have that σpstartpP qq “ 1, and @ eiv P
edgespP qzstartpP q . σpeivq “ 0. Therefore the only parallel component of P that can
infer a transition is the start event. In this case we can apply only the rule P -Start . The
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rule produces the following transition, xstartpe, e1q, σy ε
ÝÑ σ1 with σ1 “ incpdecpσ, eq, e1q

where σ1peq “ 0 and σ1pe1q “ 1. Now xP, σ1y can evolve through the application of
rule P -Int1 producing xP, σ11y, with σ11pinpP

1qq “ 1. Now P 1 moves. By hypothesis
isWSCorepP 1q, thus by Lemma 4 there exists a process configuration xP 1, σ12y such that
xP 1, σ11y ÝÑ

˚σ12 and isCompleteElpP 1, σ12q. The process can now evolve thorough rule
P -Int1 . By hypothesis the process is WS, thus, after the application of the rule we obtain
xstartpe, e1q || P 1 || endpe2, e3q, σ13y, where σ13pe

2q “ 1 and @ev P edgespP 1q . σ13pe
vq “ 0.

We can now apply rule P -End that decrements the token in ei and produces a token in
ecmp, which permits us to conclude. l

Theorem 4. Let C be a collaboration, C is WS does not imply C is sound.

Proof. Let C be a WS collaboration, and let us suppose that C is sound. Then, it is
sufficient to show a counter example, i.e. a WS collaboration that is not sound. Let us
consider, for instance, the collaboration in Fig. B.23. By Definition, the collaboration is
WS. The soundness of the collaboration instead depends on the evaluation of the condition
of the XOR-Split gateway in ORG A. If a token is produced on the upper flow and Task
A is executed then Task C in ORG B will never receive the message and the AND-Join
gateway can not be activated, thus the process of ORG B can not reach a marking where
the end event has a token. l
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Task A

Task B

Task D

Task C

Figure B.23: An example of unsound collaboration with sound WS processes.

Theorem 5. Let C be a collaboration, C is WS does not imply C is message-relaxed
sound.

Proof. Let C be a WS collaboration, and let us suppose that C is message-relaxed sound.
Then, it is sufficient to show a counter example, i.e. a WS collaboration that is not
message-relaxed sound. We can consider again the collaboration in Fig. B.23. By rea-
soning as previously, the message-relaxed soundness of the collaboration depends on the
evaluation of the condition of the XOR-Split gateway in ORG A. This permits us to con-
clude. l

Theorem 6. Let P be a collaboration, P is unsafe does not imply P is unsound.
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Proof. Let P be a unsafe collaboration, and let us suppose that P is unsound. Then, it
is sufficient to show a counter example, i.e. a unsafe collaboration that is sound. We
can consider the process in Fig. B.24. It is unsafe since the AND split gateway creates
two tokens that are then merged by the XOR join gateway producing two tokens on the
outgoing edge of the XOR join. However, after Task C is executed and one token enables
the terminate end event, the kill label is produced and the second token in the sequence
flow is removed (rule P-Terminate), rendering the process sound. l

Task A

Task B

Task C

Figure B.24: An example of unsafe but sound process.

Theorem 7. Let C be a collaboration, C is unsafe does not imply C is unsound.

Proof. Let C be a unsafe collaboration, and let us suppose that C is unsound. Then, it
is sufficient to show a counter example, i.e. a unsafe collaboration that is sound. We
can consider the collaboration in Fig. B.25. Process in ORG A and ORG B are trivially
unsafe, since the AND split gateway generates two tokens that are then merged by the
XOR join gateway producing two tokens on the outgoing edge of the XOR join. By
definition of safeness collaboration the considered collaboration is unsafe. Concerning
soundness, processes of ORG B and ORG A are sound. In fact, in each process, after one
token enables the terminate end event, the kill label is produced and the second token in
the sequence flow is removed (rule P-Terminate), resulting in a marking where all edges
are unmarked. Thus, the resulting collaboration is sound. l
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Figure B.25: An example of unsafe but sound collaboration.

Theorem 8. Let C be a collaboration, if all processes in C are safe then C is safe.
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Proof. By contradiction let C be unsafe, i.e. there exists a collaboration xC, σ1, δ1y such
that xC, σ, δyÝÑ˚xσ1, δ1y with poolpp, P q in C and xP, σ1y not cs-safe. By hypothesis
all processes of C are safe, hence it is safe the process, say P , of organisation p. As
xC, σ1, δ1y results from the evolution of xC, σ, δy, the process xP, σ1y must derive from
xP, σy as well, that is xP, σyÝÑ˚σ1. By safeness of P , we have that xP, σ1y is cs-safe,
which is a contradiction. l

Theorem 9. Let P be a process including a sub-process subProcpe, P1, e
1q, if P1 is un-

safe then P is unsafe.

Proof. Let us suppose P “ subProcpe, P1, e
1q || P2 By contradiction let P be safe, i.e.

given σ such that isInitpP, σq, for all σ1 such that xP, σyÝÑ˚σ1 we have that xP, σ1y is

cs-safe. By hypothesis P1 is unsafe, i.e. given σ11 such that isInitpP1, σ
1
1q, there exists σ12

such that xP1, σ
1
1yÝÑ

˚σ12 and xP1, σ
1
2y not cs-safe. Thus, we have maxMarkingpP1, σ

1
2q ě

1. By definition of function maxMarkingpq, we have that maxMarkingpP, σ12q “
maxpmaxMarkingpsubProcpe, P1, e

1qq,maxMarkingpP2qq “ maxMarkingpP1, σ
1
2q ě

1. Thus, P is not cs-safe, which is a contradiction. l

Theorem 10. Let C be a collaboration, if some processes in C are unsound then C is
unsound.

Proof. Let P1 and P2 be two processes such that P1 is unsound, and let C be the collabo-
ration obtained putting together P1 and P2. By contradiction let C be sound, i.e., given σ
and δ such that isInitpC, σ, δq, for all σ1 and δ1 such that xC, σ, δyÝÑ˚xσ1, δ1y we have that

there exist σ2 and δ2 such that xC, σ1, δ1yÝÑ˚xσ2, δ2y, and @ P in C we have that xP, σ2y

is cs-sound and @m P M . δ2pmq “ 0. Since P1 is unsound, we have that, given σ11, such
that isInitpP1, σ

1
1q, for all σ12 such that xP1, σyÝÑ

˚σ12 we have that does not exist σ13 such

that xP1, σ
1
2yÝÑ

˚σ13, and xP1, σ
1
3y is cs-sound. Choosing xC, σ1, δ1y such that poolpp, P1q

in C 1, by unsoundness of P1 we have that there exists a process in C 1 that is not cs-sound,
which is a contradiction. l

Theorem 11. Let P be a process including a sub-process subProcpe, P1, e
1q, if P1 is

unsound does not imply P is unsound.

Proof. Let P1 be a unsound, and let us suppose that P is unsound. Then, it is sufficient
to show a counter example, i.e. an sound process including an unsound sub-process. We
can consider process in Fig. B.26. The process is unsound since when there is a token in
the end event of ORG A there is still a pending sequence token to be consumed. If we
include the part of the model generating multiple tokens in the scope of a sub-process,
as it is shown in Fig. B.27, that is when the process includes a sub-process, the process
is sound. In fact, when there is a token in the end event of ORG A no other pending
sequence tokens need to be processed. l
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Task C

Soundness: NO
Safeness: NO
Message-Disregarding Sound: SI

there are Message Disregarding Sound collaboration that are not safe 

there are Message Disregarding Sound collaboration that are not SOUND 

Figure B.26: An example of unsound process.
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Soundness: NO
Safeness: NO
Message-Disregarding Sound: SI

there are Message Disregarding Sound collaboration that are not safe 

there are Message Disregarding Sound collaboration that are not SOUND 

Figure B.27: An example of sound process with unsound sub-process.
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