
Collaboration vs Choreography Conformance in
BPMN 2.0: from Theory to Practice

Flavio Corradini, Andrea Morichetta, Andrea Polini, Barbara Re, Francesco Tiezzi
University of Camerino, School of Science and Technology, Camerino, Italy

Abstract—The BPMN 2.0 standard is nowadays largely used to
model distributed informative systems in both academic and
industrial contexts. The notation makes possible to represent
these systems from different perspectives. A local perspec-
tive, using collaboration diagrams, to describe the internal
behaviour of each component of the systems, and a global
perspective, using choreography diagrams, where the inter-
actions between system components are highlighted without
exposing their internal structure. In this paper, we propose a
formal approach for checking conformance of collaborations,
representing possible system implementations, with respect
to choreographies, representing global constraints concerning
components’ interactions. In particular, we provide a direct
formal operational semantics for both BPMN collaboration and
choreography diagrams, and we formalise the conformance
concept by means of two relations defined on top of the
semantics. To support the approach into practice we have
developed the C4 tool. Its main characteristic is to make the
exploited formal methods transparent to systems designers,
thus fostering a wider adoption of them in the development
of distributed informative systems. We illustrate the benefits
of our approach by means of a simple, yet realistic, example
concerning a traveling scenario.

1. Introduction

Distributed informative systems are characterised by in-
teracting components that agree on communication patterns.
The OMG standard BPMN 2.0 [1] (in the following just
BPMN) is more and more adopted by academia and industry
as modelling language for these systems. This is mainly due
to its graphical notation and capability of describing systems
at different perspectives. In particular, a BPMN collabora-
tion diagram describes the implementation of each single
component, possibly deployed and managed by different
organizations, in terms of exchanged messages and internal
behaviour, while a BPMN choreography diagram provides
a global specification focusing on component interactions.

In such a setting organizations that are willing to cooper-
ate can refer to, possibly predefined, choreography specifica-
tions detailing how different parties should interact to reach
specific objectives. On the other hand involved organizations
can put in place the cooperation deploying software systems
behaving according to specific internal processes. The inte-
gration of such processes leads to the so called collaboration

that nevertheless should show a behaviour related to the
global specification. Indeed in this distributed setting, the
conformance of a given collaboration with respect to a pre-
established choreography is then crucial. This permits to
ensure that the system components are able to success-
fully collaborate without invalidating the communication
constraints imposed by the global specification. Despite the
effort devoted to the study of this concept in the general
context of service-oriented systems [2]–[7], there is a lack of
approaches and tools supporting the conformance checking
between collaboration and choreography models when the
BPMN notation is considered. The effects of this issue are
intensified in those contexts, such as the industrial ones,
where system designers are not familiar with formalisms
and verification techniques but are accustomed to standard
graphical notations like BPMN.

To fill this gap we provide in this paper a novel solution
for directly checking the conformance of BPMN collab-
orations with respect to BPMN choreography models
without using intermediate languages. Our approach is
based on a direct semantics describing the behaviour of
both models, taking into account the specificities of the
BPMN standard when used to model distributed systems
(e.g., asynchronous communication among components).
More specifically, the operational semantics associates to
each BPMN model a Labelled Transition System (LTS)
formally describing its behaviour. The conformance between
a collaboration and a choreography thus boils down to
compare their LTSs according to behavioural relations. In
particular, we rely on a conformance relation (based on
bisimulation [8, Sec. 5]) that is sensitive to deadlocks and
different forms of non-determinism, and on another relation
(based on traces [8, Sec. 9.4]) that is relaxed on this respect.
These relations allow the system designer to find the desired
tradeoff between the strength of the properties ensured by
the system and the breadth of choice among available system
components.

The proposed theoretical framework has been imple-
mented as the C

4 (Collaboration vs Choreography Con-
formance Checker for BPMN) tool. It uses standard input
formats for the BPMN models, thus enabling the interoper-
ability with external BPMN modelling environments (e.g.,
Camunda, Signavio and Eclipse BPMN2 Modeler), hence
permitting the systems designer to use the preferred one. It
results that the usage of the underlying formal methods
are completely transparent to the system designer, which

This is a post-print of the original paper to appear in Proc. 22nd IEEE Enterprise Distributed Object Computing Conference (EDOC 2018),
Stockholm, Sweden, Oct. 16-19, 2018; © 2018 IEEE.

is our driving objective. Summing up, the major contribu-
tions of this paper is threefold: (i) the definition, and the
Java implementation, of a formal operational semantics for
BPMN collaborations and choreographies; (ii) the definition,
and implementation, of two conformance relations; (iii) the
implementation of the C

4 tool supporting our conformance
checking solution.

The rest of the paper is organised as follows. Section 2
motivates our work detailing its differences in comparison
to related works. Section 3 provides background notions on
BPMN choreographies and collaborations, together with a
running example. Section 4 introduces formal syntax and
semantics both for choreographies and collaborations, while
Section 5 defines conformance relations. Section 6 presents
the C

4 tool and illustrates its usage in practice. Section 7
concludes the paper and discusses directions for future work.

2. Related Works
To clarify how the proposed approach advances the state

of the art here we relate the distinctive aspects of our work
to the literature.
On the Choice of the Modelling Notation. A lot of effort
[2]–[7] has been devoted by the research community in
the past few years to study modelling languages for col-
laborations (e.g., the OASIS standard WS-BPEL [9]) and
choreographies (e.g., the W3C standard WS-CDL [10]).
However, more recently the focus of this study is shifting
towards the OMG standard BPMN [1]. Indeed this notation
is becoming one of the most prominent modelling languages
for distributed information systems [11]. This is also testified
by EU research projects (e.g. CHOReOS [12] and CHOReV-
OLUTION [13]), linking academia and industry, that have
adopted BPMN as the reference modelling notation. The
recent attention devoted to BPMN motivates our choice of
selecting it as modelling language.
From Choreographies to Code. Using model-driven ap-
proaches to develop distributed systems, component stubs
can be derived from a choreography model. For example,
the authors of [14] provide a semi-automatic RESTful im-
plementation of BPMN choreographies basing their meth-
ods on natural language analysis. Similarly, the authors of
[15] propose an approach that permits to derive WS-BPEL
processes from choreography models. However, in these
works no formal guarantees are provided to ensure that
the developed system conforms to the prescribed interaction
strategy. On the other hand, purely theoretical works (e.g.,
those based on global/local session types [16]) formally
ensure a correct-by-construction derivation, but they only
deal with simple formalisms for describing choreographies
and collaborations, which are very far from the notations
used in practice, like BPMN. In our work we do not aim at
deriving components from a choreography, but we compare
the behaviour resulting from a collaboration of components
with respect to a given choreography. In particular, we
figure out a software development/integration context in
which different organizations let their informative systems
cooperate in order to reach the objectives of a choreography.

Conformance. Our work focuses on the notion of confor-
mance, which sometimes in the literature is referred with
different terminologies depending on the context, like com-
pliance or compatibility. Most works in the literature [17]–
[24] aim at comparing processes forming a collaboration
with respect to domain-specific regulations and rules. These
works, however, express these global rules by means of log-
ics or other formalisms, rather than using the standard chore-
ography notation provided by BPMN. Thus, they require the
system designer to directly deal with formal technicalities
of the used checking technique. Other works [25]–[27],
instead, only focus on a local view. They apply behavioural
equivalences to find processes with compatible behaviours,
according to the actions they can execute. However, these
works completely lack a global perspective. Our work differs
from the ones mentioned above since it fully relies on
BPMN models, at both global and local level, and it is
implemented in a conformance checking tool.

Direct Semantics. In the literature many proposals are based
on BPMN semantics given in terms of a translation to other
languages or formalisms. These semantics differ for the tar-
get language of the translation: process algebras [28]–[30],
more complex formal specification languages (e.g., LOTOS)
[31]–[34], transition-based models (e.g., Petri Nets) [35]–
[38], or session types [39].

In our work we rely on a direct semantics for both col-
laboration and choreography models. Our semantics is given
in terms of features and constructs of BPMN, rather than in
terms of their low-level encoding into another formalism
that is equipped with its own syntax and semantics. This
permits to formalise the BPMN features as close as possible
to their definition in the standard specification, without any
bias from the use of another formalism, thus ensuring a more
effective verification. The direct semantics proposed in this
paper is inspired by [40], and by its extended version in
[41], but its technical definition is significantly different. In
particular, configuration states are here defined according
to a global perspective, and the formalisation now includes
choreography diagrams, which were overlooked in the pre-
vious semantics definition.

Concerning conformance checking, our direct approach
permits to focus on specific features of BPMN that would
be ignored by using available Petri Nets-based semantics. In
particular, in the BPMN to Petri Nets translation reported
in [35], it is not possible to distinguish different types of
non-determinism resulting from event-based or exclusive
gateways. Indeed these two BPMN elements have different
effects: the event-based gateway produces non-dominated
non-determinism (roughly, no one in the model has com-
plete knowledge on the decision that will be taken), while
the exclusive gateway produces dominated non-determinism
(roughly, the decision is taken by one party and followed by
the others). Our approach, instead, permits to distinguish the
dominated and non-dominated non-determinism produced
by the gateways, as prescribed by the BPMN standard. This
is somehow similar to [28], [42], which rely on the concept
of internal and external choice defined in the CSP process

post-print

algebra. Notably the different kinds of non-determinism
have an impact on the conformance relations, as detailed
in Table 1.
Tool Support. A distinctive contribution of our work is the
development of the C

4 tool that incorporates all the defined
formal concepts, like the BPMN collaboration/choreography
semantics, and the related conformance relations. The tool
makes such features easily accessible to non-expert users by
means of a GUI. A similar endeavour has led to the realisa-
tion of the VerChor tool [34]. However, VerChor objective
is rather different since its purpose to use conformance
to check the realisability of a set of peers obtained from
a projection of a given choreography. The analysis tool
VBPMN, proposed in [43], aims instad at checking proper-
ties of business processes using the model checker CADP.
This is achieved, on the one hand, by transforming BPMN
models into PIF ones and then into LNT process algebraic
descriptions, and, on the other hand, by generating specific
SVL verification scripts from UI inputs. In comparison to
VBPMN, C4 relies on a direct semantics of BPMN. More-
over, C

4 enables conformance checking of collaborations
w.r.t. choreographies, while VBPMN only deals with the
analysis of single processes, thus it is not suitable to support
the development of distributed information systems.

3. BPMN 2.0 Overview

This section presents the relevant elements of choreog-
raphy and collaboration diagrams we use in the paper, and
introduces a scenario that will be used as a running example.

The BPMN Standard. Fig.1.b depicts the most used mod-
elling elements that can be included in both diagrams.
Events are used to represent something that can happen. An
event can be a start event, representing the point in which
the choreography/collaboration starts, while an end event
is raised when the choreography/collaboration terminates.
Gateways are used to manage the flow of a choreogra-
phy/collaboration both for parallel activities and choices.
Gateways act as either join nodes (merging incoming se-
quence edges) or split nodes (forking into outgoing sequence
edges). Different types of gateways are available. A parallel
gateway (AND) in join mode has to wait to be reached
by all its incoming edges to start, and respectively all
the outgoing edges are started simultaneously in the split
case. An exclusive gateway (XOR) describes choices; it is
activated each time the gateway is reached in join mode
and, in split mode, it activates exactly one outgoing edge. An
event based gateway is similar to the XOR-split gateway, but
its outgoing branches activation depends on the occurrence
of a catching event in the collaboration and on the reception
of a message in the choreography; these events/messages
are in a race condition, where the first one that is triggered
wins and disables the other ones. Sequence Flows are used
to connect collaboration/choreography elements to specify
the execution flow.

In a collaboration diagram, also the elements in Fig.1.a
can be included. Pools are used to represent participants

involved in the collaboration. Tasks are used to repre-
sent specific works to perform within a collaboration by a
participant. Intermediate Events represent something that
happens during the flow of the process, such as sending or
receiving of a message. Message Edges are used to visual-
ize communication flows between different participants, by
connecting communication elements within different pools.

Focusing on the choreography diagram, we underline
its ability to specify the message exchanges between two or
more participants. This is done by means of Choreography
Tasks in Fig.1.c. They are drawn as rectangles divided in
three bands: the central one refers to the name of the task,
while the others refer to the involved participants (the white
one is the initiator, while the gray one is the recipient).
Messages can be sent either by one participant (One-Way
tasks) or by both participants (Two-Way tasks).

Running Example. A collaboration and a choreography
model regarding a booking system are here presented.
Collaboration Example. The collaboration in Fig.1.d com-
bines a customer and a bank that have to interact in order to
book a travel. After the customer login into the booking sys-
tem, she requests some travel information and she receives
a proposal from the booking system. The customer then
decides whether to withdraw or accept the proposal; this is
represented by means of an XOR gateway. According to this
decision, either the upper path, for the proposal withdraw,
or the lower path, for the confirmation, is activated. The
booking system waits for the decision of the customer and
behaves accordingly. This is represented by means of an
event-based gateway. In case of withdraw, the two partici-
pants terminate with an end event. In case of confirmation,
the customer sends the itinerary acceptance to the booking
system, and asks for payment to the bank. As soon as the
bank processes the payment, and confirms it to the booking
system, the customer receives the ticket.
Choreography Example. The choreography in Fig.1.e com-
bines the work-activities of the same participants of the
collaboration. After accessing to the booking system the cus-
tomer requests an itinerary and receives a tentative planning.
Then, the choreography can proceed following two different
paths according to the customer decision. The upper path is
triggered when the customer decides to withdraw the travel
proposal; while the lower path is used for the the proposal
acceptance. In particular, when the proposal is accepted,
the customer interacts with the bank for the payment of
the ticket, and then the bank sends the confirmation to
the booking system. The latter completes the procedure by
sending the ticket to the customer.

4. Formal Framework: Semantics

This section presents our formalization of the BPMN
semantics at the base of the proposed framework. Specifi-
cally, we first summarize its distinctive aspects in relation
to the BPMN modeling principles, and then we illustrate its
formal definition.

post-print

CollaborationElements
Po

ol

Task

Intermediate Receive
Event

Intermediate Send
Event

Collaboration Elements

message flow

a. Collaboration elements

choreography elements

Start Event End Event

Task Name
(One-Way)

Iniziator

Receipient

message
name

Task Name
(Two-Way)

Iniziator

Receipient

message
name

message
name

Parallel
Gateway

Exclusive
Gateway

Event Based
Gateway

Common Elements Choreography Elements

Sequence Flow

b. BPMN elements excerpt
ChoreographyElement

Task Name
(One-Way)

Initiator

Recipient

Task Name
(Two-Way)

Initiator

Recipient

message
name

message
name

message
name

Choreography Elements

c. Choreography tasks

Booking Collaboration

Cu
st

om
er

Customer

Access the
booking
system

Send travel
information

Receive
itinerary
proposal

Withrow
travel

request

Send
itinerary

acceptance

Request
for

itinerary
payment

Receive
ticket

Bo
ok

in
g

Sy
st

em

Booking System

Receive
usarname

and
password

Receive
travel

information
Send

itinerary

Reserve
itinerary

Cancel
itinerary
proposal

Receive
payment

Send
confirma-

tion

Ba
nk

Bank

Receive
payment
request

Process
payment

re
qu

es
t

re
pl

y

ab
or

t

bo
ok

pa
y

co
nfirm

atio
n

tic
ke

t

lo
gi

n

d. Booking collaborationBooking system simplified (XOR)

Access the
booking
system

Customer

Booking System

login

Itinerary
planning

Customer

Booking System

request

reply

Withdraw
itinerary
proposal

Customer

Booking System

abort

Accept
itinerary
proposal

Customer

Booking System

book

Buy
ticket

Customer

Bank

pay

Payment
confirmation

Bank

Booking System

confirmation

Ticket
delivery

Booking System

Customer

ticket

e. Booking choreography

Figure 1. BPMN 2.0 Elements and Booking Example.

Linguistic Aspects and Design Choices. Concerning chore-
ography diagrams, we made some specific design choices.
In relation to the Two-Way choreography task, the OMG
standard states that it is “an atomic activity in a choreog-
raphy process” execution [1, p. 323]. However, this does
not mean that the task blocks the whole execution of the
choreography. In fact, participants are usually distributed,
and we assume that other choreography tasks involved in
different parallel paths of the choreography can be executed.
Thus, here we intend atomicity to mean that both messages
exchanged in a Two-Way task have to be received before
triggering the execution along the sequence flow outgoing
from the task. Therefore, even if we allow Two-Way tasks in
the choreography models, we safely manage them as pairs
of One-Way tasks preserving the same meaning.

A further distinctive aspect of our formal semantics
concerns the communication model that, to be compliant
with the BPMN standard, is different for choreographies
and collaborations. In the former case, the communication
is expressed using synchronous messages. Indeed, according
to the standard [1, p. 315], a choreography task com-
pletes when the receiver participant reads the message. Syn-
chronous communication requires choreography tasks to be
blocking activities, which resume the execution only when
an exchanged message is actually received. The communica-
tion model of collaborations, instead, is asynchronous. This
means that a message sent by one participant is enqueued
by the receiving one, which can then consume and process

Ch ::= start(e
o

) | end(e
i

) | andSplit(e
i

, E
o

) | andJoin(E
i

, e
o

)

| xorSplit(e
i

, E
o

) | xorJoin(E
i

, e
o

) | task(e
i

, e
o

, o1, o2,m, t)

| eventBased(e
i

, T1, T2) | Ch1|Ch2

T ::= (e
o

, o1, o2,m, t) | T1, T2

Figure 2. Syntax of BPMN Choreography Structures.

it subsequently, while the sender is free to proceed with its
execution. This reflects the distributed nature of collabora-
tions. The use of two different communication models also
impacts on the definition of the conformance relations as
illustrated in Sec. 5.

Semantics of BPMN Choreographies. To enable a for-
mal treatment of a BPMN choreography we defined a
Backus Normal Form (BNF) syntax of its model structure
(Fig. 2). In the proposed grammar, the non-terminal symbol
Ch represents Choreography Structures, while the terminal
symbols, denoted by the sans serif font, are the considered
elements of a BPMN model, i.e. events, tasks and gateways.
Notably, we are not proposing a new modeling formalism,
but we are only using a textual notation for the BPMN
elements. With respect to the graphical notation, the textual
one is more manageable for supporting the formal definition
of the semantics and its implementation.

In the following e 2 E denotes a sequence edge, while
E 2 2E a set of edges; we require |E| > 1 when E is
used in joining and splitting gateways. For the convenience
of the reader we refer with e

i

the edge incoming in an
element and with e

o

the edge outgoing from an element. o,

post-print

m, and t denote names uniquely identifying an organization,
a message and a task, respectively. The correspondence
between the syntax used here and the graphical notation
of BPMN illustrated in Sec. 3 is as follows.

• start(e
o

) represents a start event with outgoing edge e

o

.
• end(e

i

) represents an end event with incoming edge e

i

.
• andSplit(e

i

, E

o

) (resp. xorSplit(e
i

, E

o

)) represents an
AND (resp. XOR) split gateway with incoming edge
e

i

and outgoing edges E

o

.
• andJoin(E

i

, e

o

) (resp. xorJoin(E
i

, e

o

)) represents an
AND (resp. XOR) join gateway with incoming edges
E

i

and outgoing edge e

o

.
• task(e

i

, e

o

, o1, o2,m, t) represents a one-way task t

with incoming edge e

i

and outgoing edge e

o

sending
a message m from o1 to o2. As explained the two-way
tasks are rendered in our formal framework as pairs of
one-way tasks, hence they are not explicitly included
in the syntax.

• eventBased(e
i

, T1, T2) represents an event-based gate-
way with incoming edge e

i

, and a list of (at least two)
tasks T1, T2 to be processed. It is worth noticing that
the definition of the task list T is composed by elements
of the same structure of the one-way task except for the
incoming edge, which is subsumed in the structure of
the event-based gateway. When convenient, we shall
regard a task list simply as a set.

• Ch1|Ch2 represents a composition of elements in order
to render a process structure in terms of a collection of
elements.

To achieve a compositional definition, each sequence edge
of the BPMN model is split in two parts: the part outgoing
from the source element and the part incoming into the target
element. The two parts are correlated by means of unique
sequence edge names in the BPMN model.

The operational semantics we propose is given in terms
of configurations of the form hCh,�i, where Ch is a
choreography structure, and � is the execution state storing
for each edge the current number of tokens marking it.
Specifically, a state � : E ! N is a function mapping edges
to numbers of tokens. The state obtained by updating in the
state � the number of tokens of the edge e to n, written
as � · {e 7! n}, is defined as follows: (� · {e 7! n})(e0)
returns n if e

0 = e, otherwise it returns �(e0). The initial
state, where all edges are unmarked is denoted by �0

formally, �0(e) = 0 8e 2 E. The transition relation
over configurations, written l�! and defined by the rules
in Fig. 3, formalizes the execution of a choreography in
terms of marking evolution and message exchanges. Labels l
represent computational steps and are defined as: ⌧ , denoting
internal computations (in the rules these labels are omitted
for the sake of readability); and o1 ! o2 : m, denoting an
exchange of message m from organization o1 to o2. Notably,
despite the presence of labels, this has to be thought of
as a reduction semantics, because labels are not used for
synchronization (as instead it usually happens in labeled
semantics), but only for keeping track of the exchanged
messages in order to enable the conformance checking dis-

(Ch-Start)
hstart(e

o

),�0i ! inc(�0, eo)

(Ch-End)
hend(e

i

),�i ! dec(�0, e
i

)
�(e

i

) > 0

(Ch-AndSplit)
handSplit(e

i

, E
o

),�i ! inc(dec(�, e
i

), E
o

)
�(e

i

) > 0

(Ch-AndJoin)
handJoin(E

i

, e
o

),�i ! inc(dec(�, E
i

), e
o

)
8e 2 E

i

.�(e) > 0

(Ch-XorSplit)
hxorSplit(e

i

, {e} [E
o

),�i ! inc(dec(�, e
i

), e)
�(e

i

) > 0

(Ch-XorJoin)
hxorJoin({e} [E

i

, e
o

),�i ! inc(dec(�, e), e
o

)
�(e) > 0

(Ch-Task)
htask(e

i

, e
o

, o1, o2,m, t),�i
o1!o2:m������! inc(dec(�, e

i

), e
o

)
�(e

i

) > 0

(Ch-EventG)
heventBased(e

i

, (e
o

, o1, o2,m, t) [T),�i
o1!o2:m������! inc(dec(�, e

i

), e
o

)
�(e

i

) > 0

hCh1,�i ! �0

(Ch-Int1)
hCh1|Ch2,�i ! �0

hCh2,�i ! �0

(Ch-Int2)
hCh1|Ch2,�i ! �0

Figure 3. Choreography Semantics (⌧ labels are omitted).

cussed in Sec. 5. Since choreography execution only affects
the current states, for the sake of presentation, we omit
the choreography structure from the target configurations of
transitions. Thus, a transition hCh,�i l�! hCh,�

0i is written
as hCh,�i l�! �

0.
Before commenting on the rules, we introduce the aux-

iliary functions they exploit. Specifically, function inc : S⇥
E ! S (resp. dec : S⇥E ! S), where S is the set of states,
allows updating a state by incrementing (resp. decrementing)
by one the number of tokens marking an edge in the state.
Formally, they are defined as follows: inc(�, e) = � · {e 7!
�(e) + 1} and dec(�, e) = � · {e 7! �(e)� 1}. These func-
tions extend in a natural ways to sets of edges as follows:
inc(�, ;) = � and inc(�, {e}[E)) = inc(inc(�, e), E); the
cases for dec are similar.

We describe some rules in Fig. 3, the meaning of the
others can be easily deduced. In particular rule Ch-Start
starts the execution of a choreography when it is in its initial
state (i.e., all edges are unmarked). The effect of the rule is
to increment the number of tokens in the edge outgoing from
the start event. Rule Ch-AndJoin decrements the tokens in
each incoming edge and increments the number of tokens
of the outgoing edge, when each incoming edge has at least
one token. Rule Ch-XorSplit is applied when a token is
available in the incoming edge of an XOR split gateway,
the rule decrements the token in the incoming edge and
increments the tokens in one of the outgoing edges. Rule
Ch-Task is activated when there is a token in the incoming
edge of a choreography task, so that the application of the
rule produces a message exchange label and moves the token
from the incoming edge to the outgoing one. Finally, rules
Ch-Int1 and Ch-Int2 deal with interleaving.

post-print

Semantics of BPMN Collaborations. The formal treatment
of collaborations is similar to that of choreographies, there-
fore we will focus here only on the main differences. The
BNF syntax of the collaboration model structure is given in
Fig. 4. The non-terminal symbol C represents Collaboration
Structures, while terminal symbols denote, as usual, the
considered BPMN elements. The exchange of messages in
a collaboration is modeled by means of message edges.
Here, they are represented by triples of the form (o1, o2,m)
indicating, in order, the sending organization, the receiving
organization and the message; we use M to denote the
set of message edges. Accordingly, an event-based gateway
specifies a list of (at least two) message edges, each one
enriched with the outgoing edge enabled by the message
reception. Moreover, in a collaboration model there are three
types of tasks, i.e. non-communicating (task), receiving
(taskRcv) and sending (taskSnd), and also two intermediate
events, i.e. receiving (interRcv) and sending (interSnd).

C ::= start(e
o

) | end(e
i

) | andJoin(E
i

, e
o

) | xorSplit(e
i

, E
o

)

| andSplit(e
i

, E
o

) | xorJoin(E
i

, e
o

) | task(e
i

, e
o

)

| taskRcv(e
i

, e
o

, (o1, o2,m)) | taskSnd(e
i

, e
o

, (o1, o2,m))

| eventBased(e
i

,M1,M2) | interRcv(e
i

, e
o

, (o1, o2,m))

| interSnd(e
i

, e
o

, (o1, o2,m)) | C1|C2

M ::= (o1, o2,m, e
o

) | M1,M2

Figure 4. Syntax of BPMN Collaboration Structures.

The operational semantics we propose is given in terms
of configurations of the form hC,�, �i, where: C is a col-
laboration structure; � is the first part of the execution state,
storing for each sequence edge the current number of tokens
marking it; and � is the second part of the execution state,
storing for each message edge the current number of mes-
sage tokens marking it. Specifically, � : M ! N is a function
mapping message edges to numbers of message tokens; so
that �(o1, o2,m) = n means that there are n messages of
type m sent by o1 and stored in the o2’s queue. Notably, to
deal with decidability issues, in the implementation we fixed
the maximum number of admissible tokens in a message
edge. Update and initial state for � are defined in a way
similar to �’s definitions.

The transition relation l�! over collaboration configura-
tions formalizes the execution of a collaboration in terms of
edge and message marking evolution. It is defined by the
rules in Fig. 5 (for the sake of presentation, we focus on
rules concerning the exchange of messages). As usual, we
omit the collaboration structure from the target configuration
of transitions.

We now briefly comment on the operational rules. Rule
C -EventG is activated when there is a token in the incom-
ing edge of an event-based gateway and there is a message
m to be consumed, so that the application of the rule moves
the token from the incoming edge to the outgoing edge
corresponding to the received message, whose number of
message tokens in the meantime is decreased (i.e., a message
from the corresponding queue is consumed). Rule C -Task
deals with simple tasks, acting as a pass through. Rule
C -TaskRcv is activated not only when there is a token

(C -EventG)
heventBased(e

i

, (o1, o2,m, e
o

) [M),�, �i
o1!o2:m������! hinc(dec(�, e

i

), e
o

), dec(�, (o1, o2,m))i

�(e
i

) > 0,
�(o1, o2,m)>0

(C -Task)
htask(e

i

, e
o

),�, �i ! hinc(dec(�, e
i

), e
o

), �i �(e
i

) > 0

(C -TaskRcv)
htaskRcv(e

i

, e
o

, (o1, o2,m)),�, �i o1!o2:m������!
hinc(dec(�, e

i

), e
o

), dec(�, (o1, o2,m))i

�(e
i

) > 0,
�(o1, o2,m)>0

(C -TaskSnd)
htaskSnd(e

i

, e
o

, (o1, o2,m)),�, �i !
hinc(dec(�, e

i

), e
o

), inc(�, (o1, o2,m))i
�(e

i

) > 0

(C -InterRcv)
hinterRcv(e

i

, e
o

, (o1, o2,m)),�, �i o1!o2:m������!
hinc(dec(�, e

i

), e
o

), dec(�, (o1, o2,m))i

�(e
i

) > 0,
�(o1, o2,m)>0

(C -InterSnd)
hinterSnd(e

i

, e
o

, (o1, o2,m)),�, �i !
hinc(dec(�, e

i

), e
o

), inc(�, (o1, o2,m))i
�(e

i

) > 0

Figure 5. Collaboration Semantics (excerpt of rules - ⌧ labels are omitted).

in the incoming edge, like the one related to simple tasks,
but also when there is a message to be consumed. Simi-
larly, rule C -TaskSnd , instead of consuming, adds a mes-
sage in the corresponding queue. Rule C -InterRcv (resp.
C -InterSnd) follow the same behavior of rule C -TaskRcv
(resp. C -TaskSnd).

5. Formal Framework: Conformance

This section discusses about the relations we propose
for checking the conformance between choreographies and
collaborations. We then present how they work in practice.

Bisimulation-Based and Trace-Based Conformance. Here
we present the Bisimulation-Based Conformance (BBC) and
the Trace-Based Conformance (TBC) relations we have
defined. The two relations are inspired by well-established
behavioural equivalences [8], largely used in the literature
and revised to deal with BPMN characteristics.

Before providing the formal definition of BBC, we intro-
duce the necessary notation. Ch and C represents the sets of
all choreography and collaboration configurations, respec-
tively. Moreover, weak transitions are defined as follows:
=) denotes the reflexive and transitive closure of ⌧�!, i.e.
zero or more ⌧ -transitions; l

=) denotes =) l�!=). We exploit
functions labels(C) and labels(Ch) returning the sets of all
communication labels that can be potentially generated by
the collaboration C and the choreography Ch, respectively.
These functions are inductively defined on the syntax of
collaboration and choreography structures in a straightfor-
ward way. For example, in case of choreographies we have
the definition case labels(task(e

i

, e

o

, o1, o2,m, t)) = {o1 !
o2 : m}, meaning that if a choreography contains a task
element, then its label set contains the label corresponding
the message exchange described by the task.

At the collaboration level the definition of conformance
requires the use of the hiding operator C/L, defined by the

post-print

hC,�, �i l�! h�0, �0i

hC/L,�, �i l�! h�0, �0i
l /2 L

hC,�, �i l�! h�0, �0i

hC/L,�, �i ⌧�! h�0, �0i
l 2 L

Figure 6. Hiding Operator.

rules in Fig. 6. This operator, as usual, transforms into ⌧ all
the actions in the set L, in order to consider them as internal
actions in the conformance relation.

Definition 1. - BBC Relation. A relation R ✓ (Ch⇥C) is a
weak Bisimulation Conformance if, for any hCh,�

ch

i 2
Ch and hC,�

c

, �i 2 C such that hCh,�

ch

i R hC,�
c

, �i,
it holds:

• for all o1, o2,m and �

0
ch

, if hCh,�

ch

i o1!o2:m������! �

0
ch

then hC,�
c

, �i o1!o2:m=====) h�0
c

, �

0i for some �

0
c

, �

0 s.t.
hCh,�

0
ch

i R hC,�0
c

, �

0i;
• for all o1, o2,m,�

0
c

and �

0, if hC,�
c

, �i o1!o2:m������!
h�0

c

, �

0i
then hCh,�

ch

i o1!o2:m=====) �

0
ch

for some �

0
ch

s.t.
hCh,�

0
ch

i R hC,�0
c

, �

0i;
• for all �0

ch

, if hCh,�

ch

i ⌧��! �

0
ch

then hC,�
c

, �i ==) h�0
c

, �

0i for some �

0
c

, �

0 s.t.
hCh,�

0
ch

i R hC,�0
c

, �

0i;
• for all �0

c

and �

0, if hC,�
c

, �i ⌧��! h�0
c

, �

0i
then hCh,�

ch

i ==) �

0
ch

for some �

0
ch

s.t.
hCh,�

0
ch

i R hC,�0
c

, �

0i.
A choreography hCh,�

ch

i and a collaboration hC,�
c

, �i
conform if there exists a weak Bisimulation Confor-
mance relation R such that
hCh,�

ch

i R hC/(labels(C)\labels(Ch)),�
c

, �i.
The proposed BBC relation considers to conform collabora-
tions that are able to simulate step by step choreographies,
and vice versa. In particular, if the choreography performs
a message exchange, in the collaboration we expect to
observe the reception of the message, possibly preceded or
followed by any number of internal actions, and then the
two continuations have to be in relation. Analogously, if
we observe a message reception in the collaboration, the
choreography has to reply with the corresponding weak
transition. Moreover, if one of the two models performs
an internal action, the counterpart can react with a weak
transition =). The definition of conformance is quite close
to a standard bisimulation relation, except for the use of
the hiding operator at the collaboration level. Specifically,
the hiding is used to ignore all additional behaviors in the
collaboration that are not explicitly expressed, and hence
regulated, in the choreography. In this way, even if a col-
laboration performs some additional communications, if it
is able to (bi)simulate with the given choreography, they do
conform. The different communication models defined in the
semantics of choreographies and collaborations significantly
affects the conformance checking. Considering that collab-
orations rely on an asynchronous communication model,
one may think that the collaboration actions to be observed
should be the sending ones (as, e.g., in the labeled bisimula-
tion introduced for asynchronous ⇡-calculus [44]). However,

our aim here is to check the conformance with respect to a
choreography model that, at an higher level of abstraction,
prescribes that all interactions are synchronous. Since the
non-blocking nature of message sending in the asynchronous
collaborations may generate misalignment with the message
exchanges defined in the synchronous choreography, we
focus only on the message reception in the collaboration (see
rules C -EventG , C -TaskRcv and C -InterRcv in Fig. 5).
This permits to compare a choreography communication
with the effective completion of the message exchange,
defined by a message reception, in the collaboration.

BBC guarantees that the collaboration takes decisions,
concerning the execution flow, exactly as what is specified
in the choreography. Sometimes this condition may be too
restrictive and the system designer would prefer to adopt a
weaker relation. To this aim, in our work we also introduce
the more relaxed TBC relation. Intuitively, in this case two
models conform if and only if they can perform exactly the
same weak sequences of actions. In the definition below, we
deem a label to be visible if it is of the form o1 ! o2 : m.
Notationally, the transition hCh,�i s

=) �

0, where s is a
sequence of visible labels l1l2 . . . ln, denotes the sequence
hCh,�i l1=) hCh,�1i

l2=) hCh,�2i . . . ln=) hCh,�

0i of
weak transitions. Transition hC,�, �i s

=) h�0
, �

0i is similarly
defined.
Definition 2. - TBC Relation. A choreography hCh,�

ch

i
and a collaboration hC,�

c

, �i trace conform if, given
C

0 = C/(labels(C)\ labels(Ch)), for any sequence s

of visible labels it holds:
• hCh,�

ch

i s

=) �

0
ch

implies hC 0
,�

c

, �i s

=) h�0
c

, �

0i for
some �

0
c

and �

0;
• hC 0

,�

c

, �i s

=) h�0
c

, �

0i implies hCh,�

ch

i s

=) �

0
ch

for
some �

0
ch

.

The TBC relation guarantees that the collaboration is able
to produce the same sequences of messages of the chore-
ography, and vice versa, without controlling presence of
deadlock states and distinguishing different decision points
and non-determinism forms. Concerning this latter point,
BBC can recognize dominated non-determinism, where a
participant (non-deterministically) takes a decision using
a XOR gateway and the other behaves accordingly, from
non-dominated non-determinism, based on a race condition
among the messages managed by an event-based gateway.
As it usually happens for these classes of behavioral rela-
tions, models that conform according to BBC also conform
according to TBC.
Conformance at work. To demonstrate in practice the char-
acteristics of the conformance relations, focusing on the
management of non-determinism, we test them considering
various model fragments in a simple scenario, where two
participants are involved. Table 1 depicts in the rows the
three gateways (i.e., in order, parallel, exclusive, and event-
based) that can be used in a choreography model, and in
the columns the possible combinations of participants in
collaborations (i.e., in order, parallel-parallel, parallel-event,
parallel-exclusive, exclusive-event, and exclusive-exclusive).

post-print

(A) (B) (C)
ChoParallel

sender

receiver

sender

receiver

m_1

m_2

ChoXOR

sender

receiver

sender

receiver

m_1

m_2

ChoEventBased

sender

receiver

sender

receiver

m_1

m_2

(1) BBC : X
TBC : X

BBC : ⇥
TBC : ⇥

BBC : ⇥
TBC : ⇥

(2) BBC : ⇥
TBC : ⇥

BBC : ⇥
TBC : X

BBC : X
TBC : X

(3) BBC : ⇥
TBC : ⇥

BBC : X
TBC : X

BBC : ⇥
TBC : X

(4) BBC : ⇥
TBC : ⇥

BBC : X
TBC : X

BBC : ⇥
TBC : X

(5) BBC : ⇥
TBC : ⇥

BBC : ⇥
TBC : X

BBC : ⇥
TBC : X

(1) (2) (3)
CollPARvsPAR

se
nd

er
re
ce
iv
er

m_1 m_2

CollPARvsEventBased

se
nd

er
re
ce
iv
er

m_1 m_2

CollPARvsXOR

se
nd

er
re
ce
iv
er

m_1 m_2

(4) (5)
CollXORvsEventBased

se
nd

er
re
ce
iv
er

m_1 m_2

CollXORvsXOR

se
nd

er
re
ce
iv
er

m_1 m_2

TABLE 1. CONFORMANCE BETWEEN COLLABORATIONS AND
CHOREOGRAPHIES.

Checking all possible conformance combinations, we
realize that for each considered choreography we have at
least one BBC implementation. In particular, the choreog-
raphy A can be implemented by a bisimilar collaboration
1, the choreography B is bisimilar to collaborations 3-4,
and C to the collaboration 2. This last case results from
the non-dominated non-deterministic behavior characteriz-
ing the event-based gateway, which is properly implemented
by a sender using an AND gateway and not an XOR gateway
(as in collaboration 4). This becomes clearer if we generalise
the collaboration 2 by considering more than one sender in
a race condition, each one sending a single message.

The conformance checking results reported in the table
show in detail the differences between BBC and TBC. The
designer can select the more appropriate relation that fits
more his needs, taking into account that BBC provides more
guarantees on the correct behaviour between the two models,
while TBC ensures only that both models produce the same
sequences of messages.

6. C4 Supporting Tool

The C

4 formal framework presented so far is imple-
mented as a Java tool (available at http://pros.unicam.it/
c4/) supporting system designers in automatically checking
whether a collaboration conforms to a prescribed chore-

ography. A distinctive aspect of the tool is that designers

Figure 7. C4 Supporting Tool.

do not need to know the formal notions underlying its
functionalities. The tool was developed as a stand-alone
solution, but it is also available as a service accessible
through a RESTful interface, or integrable as a plug-in in
existing modelling tools. In this regards, even if we support
any BPMN modelling environments, we widely tested its
compatibility with Eclipse BPMN Modelling, Camunda and
Signavio. Fig. 7 depicts the internal components of the C

4

tool and the interfaces with the user. Specifically, C4 takes
as input a choreography and a collaboration in the .bpmn
format. Input models can be generated by the designer using
different BPMN modeling environments, or can be retrieved
from public repositories. The input files can be loaded in the
C

4 tool using a dedicated GUI (Fig. 8(a)). The user can load
multiple files, both for choreographies and collaborations.
The inclusion of this feature was driven by the necessity
of checking the conformance between different versions of
the same model, avoiding to load each time a new file. The
loaded models are listed in two text-areas and by clicking
in one of them, a graphical preview of the model is showed
automatically. Once the input files have been selected, the
C

4 tool parses the models and generates the corresponding
LTS graphs for both the choreography and the collaboration.
The parsing of the input files is based on the Camunda API.
Such API has been used as it is for the collaboration models,
while it has been extended (to include choreography tasks)
for the choreographies. The LTSs are computed by means
of a Java implementation of the direct semantics defined in
Sec. 4.

Once the LTSs are generated, C

4 saves the results in
two .aut files [45] and automatically opens the BPMN
Checker (Fig. 8(b)) where the desired conformance relations
can be checked. The conformance checking is achieved by
resorting to the mCRL2 equivalence checker [46], that is
fully integrated in the C

4 tool. Notably, the standard bisim-
ulation and trace equivalences supported by mCRL2 can be
directly used at this stage, as all the specific characteristics
of our conformance relations (e.g., the use of hiding) have
been already taken into account during the LTS generation.
The verification results are visualized using a green/red
indicator that states the satisfiability/unsatisfiability of the
conformance relation. In case of dissatisfaction, C4 returns

post-print

(a) Models Selection.

(b) Conformance Checker.
Figure 8. C4 Graphical User Interface.

back a counterexample. Notably, the usage of the .aut format
for storing the LTS graphs enables the integration with other
checkers that could be used in the future for further analysis
(e.g., stochastic verification).

C

4 tool at work on the booking example. To check if the
booking collaboration in Fig.1.d can be considered a valid
implementation of the choreography in Fig.1.e, we used the
C

4 tool with both BBC and TBC relations. These analy-
ses returned violations for both conformance relations. In
particular, considering TBC the following counterexample
is produced:

c�!bs:login, c�!bs:request, bs�!c:reply, c�!bk:pay
where c, bs and bk stand for the customer, booking system
and bank organization names, respectively. This trace is
allowed by the collaboration and not by the choreography.
It shows that the expected flow ‘booking and then payment’
is not respected in the collaboration, which indeed permits
to pay the reservation before booking it. This undesired
behavior is due to the non-blocking nature of the collab-
oration sending task, which permits the customer to send
the payment immediately after the booking request, without
waiting for any acknowledgment from the booking system.
This would not be a problem in case of a collaboration with
only two participants, or more generally when the receiver
of the two messages is the same participant, since the order
in which the messages are processed is managed by the
behavior of the receiver. Instead, in our running scenario
the book and the pay messages are received by two different
participants. The collaboration in Fig.1.d cannot guarantee

Booking Collaboration (Corretta)

Cu
st

om
er

Customer

Access the
booking
system

Send travel
information

Receive
itinerary
proposal

Withrow
travel

request

Send
itinerary

acceptance

Request
for

itinerary
payment

Receive
ticket

Receive
Confirma-

tion

Bo
ok

in
g

Sy
st

em

Booking System

Receive
usarname

and
password

Receive
travel

information
Send

itinerary

Reserve
itinerary

Cancel
itinerary
proposal

Receive
payment

Send
confirma-

tion

Confirm
Reserva-

tion

Ba
nk

Bank

Receive
payment
request

Process
payment

re
qu

es
t

re
pl

y

ab
or

t

bo
ok

pa
y

tic
ke

t

lo
gi

n

co
nfi

rm
at

io
n

ac
k

Figure 9. Repaired Collaboration.

the correct order in which the messages shoul be handled.
To solve such an issue, we can revise the collaboration as
shown in Fig.9, where an ack message between the book

and pay messages have been added. This guarantees that the
booking phase completes before giving to the customer the
possibility to proceed with the payment. By checking again
the conformance between the revised collaboration and the
choreography in Fig.1.e, C4 tool states that the collaboration
is a correct implementation of the choreography, as the two
models conform according to both TBC and BBC. Notably,
the added message is not foreseen by the choreography
specification, nonetheless it permits to further constrain
the collaboration so to obtain a behaviour satisfying both
conformance relations. In such a case the hiding operator
will substitute the ack message with a ⌧ action in the
composition of the various participants in the collaboration,
and before checking the two conformance relations.

7. Conclusions and Future Work
In this paper we propose a novel approach for check-

ing conformance between BPMN choreographies and col-
laborations. We define a formal operational semantics for
choreographies and collaborations, following descriptions
provided by the BPMN standard. On top of that, we define
the notion of conformance in terms of a trace-based and a
bisimulation-based relation. As proof of concept, the seman-
tics and the conformance relations have been implemented
and tested on the C

4 tool.
In the next future we intend to further develop the

C

4 tool, integrating it in different platforms and providing
a visual support for counterexamples, so to enlarge the
usability of the tool. We also plan to use our approach in the
process mining field, in order to check the conformance of
collaborations derived from logs with given choreographies.

References

[1] OMG, “Business Process Model and Notation (BPMN V 2.0),” 2011.

[2] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: State of the art and research challenges,” Com-
puter, vol. 40, no. 11, 2007.

[3] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella,
“Verifying the conformance of web services to global interaction
protocols: A first step,” in Formal Techniques for Computer Systems
and Business Processes, ser. LNCS. Springer, 2005, vol. 3670, pp.
257–271.

post-print

[4] Y. Liu, S. Muller, and K. Xu, “A static compliance-checking frame-
work for business process models,” IBM Systems Journal, vol. 46,
no. 2, pp. 335–361, 2007.

[5] M. El Kharbili, A. K. A. de Medeiros, S. Stein, and W. M. van der
Aalst, “Business process compliance checking: Current state and
future challenges.” MobIS, vol. 141, pp. 107–113, 2008.

[6] M. Rouached, W. Fdhila, and C. Godart, “Web services compositions
modelling and choreographies analysis,” International Journal of Web
Services Research (IJWSR), vol. 7, no. 2, pp. 87–110, 2010.

[7] A. Martens, “On compatibility of web services,” Petri Net Newsletter,
vol. 65, no. 12-20, p. 100, 2003.

[8] R. Milner, Communication and Concurrency. Prentice-Hall, Inc.,
1989, vol. 84.

[9] OASIS WSBPEL TC, “Web Services Business Process Execution
Language Version 2.0,” OASIS, Tech. Rep., April 2007.

[10] N. Kavantzas, D. Burdett, and G. Ritzinger, “Web Services Choreog-
raphy Description Language version 1.0.” W3C, Tech. Rep., 2004.

[11] E. Teicholz et al., Technology for Facility Managers: The Impact of
Cutting-edge Technology on Facility Management. John Wiley &
Sons, 2012.

[12] H. Vincent, V. Issarny, N. Georgantas, E. Francesquini, A. Goldman,
and F. Kon, “Choreos: scaling choreographies for the internet of the
future,” in Middleware. ACM, 2010, pp. 8–10.

[13] M. Autili, P. Inverardi, A. Perucci, and M. Tivoli, “Synthesis of
distributed and adaptable coordinators to enable choreography evo-
lution,” in Software Engineering for Self-Adaptive Systems 3, ser.
LNCS, vol. 9640. Springer, 2017, pp. 1–25.

[14] A. Nikaj, M. Weske, and J. Mendling, “Semi-automatic derivation
of restful choreographies from business process choreographies,”
Software & Systems Modeling, pp. 1–14, 2017.

[15] B. Hofreiter and C. Huemer, “A model-driven top-down approach
to inter-organizational systems: From global choreography models to
executable BPEL,” in CEC/EEE, IEEE. IEEE Computer Society,
2008, pp. 136–145.

[16] K. Honda, N. Yoshida, and M. Carbone, “Multiparty asynchronous
session types,” J. ACM, vol. 63, no. 1, pp. 9:1–9:67, 2016.

[17] G. Governatori, Z. Milosevic, and S. Sadiq, “Compliance checking
between business processes and business contracts,” in EDOC, IEEE.
Computer Society, 2006, pp. 221–232.

[18] D. J. Mandell and S. A. McIlraith, “A bottom-up approach to automat-
ing web service discovery, customization, and semantic translation,”
in WWW Workshop on E-Services and the Semantic Web, 2003.

[19] D. Schumm, F. Leymann, Z. Ma, T. Scheibler, and S. Strauch,
“Integrating compliance into business processes,” Multikonferenz
Wirtschaftsinformatik 2010, p. 421, 2010.

[20] A. Awad, G. Decker, and M. Weske, “Efficient compliance checking
using bpmn-q and temporal logic,” in BPM, ser. LNCS, vol. 5240.
Springer, 2008, pp. 326–341.

[21] D. Knuplesch, M. Reichert, W. Fdhila, and S. Rinderle-Ma, “On
enabling compliance of cross-organizational business processes,” in
BPM, ser. LNCS. Springer, 2013, vol. 8094, pp. 146–154.

[22] L. T. Ly, S. Rinderle-Ma, K. Göser, and P. Dadam, “On enabling
integrated process compliance with semantic constraints in process
management systems,” Information Systems Frontiers, vol. 14, no. 2,
pp. 195–219, 2012.

[23] D. Knuplesch and M. Reichert, “Ensuring business process compli-
ance along the process life cycle,” Universität Ulm, Tech. Rep., 2012.

[24] D. Knuplesch, M. Reichert, J. Mangler, S. Rinderle-Ma, and W. Fd-
hila, “Towards compliance of cross-organizational processes and their
changes,” in BPM, ser. LNCS, vol. 132. Springer, 2012, pp. 649–661.

[25] M. Weidlich, R. Dijkman, and M. Weske, “Behaviour equivalence
and compatibility of business process models with complex corre-
spondences,” The Computer Journal, vol. 55, no. 11, pp. 1398–1418,
2012.

[26] J. Hidders, M. Dumas, W. M. van der Aalst, A. H. ter Hofstede,
and J. Verelst, “When are two workflows the same?” in Australasian
symposium on theory of computing, vol. 41. Australian Computer
Society, Inc., 2005, pp. 3–11.

[27] R. Dijkman, M. Dumas, and L. Garcı́a-Bañuelos, “Graph matching
algorithms for business process model similarity search,” in BPM,
ser. LNCS, vol. 5701. Springer, 2009, pp. 48–63.

[28] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “Chore-
ography and orchestration conformance for system design,” in Coor-
dination, ser. LNCS, vol. 4038. Springer, 2006, pp. 63–81.

[29] G. Salaün and T. Bultan, “Realizability of choreographies using
process algebra encodings,” in iFM, ser. LNCS, vol. 5423. Springer,
2009, pp. 167–182.

[30] G. Salaün, L. Bordeaux, and M. Schaerf, “Describing and reasoning
on web services using process algebra,” Int. J. of Business Process
Integration and Management, vol. 1, no. 2, pp. 116–128, 2006.

[31] H. N. Nguyen, P. Poizat, and F. Zaı̈di, “A symbolic framework for the
conformance checking of value-passing choreographies,” in ICSOC,
ser. LNCS, vol. 2012. Springer, 2012, pp. 525–532.

[32] P. Poizat and G. Salaün, “Checking the realizability of BPMN 2.0
choreographies,” in Symposium on Applied Computing. ACM, 2012,
pp. 1927–1934.

[33] C. Molina and S. Shrivastava, “Establishing conformance between
contracts and choreographies,” in CBI. IEEE, 2013, pp. 69–78.

[34] M. Güdemann, P. Poizat, G. Salaün, and L. Ye, “Verchor: a framework
for the design and verification of choreographies,” IEEE Transactions
on Services Computing, vol. 9, no. 4, pp. 647–660, 2016.

[35] R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and analysis
of business process models in BPMN,” Information and Software
Technology, vol. 50, no. 12, pp. 1281–1294, 2008.

[36] S. Basu and T. Bultan, “Choreography conformance via synchroniz-
ability,” in World wide web. ACM, 2011, pp. 795–804.

[37] T. Bultan, C. Ferguson, and X. Fu, “A tool for choreography analysis
using collaboration diagrams,” in ICWS. IEEE, 2009, pp. 856–863.

[38] F. Corradini, A. Polini, and B. Re, “Inter-organizational Business
Process Verification in Public Administration,” Business Process
Management Journal, vol. 21, no. 5, 2015.

[39] G. Castagna, M. Dezani, and L. Padovani, “On global types and
multi-party sessions,” in FMOODS/FORTE, ser. LNCS, vol. 6722.
Springer, 2011, pp. 1–28.

[40] F. Corradini, A. Polini, B. Re, and F. Tiezzi, “An operational se-
mantics of BPMN collaboration,” in FACS, ser. LNCS, vol. 9539.
Springer, 2015, pp. 161–180.

[41] F. Corradini, F. Fornari, A. Polini, B. Re, and F. Tiezzi, “A formal
approach to modeling and verification of business process collabo-
rations,” Science of Computer Programming, vol. 166, pp. 35–70,
2018.

[42] Z. Qiu, X. Zhao, C. Cai, and H. Yang, “Towards the theoretical
foundation of choreography,” in WWW. ACM, 2007, pp. 973–982.

[43] A. Krishna, P. Poizat, and G. Salaün, “Vbpmn: Automated verification
of bpmn processes,” in iFM. Springer, 2017, pp. 323–331.

[44] R. M. Amadio, I. Castellani, and D. Sangiorgi, “On bisimulations for
the asynchronous pi-calculus,” Theor. Comput. Sci., vol. 195, no. 2,
pp. 291–324, 1998.

[45] J. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu,
and M. Sighireanu, “CADP a protocol validation and verification
toolbox,” in CAV, ser. LNCS, vol. 1102. Springer, 1996.

[46] J. F. Groote and M. R. Mousavi, Modeling and analysis of commu-
nicating systems. MIT press, 2014.

post-print

