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Abstract
The increasing adoption of modelling methods contributes to a better understand-
ing of the flow of processes, from the internal behaviour of a single organisation
to a wider perspective where several organisations exchange messages. In this
regard, BPMN collaboration is a suitable modelling abstraction. Even if this is a
widely accepted notation, only a limited effort has been expended in formalising
its semantics, especially for what it concerns the interplay among control fea-
tures, data handling and exchange of messages in scenarios requiring multiple in-
stances of interacting participants. In this paper, we face the problem of providing
a formal semantics for BPMN collaborations including multiple instances, while
taking into account the data perspective. Beyond defining a novel formalisation,
we also provide a BPMN collaboration animator tool faithfully implementing the
formal semantics. Its visualisation facilities support designers in debugging multi-
instance collaboration models.

Keywords: BPMN 2.0, Data, Multiple Instances, Modelling, Animation.

1. Introduction

Nowadays, modelling is recognised as an important practice also in supporting
the continuous improvement of IT systems. In particular, IT support for collabo-
rative systems, where participants can cooperate and share information, demands
for a clear understanding of interactions and data exchanges. To ensure proper
carrying out of such interactions, the participants should be provided with enough
information about the messages they must or may send in a given context. This is
particularly important when multiple instances of interacting participants are in-
volved. In this regard, BPMN [20] collaboration diagrams result to be an effective
way to reflect how multiple participants cooperate to reach a shared goal.
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Even if widely accepted, a major drawback of BPMN is related to the com-
plexity of the semi-formal definition of its meta-model and the possible misunder-
standing of its execution semantics defined by means of natural text description,
sometimes containing misleading information [22]. This becomes a more promi-
nent issue as we consider BPMN supporting tools, such as animators, simulators
and enactment tools, whose implementation of the execution semantics may not
be compliant with the standard and be different from each other, thus undermining
models portability and tools effectiveness.

To overcome these issues, several formalisations have been proposed, mainly
focussing on the control flow perspective (e.g., [8, 7, 27, 3, 24]). Less attention has
been paid to provide a formal semantics capturing the interplay between control
features, message exchanges, and data. These perspectives are strongly related,
especially when a participant interacts with multi-instance participants. In fact,
to achieve successful collaboration interactions, it is required to deliver the mes-
sages arriving at the receiver side to the appropriate instances. As messages are
used to exchange data between participants, the BPMN standard fosters the use
of the content of the messages themselves to correlate them with the correspond-
ing instances. Thus, the data perspective plays a crucial role when considering
multi-instance collaborations. Despite this, no formal semantics that considers all
together these key aspects of BPMN collaboration models has been yet proposed
in the literature.

In this work, we aim at filling this gap by providing an operational seman-
tics of BPMN collaboration models including multi-instance participants, while
taking into account the data perspective, considering both data objects and data-
based decision gateways. Moreover, we go beyond the mere formalisation, by
developing an animator tool that faithfully implements the proposed formal se-
mantics and visualises the execution of multi-instance collaborations. It is indeed
well recognised that process animators play an important role in enhancing the
understanding of business processes behaviour [12] and that, to this aim, the faith-
ful correspondence with the semantics is essential [2], although it is not always
supported [10]. Visualisation of model execution via an animator allows to un-
derstand the collaboration history, its current state (also in terms of data-object
values) and possible future executions [18]. This is particularly useful in case of
models that are not implemented yet [1]. Our tool, called MIDA, supports model
designers in achieving a priori knowledge of collaborations behaviour. This can
allow them to spot erroneous interactions, which can easily arise when dealing
with multiple instances, and hence to prevent undesired executions.

To sum up, the major contributions of this paper are:
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• The definition of a formal semantics for BPMN collaborations consider-
ing control flow elements, multi-instance pools, data objects and data-based
decision gateways. Besides being useful per se, as it provides a precise
understanding of the ambiguous and loose points of the standard, a main
benefit of this formalisation is that it paves the way for the development of
tools supporting model analysis.

• The development of the MIDA tool for animating BPMN collaboration
models. MIDA animation features result helpful both in educational con-
texts, for explaining the behaviour of BPMN elements, and in practical
modelling activities, for debugging errors common in multi-instance col-
laborations.

The rest of the paper is organised as follows. Sec. 2 provides the motivations
underlying the work, and presents our running example. Sec. 3 introduces the
formal framework at the basis of our approach. Sec. 4 shows how the formal
concepts have been practically realised in the MIDA tool. Sec. 5 compares our
work with the related ones. Finally, Sec. 6 closes the paper with lessons learned
and opportunities for future work.

2. The Interplay between Multiple Instances, Messages and Data Objects in
BPMN Collaborations

To precisely deal with multiple instances in BPMN collaboration models, it
is necessary to take into account the data flow. Indeed, the creation of process
instances can be triggered by the arrival of messages, which contain data. Within
a process instance, data is stored in data objects, used to drive the instance execu-
tion. Values of data objects can be used to fill the content of outgoing messages,
and vice versa, the content of incoming messages can be stored in data objects.
We clarify below the interplay between such concepts. To this aim, we introduce
a BPMN collaboration model, used as a running example throughout the paper,
concerning the management of the paper reviewing process of a scientific con-
ference (this is a revised version of the model in [25, Sec. 4.7.2] and [4]). The
example concerns the management of a single paper, which is revised by three
reviewers; of course, the management of all papers submitted to the conference
requires to enact the collaboration for each paper.

The collaboration model in Fig. 1 combines the activities of three participants.
The Program Committee (PC) Chair organises the reviewing activities. For the
sake of simplicity, we assume that the considered conference has only one chair.
A Reviewer performs the reviewing activity and, since more than one reviewer
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Figure 1: Paper reviewing collaboration model.

takes part in this, he/she is modelled as a process instance of a multi-instance
pool. Finally, the Contact Author is the person who submitted the paper to the
conference. The reviewing process is started by the PC chair, who assigns the
paper to each reviewer (via a multi-instance sequential activity with loop cardi-
nality set to 3 according to the number of involved reviewers for each paper). The
paper is passed to the PC chair process by means of a data input. After all reviews
are received, and combined in the Reviews data object, the chair starts their eval-
uation. According to the value of the Evaluation data object, the chair prepares
the acceptance/rejection letter (stored in the Letter data object) or, if the paper
requires further discussion, the decision is postponed. Discussion interactions are
here abstracted and always result in an accept or reject decision. The chair then
sends back a feedback to each reviewer, attaches the reviews to the notification
letter, and sends the result to the contact author.

In this scenario, data support is crucial to precisely render the message ex-
changes between participants, especially because multiple instances of the Re-
viewer process are created. In fact, messages coming into this pool might start a
new process instance, or be routed to existing instances already underway. Mes-
sages and process instances must contain enough information to determine, when
a message arrives at a pool, if a new process instance is needed or, if not, which
existing instance will handle it. To this aim, BPMN makes use of the concept of
correlation: it is up to each single message to provide the information that per-
mits to associate the message with the appropriate (possibly new) instance. This
is achieved by embedding values, called correlation data, in the content of the
message itself. Pattern-matching is used to associate a message to a distinct re-
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ceiving task or event. In our example, every time the chair sends back a feedback
to a reviewer, the message must contain information (in our case reviewer name
and paper title) to be correlated to the correct process instance of Reviewer.

According to the BPMN standard, data objects do not have any direct effect
on the sequence flow or message flow of processes, since tokens do not flow along
data associations [20, p. 221]. However, this statement is questionable. Indeed,
on the one hand, the information stored in data objects can be used to drive the
execution of process instances, as they can be referred in the conditional expres-
sions of XOR gateways to take decisions about which branch should be taken. On
the other hand, data objects can be connected in input to tasks. In particular, the
standard states that “the Data Objects as inputs into the Tasks act as an additional
constraint for the performance of those Tasks. The performers [...] cannot start
the Task without the appropriate input” [20, p. 183]. In both cases, a data ob-
ject has an implicit indirect effect on the execution, since it can drive the decision
taken by a XOR gateway or act as a guard condition on a task. For instance, in our
running example, according to the value of the Evaluation data object, the condi-
tional expression What is the decision? is evaluated and a branch of the XOR split
gateway is chosen. As another example, the task Send Results can be executed
only if an acceptance or rejection letter is stored in the Letter data object.

Concerning the content of data objects, the standard left underspecified its
structure, in order to keep the notation independent from the kind of data struc-
ture required from time to time. We consider here a generic record structure,
assuming that a data object is just a list of fields, characterised by a name and
the corresponding value. Of course, a field can be used to represent the state of
a data object. More complex XML-like structures, which are out of the scope of
this work, can be anyway rendered resorting to nesting. The structure in terms
of fields of the data objects used in our running example is specified in Fig. 2(a).
Messages are structured as well; the structure of the messages specified in our
example is shown in Fig. 2(b). Values can be manipulated and inserted into data
object fields via assignments performed by tasks.

Guards, assignments, and structure of data objects and messages are not ex-
plicitly reported in the graphical representation of the BPMN model, but are de-
fined as attributes of the involved BPMN elements. We provide information on
their definition and functioning in Sec. 3, and show how MIDA users can specify
them in Sec. 4.
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(a) Paper ttitle, contact, authors,bodyu Reviews ttitle, reviewers, scores, bodiesu

Evaluation ttitle,decisionu Letter ttitle, evaluationu PaperReview ttitle, score,bodyu

(b) ReviewRequest ttitle, bodyu Notification ttitle, contact, authors, evaluation, scores, bodiesu

Review treviewerName, title, score,bodyu Feedback treviewerName, title, evaluationu

Figure 2: Structures of data objects (a) and messages (b) of the paper reviewing example.

3. A Formal Account of Multi-Instance Collaborations

In this section we formalise the semantics of BPMN collaborations supporting
multiple instances. We focus on those BPMN elements, informally presented in
the previous section, that are strictly needed to deal with multiple instantiation of
collaborations, namely multi-instance pools, message exchange events and tasks,
and data objects; additionally, in order to define meaningful collaborations, we
also consider some core BPMN elements, whose preliminary formalisation has
been given in [6, 5].

To simplify the formal treatment of the semantics, we resort to a textual rep-
resentation of BPMN models, which is more manageable for writing operational
rules than the graphical notation. Notice that we do not propose an alternative
modelling notation, but we just define a Backus-Naur Form (BNF) syntax of
BPMN model structures.

3.1. Textual notation of BPMN Collaborations
We report in Fig. 3 the BNF syntax defining the textual notation of BPMN

collaboration models. This syntax only describes the structure of models, without
taking into account all those aspects that come into play to describe the model
semantics, such as token distribution and messages. In the proposed grammar, the

C ::“ poolpp, P q | miPoolpp, P q | C1 ‖ C2

P ::“ startpeenb, eoq | startRcvpm : t̃, eoq | endpeiq | endSndpei,m : ˜expq | terminatepeiq

| andSplitpei, Eoq | xorSplitpei, Gq | andJoinpEi, eoq | xorJoinpEi, eoq

| eventBasedpei, pm1 : t̃1, eo1q, . . . , pmh : t̃h, eohqq

| taskpei, exp, A, eoq | taskRcvpei, exp, A,m : t̃, eoq | taskSndpei, exp, A,m : ˜exp, eoq

| interRcvpei,m : t̃, eoq | interSndpei,m : ˜exp, eoq | P1 ‖ P2

A ::“ ε | d.f ::“ exp, A

Figure 3: BNF syntax of BPMN collaboration structures.
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non-terminal symbols C, P and A represent Collaboration Structures, Process
Structures and Data Assignments, respectively. The first two syntactic categories
directly refer to the corresponding notions in BPMN, while the latter refers to
list of assignments used to specify updating of data objects. The terminal sym-
bols, denoted by the sans serif font, are the typical elements of a BPMN model,
i.e. pools, events, tasks and gateways.

We do not provide a direct syntactic representation of Data Objects. The evo-
lution of their state during the model execution is a semantic concern (described
later in this section). Thus, syntactically, only the connections between data ob-
jects and the other elements are relevant. They are rendered by references to data
objects within expressions, used to check when a task is ready to start (graph-
ically, the task has a connection incoming from the data object), to update the
values stored in a data object (graphically, the task has a connection outgoing to
the data object), and to drive the decision of a XOR split gateway. The standard
is quite loose in specifying what is the actual structure of data objects; we assume
here a generic record structure, assuming that the data object is just a list of fields,
characterised by a name and the corresponding value. Specifically, the field f of
the data object named d is accessed via the usual notation d.f. We assume that
different pools use data objects with different names (this can be easily achieved
by prefixing a data object name with the name of the enclosing pool).

Intuitively, a BPMN collaboration model is rendered in our syntax as a col-
lection of (single-instance and multi-instance) pools, each one specifying a pro-
cess. Formally, a collaboration C is a composition, by means of the ‖ operator,
of pools either of the form poolpp, P q (for single-instance pools) or miPoolpp, P q
(for multi-instance pools), where p is the name that uniquely identifies the pool,
and P is the enclosed process. At process level, we use e P E to uniquely denote a
sequence edge, while E P 2E a set of edges. Notably, we have that |E| ą 1 when
E is used in joining and splitting gateways; similarly, an event-based gateway
contains at least two message events, i.e. h ą 1 in each eventBased term. For the
convenience of the reader, we refer with ei to the edge incoming in an element,
with eo to the outgoing edge, and with eenb to the (spurious) edge denoting the
enabled status of a start event. We will use function edgespP q to get the set of all
edges used in the process P .

In the data-based setting we consider, messages may carry values. Therefore,
a sending action specifies a list of expressions whose evaluation will return a tuple
of values to be sent, while a receiving action specifies a template to select match-
ing messages and possibly assign values to data object fields. Formally, a message
is a pair m : ṽ, where m P M is the (unique) message name (i.e., the label of the
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message edge), and ṽ is a tuple of values, with v P V and ˜̈ denoting tuples (i.e.,
ṽ stands for xv1, . . . , vny). Sending actions have as argument a pair of the form
m : ˜exp. The precise syntax of expressions is deliberately not specified, it is just
assumed that they contain, at least, values v and data object fields d.f. Receiving
actions have as argument a pair of the form m : t̃, where t̃ denotes a template, that
is a sequence of expressions and formal fields used as pattern to select messages
received by the pool. Formal fields are data object fields identified by the ?-tag
(e.g., ?d.f) and are used to bind fields to values. In order to store the received val-
ues and allow their reuse, we associate to each message in the receiving process a
data object, whose name coincides with the message name. Data objects are as-
sociated to a task by means of a conditional expression, which is a guard enabling
the task execution, and a list of assignments A, each of which assigns the value of
an expression to a data field. When there is no data object as input to a task, the
guard is simply true, while if there is no data object in output to a task the list of
assignments is empty (ε).

The XOR split gateway specifies guard conditions in its outgoing edges, used
to decide which edge to activate according to the values of data objects. This is
formally rendered as a function G : E Ñ EXP mapping edges to conditional ex-
pressions, where EXP is the set of all expressions that includes the distinguished
expression default referring to the default sequence edge outgoing from the gate-
way (it is assigned to at most one edge). When convenient, we will deal with
function G as a set of pairs pe, exp).

The correspondence between the syntax used here to represent multi-instance
collaborations and the graphical notation of BPMN is exemplified by means of (an
excerpt of) our running example in Fig. 4 (the full version is Appendix A), while
the detailed one-to-one correspondence 1 is shown in Tables B.1, B.2 and B.3
available in Appendix B . Notably, in the textual notation there is no direct repre-
sentation of the sequential multi-instance task, which is anyway simply rendered
as a macro where the task is enclosed in a for loop (expressed by means of a
pair of XOR join and split gateways, and an additional data object ci for the loop
counter). Moreover, to properly manage lists of reviewers, scores and review bod-

1Notably, in the textual representation there is some information (messages content, receiving
templates, data object assignments, etc.) that is not reported in the graphical notation. In fact,
for the sake of understandability, according to the BPMN standard these technical details of col-
laborations are not part of the graphical representation, but they are part of the low-level XML
representation. This information is explicitly reported in our textual representation as it is needed
to properly define the execution semantics of the collaboration models.
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ies in the PC Chair process, we use fields with vector-like data structure, equipped
with the typical addpq and nextpq functionalities. Finally, we assume an evaluatepq
expression to combine review scores in a decision.

Overall paper reviewing collaboration scenario:
poolpppc, Ppcq ‖ miPoolppr, Prq ‖ poolppca, Pcaq

Reviewer process :
Pr “ startRcvpReviewRequest : t̃2, e15q ‖ taskpe15, true,A6, e16q ‖

taskSndpe16, exp7, ε,Review : ˜exp8, e17q ‖
taskRcvpe17, true, ε,Feedback : t̃3, e18q ‖ endpe18q

Templates , expressions , assignments :
t̃2 “ x?ReviewRequest.title, ?ReviewRequest.bodyy
A6 “ PaperReview.title :“ ReviewRequest.title,

PaperReview.score :“ assignscorepReviewRequest.bodyq,
PaperReview.body :“ writeReviewpReviewRequest.bodyq

exp7 “ PaperReview.score ‰ null and PaperReview.body ‰ null
˜exp8 “ xmyNamepq,PaperReview.title,PaperReview.score,PaperReview.bodyy
t̃3 “ xmyNamepq,ReviewRequest.title, ?Feedback.evaluationy

Figure 4: Textual representation of the running example (an excerpt).

In the textual notation, to support a compositional approach, each sequence
(resp. message) edge in the graphical notation is split in two parts: the part outgo-
ing from the source element and the part incoming into the target element; the two
parts are correlated by the unique edge name. Notably, even if our syntax would
allow to write collaborations that cannot be expressed in BPMN, we only consider
those terms that are derived from BPMN models.

It is worth noticing that we are making the following assumptions. First, when
a process is instantiated by means of a message start event, then this is the only
starting event in the process. Second, processes of multi-instance pools can be
instantiated only by a message start event. The messages received by this event
will carry the input data for the new instances, i.e. no data input element is used
in multi-instance pools.

3.2. Semantics of BPMN Collaborations
The syntax presented so far represents the mere structure of processes and

collaborations. To describe their semantics, we mark sequence edges by means
of tokens [20, p. 27]. In particular, we enrich the structural information with
a notion of execution state, defined by the state of each process instance (given
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by the marking of sequence edges and the values of data object fields) and the
store of the exchanged messages. We call process configurations and collaboration
configurations these stateful descriptions, which produce local and global effects,
respectively, on the collaboration execution.

Formally, a process configuration has the form xP, σ, αy, where: P is a process
structure; σ : E Ñ N is a sequence edge state function specifying, for each
sequence edge, the current number of tokens marking it (N is the set of natural
numbers); and α : F Ñ V is the data state function assigning values (possibly
null) to data object fields (F is the set of data fields and V the set of values). We
denote by σ0 (resp. α0) the edge (resp. data) state where all edges are unmarked
(resp. all fields are set to null), formally, σ0peq “ 0 @e P E and α0pd.fq “
null @d.f P F. The state obtained by updating in σ the number of tokens of the
edge e to n, written as σ ¨ re ÞÑ ns, is defined as follows: pσ ¨ re ÞÑ nsqpe1q returns
n if e1 “ e, otherwise it returns σpe1q. The update of data state α is similarly
defined. To simplify the definition of the operational rules, we introduce some
auxiliary functions to update states. Function inc : Sσ ˆ E Ñ Sσ (resp. dec :
Sσ ˆ EÑ Sσ), where Sσ is the set of edge states, updates a state by incrementing
(resp. decrementing) by one the number of tokens marking an edge in the state.
They are defined as incpσ, eq “ σ ¨ re ÞÑ σpeq ` 1s and decpσ, eq “ σ ¨ re ÞÑ
σpeq´1s. These functions extend in a natural ways to sets E of edges. as follows:
incpσ,Hq “ σ and incpσ, teu Y Eqq “ incpincpσ, eq, Eq; the cases for dec are
similar. We also use the function reset : Sσ ˆ E Ñ Sσ, instead, updates an
edge state by setting to zero the number of tokens marking an edge in the state:
resetpσ, eq “ σ ¨ re ÞÑ 0s. Also in this case the function extends in a natural
ways to sets of edges as follows: resetpσ,Hq “ σ and resetpσ, teu Y Eqq “
resetpresetpσ, eq, Eq. We use the evaluation relation eval Ď EXP ˆ Sα ˆ V to
evaluate an expression over a data state. This is a relation, not a function, because
an expression may contain non-deterministic operators and, in such a case, its
evaluation results in one of the possible values for that expression with respect to
the given data state. Notation evalpexp, α, vq states that v is one of the possible
values resulting from the evaluation of the expression exp on the data state α. This
relation is not explicitly defined, since the syntax of expressions is deliberately
not specified; we only assume that evalpdefault, α, vq implies v “ false for any
α. The relation extends to tuples component-wise. Finally, relation upd Ď Sα ˆ
An ˆ Sα, where Sα is the set of data states and A is the set of assignments, is
used to update data object values. Notation updpα,A, α1q states that α1 is one
of the possible states resulting from the update of α with assignment A. The
relation is inductively defined as follows: for any α, updpα, ε, αq; updpα, d.f :“
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exp, α ¨ rd.f ÞÑ vsq with v such that evalpexp, α, vq; and updpα, pA1, A2q, α
2q with

α2 such that updpα1, A2, α
2q and α1 such that updpα,A1, α

1q.
A collaboration configuration has the form xC, ι, δy, where: C is a collab-

oration structure; ι : PÑ 2SσˆSα is the instance state function mapping each
pool name (P is the set of pool names) to a multiset of instance states (ranged
over by I and containing pairs of the form xσ, αy); and δ : MÑ 2V

n is a mes-
sage state function specifying, for each message name m, a multiset of value
tuples representing the messages received along the message edge labelled by
m. Function δ can be updated in a way similar to σ, enabling the definition
of the following auxiliary functions. Function add : Sδ ˆ M ˆ Vn Ñ Sδ
(resp. rm : Sδ ˆ M ˆ Vn Ñ Sδ), where Sδ is the set of message states, al-
lows updating a message state by adding (resp. removing) a value tuple for a
given message name in the state: addpδ,m, ṽq “ δ ¨ rm ÞÑ δpmq ` tṽus and
rmpδ,m, ṽq “ δ ¨ rm ÞÑ δpmq ´ tṽus, where ` and ´ are the union and substrac-
tion operations on multisets. Finally, the instance state function ι can be updated
in two ways: by adding a newly created instance or by modifying an existing one:
newI pι, p, σ, αq “ ι ¨ rp ÞÑ ιppq ` txσ, αyus and updI pι, p, Iq “ ι ¨ rp ÞÑ Is.

Let us go back to our running example. The scenario in its initial state is
rendered as the collaboration configuration xppoolpppc, Ppcq ‖ miPoolppr, Prq ‖
poolppca, Pcaqq, ι, δy where: ιpppcq “ txσ, αyu with σ “ σ0 ¨ reenb ÞÑ 1s and
α “ α0 ¨ rPaper.title, . . . ,Paper.body ÞÑ title, . . . , texts; and ιpprq “ ιppcaq “ H.
The α function of the ppc instance is initialised with the content of the Paper data
input.

The operational semantics is defined by means of a labelled transition system
(LTS), whose definition relies on an auxiliary LTS on the behaviour of processes.
The latter is a triple xP ,L,Ñy where: P , ranged over by xP, σ, αy, is a set of
process configurations; L, ranged over by `, is a set of labels; and ÑĎ P ˆ

L ˆ P is a transition relation. We will write xP, σ, αy `
ÝÑ xP, σ1, α1y to indicate

that pxP, σ, αy, `, xP, σ1, α1yq PÑ, and say that ‘the process in the configuration
xP, σ, αy can do a transition labelled by ` and become the process configuration
xP, σ1, α1y in doing so’. Since process execution only affects the current states,
and not the process structure, for the sake of readability we omit the structure from
the target configuration of the transition. Similarly, to further improve readability,
we also omit α when it is not affected by the transition. Thus, for example, a
transition xP, σ, αy `

ÝÑ xP, σ1, αy can be written as xP, σ, αy `
ÝÑ σ1.

The labels used by the process transition relation are generated by the follow-
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xstartpeenb, eoq, σ, αy
ε
ÝÑ incpresetpσ, eenbq, eoq σpeenbq ą 0 pP-Startq

xendpeiq, σ, αy
ε
ÝÑ decpσ, eiq σpeiq ą 0 pP-Endq

xterminatepeiq, σ, αy
kill
ÝÝÝÑ decpσ, eiq σpeiq ą 0 pP-Terminateq

xstartRcvpm : t̃, eoq, σ, αy
new m: ẽt
ÝÝÝÝÝÝÝÑ incpσ, eoq eval p̃t, α, ẽtq pP-StartRcvq

xendSndpei,m : ˜expq, σ, αy
!m:ṽ
ÝÝÝÑ decpσ, eiq

σpeiq ą 0
evalp ˜exp, α, ṽq

pP-EndSndq

xandSplitpei, Eoq, σ, αy
ε
ÝÑ incpdecpσ, eiq, Eoq σpeiq ą 0 pP-AndSplitq

xxorSplitpei, tpe, expqu YGq, σ, αy
ε
ÝÑ incpdecpσ, eiq, eq σpeiq ą 0,

evalpexp, α, trueq
pP-XorSplit1 q

xxorSplitpei, tpe, defaultqu YGq, σ, αy
ε
ÝÑ incpdecpσ, eiq, eq

σpeiq ą 0,
@pej , expjq P G .
evalpexpj , α, falseq

pP-XorSplit2 q

xandJoinpEi, eoq, σ, αy
ε
ÝÑ incpdecpσ,Eiq, eoq @e P Ei . σpeq ą 0 pP-AndJoinq

xxorJoinpteu Y Ei, eoq, σ, αy
ε
ÝÑ incpdecpσ, eq, eoq σpeq ą 0 pP-XorJoinq

xeventBasedpei, pm1 : t̃1, eo1q, . . . , pmh : t̃h, eohqq, σ, αy
?mj : ẽtj,ε
ÝÝÝÝÝÝÝÑ incpdecpσ, eiq, eojq

σpeiq ą 0, 1 ď j ď h
evalp t̃j , α, ẽtj q

pP-EventGq

xtaskpei, exp, A, eoq, σ, αy
ε
ÝÑ xincpdecpσ, eiq, eoq, α

1y

σpeiq ą 0,
evalpexp, α, trueq,
updpα,A, α1q

pP-Taskq

xtaskRcvpei, exp, A,m : t̃, eoq, σ, αy
?m: ẽt,A
ÝÝÝÝÝÝÑ incpdecpσ, eiq, eoq

σpeiq ą 0,
evalpexp, α, trueq,
evalp t̃ , α, ẽt q

pP-TaskRcvq

xtaskSndpei, exp1, A,m : ˜exp, eoq, σ, αy
!m:ṽ
ÝÝÝÑ xincpdecpσ, eiq, eoq, α

1y

σpeiq ą 0,
evalpexp1, α, trueq,
updpα,A, α1q,
evalp ˜exp, α, ṽq

pP-TaskSndq

xinterRcvpei,m : t̃, eoq, σ, αy
?m: ẽt,ε
ÝÝÝÝÝÝÑ incpdecpσ, eiq, eoq

σpeiq ą 0
evalp t̃ , α, ẽt q

pP-InterRcvq

xinterSndpei,m : ˜exp, eoq, σ, αy
!m:ṽ
ÝÝÝÑ incpdecpσ, eiq, eoq

σpeiq ą 0
evalp ˜exp, α, ṽq

pP-InterSndq

xP1, σ, αy
kill
ÝÝÝÑ xσ

1
, α

1
y

pP-Kill1 q

xP1 ‖ P2, σ, αy
kill
ÝÝÝÑ xresetpσ

1
, edgespP1 ‖ P2qq, α

1
y

xP2, σ, αy
kill
ÝÝÝÑ xσ

1
, α

1
y

pP-Kill2 q

xP1 ‖ P2, σ, αy
kill
ÝÝÝÑ xresetpσ

1
, edgespP1 ‖ P2qq, α

1
y

xP1, σ, αy
`
ÝÑ xσ

1
, α

1
y ` ‰ kill

pP-Int1 q

xP1 ‖ P2, σ, αy
`
ÝÑ xσ

1
, α

1
y

xP2, σ, αy
`
ÝÑ xσ

1
, α

1
y ` ‰ kill

pP-Int2 q

xP1 ‖ P2, σ, αy
`
ÝÑ xσ

1
, α

1
y

Figure 5: BPMN process semantics.

ing production rules:

` ::“ τ | !m : ṽ | ?m : ẽt, A | new m : ẽt τ ::“ ε | kill
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The meaning of labels is as follows. Label τ denotes an action internal to the pro-
cess, while !m : ṽ and ?m : ẽt, A denote sending and receiving actions, respectively.
Notation ẽt denotes an evaluated template, that is a sequence of values and formal
fields. Notably, the receiving label carries information about the data assignments
A to be executed, at collaboration level, after the message m is actually received.
Label new m : ẽt denotes taking place of a receiving action that instantiates a new
process instance (i.e., it corresponds to the occurrence of a start message event in
a multi-instance pool). The meaning of internal actions is as follows: ε denotes
an internal computation concerning the movement of tokens, while kill denotes
taking place of the termination event.

The operational rules defining the transition relation of the processes seman-
tics are given in Fig. 5. We now briefly comment on some of rules. Rule P -Start
starts the execution of a (single-instance) process when it has been activated (i.e.,
the enabling edge eenb is marked). The effect of the rule is to increment the num-
ber of tokens in the edge outgoing from the start event and to reset the marking
of the enabling edge. Rule P -End instead is enabled when there is at least one
token in the incoming edge of the end event, which is then simply consumed.
Rule P -Terminate is similar, but it produces a kill label used to force the termi-
nation of the process instance. Rule P -StartRcv starts the execution of a process
by producing a label denoting the creation of a new instance and containing the
information for consuming a received message at the collaboration layer (see rule
C -CreateMi in Fig. 6). Rule P -EndSnd is enabled when there is at least a to-
ken in the incoming edge of the end event, which is then removed. Moreover, a
send label is produced in order to deliver the produced message at the collabora-
tion layer (see rules C -Deliver and C -DeliverMi in Fig. 6). Rule P -AndSplit
is applied when there is at least one token in the incoming edge of an AND split
gateway; as result of its application the rule decrements the number of tokens in
the incoming edge and increments that in each outgoing edge. Rule P -XorSplit1
is applied when a token is available in the incoming edge of a XOR split gateway
and a conditional expression of one of its outgoing edges is evaluated to true; the
rule decrements the token in the incoming edge and increments the token in the
selected outgoing edge. Notably, if more edges have their guards satisfied, one
of them is non-deterministically chosen. Rule P -XorSplit2 is applied when all
guard expressions are evaluated to false; in this case the default edge is marked.
Rule P -AndJoin decrements the tokens in each incoming edge and increments
the number of tokens of the outgoing edge, when each incoming edge has at least
one token. Rule P -XorJoin is activated every time there is a token in one of
the incoming edges, which is then moved to the outgoing edge. Rule P -EventG
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is activated when there is a token in the incoming edge and there is a message
mj to be consumed, so that the application of the rule moves the token from the
incoming edge to the outgoing edge corresponding to the received message. A
label corresponding to the consumption of a message is observed. Rule P -Task
deals with tasks, possibly equipped with data objects. It is activated only when the
guard expression is satisfied and there is a token in the incoming edge, which is
then moved to the outgoing edge. The rule also updates the values of the data ob-
jects connected in output to the task. Rule P -TaskRcv is similar, but it produces
a label corresponding to the consumption of a message. In this case, however, the
data updates are not executed, because they must be done only after the message
is actually received; therefore, the assignment are passed by means of the label to
the collaboration layer (see rule C -ReceiveMi in Fig. 6). Rule P -TaskSnd sends
a message, updates the data object and moves the incoming token to the outgoing
edge. The produced send label is used to deliver the message at the collabora-
tion layer (see rule C -DeliverMi in Fig. 6). Notably, here we consider tasks with
atomic execution; we show how this requirement can be relaxed later in this sec-
tion. Rules P -Kill1 and P -Kill2 deal with the propagation of killing action on
the scope of the process instance, thus resetting the marking of the instance edges.
Finally, Rules P -Int1 and P -Int2 deal with interleaving in a standard way for
process elements.

Now, the labelled transition relation on collaboration configurations formalises
the message exchange and the data update according to the process evolution.
The LTS is a triple xC,Lc,Ñcy where: C, ranged over by xC, ι, δy, is a set of
collaboration configurations; Lc, ranged over by l, is a set of labels; and ÑcĎ

C ˆ Lc ˆ C is a transition relation. We apply the same readability simplifications
we use for process configuration transitions. The labels used by the collaboration
transition relation are generated by the following production rules:

l ::“ τ | !m : ṽ | ?m : ṽ | new m : ṽ

Notably, at collaboration level the receiving label just keeps track of the received
message. To define the collaboration semantics, an additional auxiliary function is
needed: matchpẽt, ṽq is a partial function performing pattern-matching on struc-
tured data (like in [21]), thus determining if an evaluated template ẽt matches a
tuple of values ṽ. A successful matching returns a list of assignments A, updating
the formal fields in the template; otherwise, the function is undefined. The rules
defining the match function are as follows:

• matchpv, vq “ ε;
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• matchp?d.f, vq “ pd.f ::“ vq

• matchppet1, ẽtq, pv1, ṽqq “ matchpet1, v1q,matchpẽt, ṽq

The meaning of the rules is straightforward: an evaluated template matches
against a value tuple if both have the same number of fields and corresponding
fields do match; two values match only if they are identical, while a formal field
matches any value.

The operational rules defining the transition relation of the collaboration se-
mantics are given in Fig. 6. We now briefly comment on some of rules.

The first two rules deal with instance creation. In the single instance case
(rule C-Create), an instance is created only if no instance exists for the consid-
ered pool, and there is a matching message. As result, the assignments for the
received data are performed, and the message is consumed. In the multi-instance
case (rule C-CreateMi), the created instance is simply added to the multiset of
existing instances of the pool. The next six rules allow a single pool, representing
organisation p, to evolve according to the evolution of one of its process instances
xP, σ, αy. In particular, if the process instance performs an internal action (rules
C-Internal or C-InternalMi) or a receiving/delivery action (rules C-Receive, C-
ReceiveMi, C-Deliver or C-DeliverMi), the pool performs the corresponding ac-
tion at collaboration layer.

As for instance creation, rules C-Receive and C-ReceiveMi can be applied
only if there is at least one message action. Recall indeed that at process level
the receiving labels just indicate the willingness of a process instance to consume
a received message, regardless the actual presence of messages. The delivering of
messages is based on the correlation mechanism: the correlation data are identi-
fied by the template fields that are not formal (i.e., those fields requiring specific
matching values). Moreover, when a process performs a sending action, the mes-
sage state function is updated in order to deliver the sent message to the receiving
participant. Finally, Rules C-Int1 and C-Int2 permit to interleave the execution of
actions performed by pools of the same collaboration, so that if a part of a larger
collaboration evolves, the whole collaboration evolves accordingly.

It is worth noticing that the semantics has been defined according to a global
perspective. Indeed, the overall state of a collaboration is collected by functions ι
and δ of its configuration. On the other hand, the global semantics of a collabora-
tion configuration is determined, in a compositional way, by the local semantics
of the involved processes, which evolve independently from each other. The use
of a global perspective simplifies (i) the technicalities required by the formal defi-
nition of the semantics, and (ii) the implementation of the animation of the overall
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ιppq “ H xP, σ0, α0y
new m : ẽt
ÝÝÝÝÝÝÑ xσ1, α1y

ṽ P δpmq matchpẽt, ṽq “ A updpα1, A, α2q
pC -Createq

xpoolpp, P q, ι, δy
new m : ṽ
ÝÝÝÝÝÑ xnewI pι, p, σ1, α2q, rmpδ,m, ṽqy

xP, σ0, α0y
new m : ẽt
ÝÝÝÝÝÑxσ1, α1y ṽ Pδpmq matchpẽt, ṽq“A updpα1, A, α2q

pC -CreateMiq
xmiPoolpp, P q, ι, δy

new m : ṽ
ÝÝÝÝÝÑ xnewI pι, p, σ1, α2q, rmpδ,m, ṽqy

ιppq “ txσ, αyu xP, σ, αy
τ
ÝÑ xσ1, α1y

pC -Internalq
xpoolpp, P q, ι, δy

τ
ÝÑ xupdI pι, p, txσ1, α1yuq, δy

ιppq “ txσ, αyu ` I xP, σ, αy
τ
ÝÑ xσ1, α1y

pC -InternalMiq
xmiPoolpp, P q, ι, δy

τ
ÝÑ xupdI pι, p, txσ1, α1yu ` Iq, δy

ιppq “ txσ, αyu xP, σ, αy
?m : ẽt,A
ÝÝÝÝÝÑ xσ1, α1y

ṽ P δpmq matchpẽt, ṽq “ A1 updpα1, pA1, Aq, α2q
pC -Receiveq

xpoolpp, P q, ι, δy
?m : ṽ
ÝÝÝÑ xupdI pι, p, txσ1, α2yuq, rmpδ,m, ṽqy

ιppq “ txσ, αyu ` I xP, σ, αy
?m : ẽt,A
ÝÝÝÝÝÑ xσ1, α1y

ṽ P δpmq matchpẽt, ṽq “ A1 updpα1, pA1, Aq, α2q
pC -ReceiveMiq

xmiPoolpp, P q, ι, δy
?m : ṽ
ÝÝÝÑ xupdI pι, p, txσ1, α2yu ` Iq, rmpδ,m, ṽqy

ιppq “ txσ, αyu xP, σ, αy
!m : ṽ
ÝÝÝÑ xσ1, α1y

pC -Deliverq
xpoolpp, P q, ι, δy

!m : ṽ
ÝÝÝÑ xupdI pι, p, txσ1, α1yuq, addpδ,m, ṽqy

ιppq “ txσ, αyu ` I xP, σ, αy
!m : ṽ
ÝÝÝÑ xσ1, α1y

pC -DeliverMiq
xmiPoolpp, P q, ι, δy

!m : ṽ
ÝÝÝÑ xupdI pι, p, txσ1, α1yu ` Iq, addpδ,m, ṽqy

xC1, ι, δy
l
ÝÑ xι1, δ1y

pC -Int1 q
xC1 ‖ C2, ι, δy

l
ÝÑ xι1, δ1y

xC2, ι, δy
l
ÝÑ xι1, δ1y

pC -Int2 q
xC1 ‖ C2, ι, δy

l
ÝÑ xι1, δ1y

Figure 6: BPMN collaboration semantics.
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collaboration execution. The compositional definition of the semantics, anyway,
would allow to easily pass to a purely local perspective, where state functions are
kept separate for each process.

3.3. Non-atomic tasks
So far, we have only considered tasks with atomic execution. Indeed, for a

given task, the evaluation of its enabling guard, the execution of its activities, the
possible sending/receiving of a message, and the data object assignments, are per-
formed atomically. This semantics fits well in many scenarios, e.g. when a task
acts on a data object representing a paper document managed by a human actor,
which cannot be accessed concurrently by other actors involved in the collabora-
tion. However, there are also some situations where non-atomic access is more
suitable, e.g. when data objects are shared digital documents.

Actually, the BPMN standard is intentionally loose on this point, in order to
allow the use of the modelling language in different contexts of use. To more
effectively support designers, we believe that both modality of access to data ob-
jects should be included in our formalisation. This enables the identification of
concurrency issues in those situations where they can arise and, at same time, it
allows to not take into account such issues when in the reality they cannot occur.
We show below how the atomic execution constraint is relaxed.

Form the syntactic point of view, we have to extend the syntax of processes
with specific constructs representing the tasks with non-atomic access to data ob-
jects:

P ::“ . . . | task_napt, ei, exp, A, eoq
| taskRcv_napt, ei, exp, A,m : t̃, eoq | taskSnd_napt, ei, exp, A,m : ˜exp, eoq

From the practical point of view, we can think of these as BPMN task elements
with an appropriate attribute set to specify that their execution is non atomic.
Notably, now each task specifies a name (range over by t).

Now, to achieve a non-atomic semantics for the above elements we have only
to include in process and collaboration configurations information about the status
of tasks, which can be idle (i), running (r) or exchanged message (m). Formally,
this is rendered as an additional state function, denoted by ψ, mapping task names
to their execution status. As usual, to change the status of a task, we use dedicated
functions defined as follows:

• setIdlepψ, tq “ ψ ¨ rt ÞÑ is
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• setRunpψ, tq “ ψ ¨ rt ÞÑ rs

• setMsgpψ, tq “ ψ ¨ rt ÞÑ ms

xtask_napt, ei, exp, A, eoq, σ, α, ψy
ε
ÝÑ xdecpσ, eiq, setRunpψ, tqy

σpeiq ą 0, ψptq “ i,
evalpexp, α, trueq

pP -RunTaskq

xtask_napt, ei, exp, A, eoq, σ, α, ψy
ε
ÝÑ xincpσ, eoq, α

1, setIdlepψ, tqy
updpα,A, α1q pP -CmpTaskq

xtaskRcv_napt, ei, exp, A,m : t̃, eoq, σ, α, ψy
ε
ÝÑ xdecpσ, eiq, setRunpψ, tqy

σpeiq ą 0, ψptq “ i,
evalpexp, α, trueq

pP -RunTaskRcvq

xtaskRcv_napt, ei, exp, A,m : t̃, eoq, σ, α, ψy
?m : ẽt,ε
ÝÝÝÝÝÑ xincpσ, eoq, setMsgpψ, tqy

ψptq “ r,
evalp t̃ , α, ẽt q

pP -TaskRcvq

xtaskRcv_napt, ei, exp, A,m : t̃, eoq, σ, α, ψy
ε
ÝÑ xincpσ, eoq, α

1, setIdlepψ, tqy

ψptq “ m,
updpα,A, α1q

pP -CmpTaskRcvq

xtaskSnd_napt, ei, exp1, A,m : ˜exp, eoq, σ, α, ψy
ε
ÝÑ xdecpσ, eiq, setRunpψ, tqy

σpeiq ą 0, ψptq “ i,
evalpexp, α, trueq

pP -RunTaskSndq

xtaskSnd_napt, ei, exp1, A,m : ˜exp, eoq, σ, α, ψy
!m : ṽ
ÝÝÝÑ xincpσ, eoq, setMsgpψ, tqy

ψptq “ r,
evalp ˜exp, α, ṽq

pP -TaskSndq

xtaskSnd_napt, ei, exp1, A,m : ˜exp, eoq, σ, α, ψy
ε
ÝÑ xincpσ, eoq, α

1, setIdlepψ, tqy

ψptq “ m,
updpα,A, α1q

pP -CmpTaskSndq

Figure 7: BPMN semantics of non-atomic tasks.

Rules for non-atomic tasks are reported in Fig. 7. Basically, the rule for non-
communicating tasks is split in two rules: P -RunTask dealing with task activa-
tion and P -CmpTask dealing with task completion. Notice that the data update
assignments are performed at the completion time. Similarly, the rules for receiv-
ing/sending tasks are split in three rules: one for task activation, one for receiv-
ing/sending the message while the task is running, and one for task completion
(and, hence, data updating).

No change are required at the collaboration layer, apart for the addition of
ψ in the collaboration configurations, which anyway is not actively involved in
collaboration transitions.
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4. The MIDA Animation Tool

In this section, we present our BPMN animator tool MIDA (Multiple In-
stances and Data Animator) and provide details about its implementation and
use. MIDA is based on the Camunda bpmn.io web modeller. More precisely, we
have integrated our formal framework into the bpmn.io token simulation plug-in.
The MIDA tool, as well as its source code, user guide and examples, are freely
available from http://pros.unicam.it/mida/.

MIDA is a web application written in JavaScript. Its graphical interface,
shown in Fig. 8, is conceived as a modelling environment. It allows users to
create BPMN models using all the facilities of the Camunda modeller. In particu-
lar, data/message structures, guards and assignments can be specified by using the
Property Panel, which permits accessing element attributes. This information is
stored in appropriate elements of the standard XML representation of the BPMN
model. When the animation mode is activated, by clicking the corresponding but-
ton, one or more instances of the desired processes can be fired. To do this, users
have to press the play button depicted over each fireable start event. This creates
a new token labelled with a number uniquely representing a process instance. To-
kens will cross the model following the rules induced by our formal semantics.
The execution of a process instance terminates once all its tokens cannot move
forward. We refer to the MIDA’s user guide for more details on the practical use
of the tool.

MIDA animation features may be an effective support to business process de-
signers in their modelling activities, especially when multi-instance collaborations
are involved. Indeed, in this context, the choice of correlation data is an error-
prone task that is a burden on the shoulders of the designers. For example, let us
consider the Reviewer participant in our running scenario; if the template within

Figure 8: MIDA web interface.
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the task for receiving the feedback would not properly specify the correlation data
(e.g., t̃3 “ x?Feedback.reviewerName, ?Feedback.title, ?Feedback.evaluationy),
the feedback messages could not be properly delivered. Indeed, each Reviewer
instance would be able to match any feedback message, regardless the reviewer
name and the paper title specified in the message. Thus, the feedback messages
could be mixed up. Fortunately, MIDA allows to detect, and hence solve, this
correlation issue. Similarly, MIDA helps designers to detect issues concerning
the exchange of messages. In fact, malformed or unexpected messages may intro-
duce deadlocks in the execution flow, which can be easily identified by looking for
blocked tokens in the animation. For instance, in the running example a feedback
message without the evaluation field would be never consumed by a receiving
task of the Reviewer instances. Finally, since our animation is based on data ob-
ject values, also issues due to bad data handling can be detected using MIDA. For
instance, let us suppose that the Discuss task in PC Chair would not be in a loop,
but it would have its outgoing edge directly connected to the XOR join in its right
hand side. After the execution of the Discuss task, the task Send Feedback would
be performed, and the task Send Results would be activated. However, the guard
of the latter task would not be satisfied, because the Letter data object would not
be properly instantiated. This would cause a deadlock, which can be found out by
using MIDA.

To sum up, the MIDA tool can support designers in debugging their multi-
instance collaboration models, as it permits to check the evolution of data, mes-
sages and processes marking while executing the models step-by-step. Like in
code debugging, the identification of the bug is still in charge of the human user.

5. Related Work

In this section we discuss the most relevant attempts in formalising multiple
instances and data for BPMN models. We then compare MIDA with other ani-
mation tools.
On Formalising Multiple Instances and Data. Many works in the literature at-
tempted to formalise the core features of BPMN. However, most of them (see,
e.g., [8, 7, 27, 3, 24]) do not consider multiple instances and data, which are the
focus of our work. Considering these features in BPMN collaborations, relevant
works are [16, 17, 13, 9]. Meyer et al. in [16] focus on process models where data
objects are shared entities and the correlation mechanism is used to distinguish
and refer data object instances. Use of data objects local to (multiple) instances,
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exchange of messages between participants, and correlation of messages are in-
stead our focus. In [17], the authors describe a model-driven approach for BPMN
to include the data perspective. Differently from us, they do not provide a for-
mal semantics for BPMN multiple instances. Moreover, they do not use data in
decision gateways. Moreover, Kheldoun et al. propose in [13] a formal seman-
tics of BPMN covering features such as message-exchange, cancellation, multiple
instantiation of sub-processes and exception handling, while taking into account
data flow aspects. However, they do not consider multi-instance pools and do not
address the correlation issue. Semantics of data objects and their use in decision
gateways is instead proposed by El-Saber and Boronat in [9]. Differently from
us, this formal treatment does not include collaborations and, hence, exchange of
messages and multiple instances. Considering other modelling languages, YAWL
[26] and high-level Petri nets [23] provide direct support for the multiple instance
patterns. However, they lack support for handling data. In both cases, process
instances are characterised by their identities, rather than by the values of their
data, which are however necessary to correlate messages to running instances.

Regarding choreographies, relevant works are [15, 14, 11]. López et al. [15]
study the choreography problem derived from the synchronisation of multiple in-
stances necessary for the management of data dependencies. Knuplesch et al.
[14] introduces a data-aware collaboration approach including formal correctness
criteria. However, they define the data perspective using data-aware interaction
nets, a proprietary notation, instead of the wider accepted BPMN. Improving data-
awareness and data-related capabilities for choreographies is the goal of Hahn et
al. [11]. They propose a way to unify the data flow across participants with the
data flow inside a participant. The scope of data objects is global to the overall
choreography, while we consider data objects with scope local to participant in-
stances, as prescribed by the BPMN standard. Apart from the specific differences
mentioned above, our work differs from the others for the focus on collaboration
diagrams, rather than on choreographies. This allows us to specifically deal with
multiple process instantiation and messages correlation.

Finally, concerning the correlation mechanism, the BPMN standard and,
hence, our work have been mainly inspired by works in the area of service-
oriented computing (see the relationship between BPMN and WS-BPEL [19] in
[20, Sec. 14.1.2]). In fact, when a service engages in multiple interactions, it is
generally required to create an instance to concurrently serve each request, and
correlate subsequent incoming messages to the created instances. Among the oth-
ers, the COWS [21] formalism captures the basic aspects of SOC systems, and
in particular service instantiation and message correlation à la WS-BPEL. From
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the formal point of view, correlation is realised by means of a pattern-matching
function similar to that used in our formal semantics.
Business Process Animation. Relevant contributions about animation of busi-
ness processes are proposed by Allweyer and Schweitzer [1], and by Signavio
and Visual Paradigm. Differently from us, in their implementations they do not
fully support the interplay between multiple instances, messages and data. All-
weyer and Schweitzer propose a tool for animating BPMN models that, however,
only considers processes, as it discards message exchanges, both semantically
and graphically. In addition, gateway decisions are performed manually by users
during the animation, instead of depending on data. The animator of the Signavio
modeller allows users to step through the process element-by-element and to focus
completely on the process flow. However, it discards important elements, such as
message flows and data objects. Hence, Signavio animates only non-collaborative
processes, without data-driven decisions, which instead are key features of our
approach. Finally, Visual Paradigm provides an animator that supports also col-
laboration diagrams. This tool allows users to visualise the flow of messages and
implements the semantics of receiving tasks and events, but it does not animate
data evolution and multiple instances.

6. Concluding Remarks

This paper aims at answering the following research questions:
RQ1: What is the precise semantics of multi-instance BPMN collaborations?
RQ2: Can supporting tools assist designers to spot erroneous behaviours related

to multiple instantiation and data handling in BPMN collaborations?
The answer to RQ1 is mainly given in Sec. 3, where we provide a novel op-
erational semantics clarifying the interplay between control features, data, mes-
sage exchanges and multiple instances. The answer to RQ2 is instead given in
Sec. 4, where we propose MIDA, an animator tool, based on our formal seman-
tics, that provides the visualisation of the behaviour of a collaboration by taking
into account the data-based correlation of messages to process instances. We have
shown, on our running example, that MIDA supports the identification of erro-
neous interactions, due e.g. to incorrect data handling or wrong message correla-
tion.

We conclude the paper by discussing lessons learned, and the assumptions and
limitations of our approach, also touching upon directions for future work.
Lessons learned. The BPMN standard has the flavour of a framework rather than
of a concrete language, because some aspects are not covered by it, but left to the
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designer [25]. For example, the standard left underspecified the internal structure
of data objects: “Data Object elements can optionally reference a DataState el-
ement [...] The definition of these states, e.g., possible values and any specific
semantics are out of scope of this specification” [20, p. 206]. This gap left by the
BPMN standard must be filled in order to concretely deal with data in our formal-
isation, and hence in the animation of BPMN collaboration models. To this aim,
we consider a generic record structure for data objects. Similarly, the expression
language operating on data is left unspecified by the standard. This is not an is-
sue for the formalisation, but the expression language has to be instantiated in the
concrete implementation of the animator. In MIDA, for the sake of simplicity,
we resort to the expression language of JavaScript, as this is the programming
language used for implementing the tool. It conveniently allows, for example, to
define expression operators that randomly select a value from a given set, which
are used to define non-deterministic behaviours in our running example (see, e.g.,
operator assignscorepq used by the Prepare Review task).

In addition, the lack of a formal semantics in the standard may lead to different
interpretations of the tricky features of BPMN. In this work we aim at clarifying
the interplay between multiple instances, messages and data objects. In particular,
the standard provides an informal description of the mechanism used to correlate
messages and process instances [20, p. 74], which we have formalised and imple-
mented by following the solution adopted by the standard for executable business
processes [19].
Assumptions and limitations. Our formal semantics focusses on the communica-
tion mechanisms of collaborative systems, where multiple participants cooperate
and share information. Thus, we have left out those features of BPMN whose
formal treatment is orthogonal to the addressed problem, such as timed events
and error handling. To keep our formalisation more manageable, multi-instance
parallel tasks, sub-processes and data stores are left out too, despite they can be
relevant for multi-instance collaborations. We discuss below what would be the
impact of their addition to our work.

Let us first consider multi-instance tasks. The sequential instances case, as
shown in the formalisation of our running example, can be simply dealt with as a
macro; indeed, it corresponds to a task enclosed within a ‘for’ loop. The parallel
case, instead, is more tricky. It is a common practice to consider it as a macro as
well, which can be replaced by tasks between AND split and join gateways [8, 26],
assuming to know at design time the number of instances to be generated. How-
ever, this replacement is no longer admissible when this kind of element is used
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Figure 9: Parallel multi-instance send tasks.

within multi-instance pools, thus requiring a direct definition of the formal seman-
tics of multi-instance parallel tasks. In fact, consider for example the collaboration
fragment in Fig. 9(a), where a multi-instance receiving task communicates with
a multi-instance pool. Supposing to have three instances of Task A, by applying
the mentioned macro replacement we would obtain the collaboration fragment in
Fig. 9(b), which is not semantically equivalent. Indeed, each instance of ORG B
in Fig. 9(a) has a Task B that sends only one message, while in Fig. 9(b) each
instance has a Task B sending three times the same messages, one for each copy of
Task A in ORG A. This suggests that multi-instance parallel tasks are not simple
macros, but they deserve their own direct formalisation.

Similar reasoning can be done for sub-processes, which again are not mere
macros. In fact, in general, simply flattening a process by replacing its sub-process
elements by their expanded processes results in a model with different behaviour.
This because a sub-process, for example, delimits the scope of the enclosed data
objects and confines the effect of termination events. Therefore, it would be nec-
essary to explicitly deal with the resulting multi-layer perspective, which adds
complexity to the formal treatment. The formalisation would become even more
complex if we consider multi-instance sub-processes, which would require an ex-
tension of the correlation mechanism.

Moreover, we do not consider BPMN data stores, used to memorise shared
information that will persist beyond process instance completion. Providing a
formalisation for data stores would require to extend collaboration configurations
with a further state function, dedicated to data stores. Moreover, the treatment
of data assignments would become more intricate, as it would be necessary to
distinguish updates of data objects from those of data stores, which affect different
data state functions in the configuration.
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Finally, values of data objects can be somehow “constrained” by assignments.
Indeed, as mentioned above in the Lessons learned paragraph, assignment expres-
sions can restrict the set of possible values that can be assigned to a data object
field. Moreover, guard expressions of tasks or XOR split gateways can check if
data object values respect given conditions. However, such constraints imposed
on data object values are currently “hidden” in the expressions and, hence, in their
evaluation. Assignments could be extended with an explicit definition of con-
straints in order to ease their specification and make more evident the effects of
assignments on data values.
Future Work. We plan to continue our programme to effectively support mod-
elling and animation of BPMN multi-instance collaborations, by overcoming the
above limitations. More practically, we intend to enlarge the range of functional-
ities provided by MIDA, especially for what concerns the data perspective, and
improve its usability. Moreover, we plan to exploit the formal semantics, and its
implementation, to enable the verification of properties using, e.g., model check-
ing techniques.
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Appendix A. Running Example Full Version

poolpppc, Ppcq ‖ miPoolppr, Prq ‖ poolppca, Pcaq

Ppc “ startpeenb, e1q ‖ xorJoinpte1, e31 u, e
1
1q ‖

taskSndpe11, c1.c ‰ null, c1.c :“ c1.c` 1,ReviewRequest : ˜exp1, e
2
1 q ‖

xorSplitpe21, tpe
3
1 , c1.c ď 3q, pe2, defaultquq ‖ xorJoinpte2, e32 u, e

1
2q ‖

taskRcvpe12, c2.c ‰ null, pc2.c :“ c2.c` 1,A1q,Review : t̃1, e22 q ‖
xorSplitpe22, tpe

3
2 , c2.c ď 3q, pe3, defaultquq ‖ taskpe3, exp2,A2, e4q ‖ xorJoinpte4, e11u, e5q ‖

xorSplitpe5, tpe6,Evaluation.decision “ acceptq, pe7,Evaluation.decision “ rejectq,
pe8,Evaluation.decision “ discussquq ‖

taskpe6, true,A3, e9q ‖ taskpe7, true,A4, e10q ‖ taskpe8, true,A5, e11q ‖ xorJoinpte9, e10u, e12q ‖
xorJoinpte12, e312u, e

1
12q ‖ taskSndpe112, exp3, c3.c :“ c3.c` 1,Feedback : ˜exp4, e

2
12q ‖

xorSplitpe212, tpe
3
12, c3.c ď 3q, pe13, defaultquq ‖ taskSndpe13, exp5, ε,Notification : ˜exp6, e14q ‖

endpe14q

˜exp1 “ xPaper.title,Paper.bodyy
A1 “ Reviews.title :“ Paper.title,

Reviews.reviewers :“ addpReviews.reviewers,Review.reviewerNameq,
Reviews.scores :“ addpReviews.scores,Review.scoreq,
Reviews.bodies :“ addpReviews.bodies,Review.bodyq

t̃1 “ x?Review.reviewerName,Paper.title, ?Review.score, ?Review.bodyy
exp2 “ Reviews.scores ‰ null and Reviews.bodies ‰ null and Reviews.reviewers ‰ null
A2 “ Evaluation.title :“ Paper.title, Evaluation.decision “ evaluatepReviews.scoresq
A3 “ Letter.title :“ Paper.title, Letter.evaluation :“ accept
A4 “ Letter.title :“ Paper.title, Letter.evaluation :“ reject
A5 “ Evaluation.title :“ Paper.title, Evaluation.decision :“ evaluatepReviews.scoresq

exp3 “ Reviews.reviewers ‰ null and Evaluation.decision ‰ null and c3.c ‰ null
˜exp4 “ xnextpReviews.reviewersq,Paper.title,Evaluation.decisiony

exp5 “ Reviews.scores ‰ null and Reviews.bodies ‰ null and Letter.title ‰ null
and Letter.evaluation “ Evalution.score

˜exp6 “ xPaper.title,Paper.contact, . . . ,Reviews.bodiesy

Pr “ startRcvpReviewRequest : t̃2, e15q ‖ taskpe15, true,A6, e16q ‖
taskSndpe16, exp7, ε,Review : ˜exp8, e17q ‖ taskRcvpe17, true, ε,Feedback : t̃3, e18q ‖endpe18q

t̃2 “ x?ReviewRequest.title, ?ReviewRequest.bodyy
A6 “ PaperReview.title :“ ReviewRequest.title,

PaperReview.score :“ assignscorepReviewRequest.bodyq,
PaperReview.body :“ writeReviewpReviewRequest.bodyq

exp7 “ PaperReview.score ‰ null and PaperReview.body ‰ null
˜exp8 “ xmyNamepq,PaperReview.title,PaperReview.score,PaperReview.bodyy
t̃3 “ xmyNamepq,ReviewRequest.title, ?Feedback.evaluationy

Pca “ startRcvpNotification : t̃4, e19q ‖ taskpe19, true, ε, e20q ‖ endpe20q

t̃4 “ x?Notification.title, ?Notification.contact, . . . , ?Notification.bodiesy

Figure A.10: Textual representation of the running example.
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Appendix B. Notation Correspondence
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Table B.1: Correspondence between the graphical and textual notation of BPMN collaboration
elements (pools and events).
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Table B.2: Correspondence between the graphical and textual notation of BPMN collaboration
elements (gateways).

30



Graphical Notation Textual Notation

p P

p P

e0

e0

m

ei

ei

m

ei

e1

e2

e3

e4

e1
query

e2

e3

e4

v1

v2

v3

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

m2

m3

m4

e1 e2

d1 d2 d3

taskpe1, exppd1, d2q, pd3.f1 :“ exp1, . . . , d3.fn :“ expnq,e2q

P

P

e0

e0

m

ei

ei

m

ei

e1

e2

e3

e4

e1
query

e2

e3

e4

v1

v2

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

m2

m3

m4

e1 e2

d1 d2 d3

p

p

m

taskRcvpe1, exppd1, d2q, pd3.f1 :“ exp1, . . . , d3.fn :“ expnq,m : t̃, e2q

P

P

e0

e0

m

ei

ei

m

ei

e1

e2

e3

e4

e1
query

e2

e3

e4

v1

v2

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

m2

m3

m4

e1 e2

d1 d2 d3

p

p

m

taskSndpe1, exppd1, d2q, pd3.f1 :“ exp1, . . . , d3.fn :“ expnq,m : ˜exp, e2q

Table B.3: Correspondence between the graphical and textual notation of BPMN collaboration
elements (tasks).
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