
Well-structuredness, Safeness and Soundness:
A Formal Classification of BPMN Collaborations

Flavio Corradini, Chiara Muzi, Andrea Morichetta, Barbara Re, Francesco Tiezzi
School of Science and Technology, University of Camerino, Italy

Abstract

The BPMN standard has a huge uptake in modelling business processes within the
same organisation or collaborations involving multiple interacting participants. It
is widely accepted by the Business Process Management community that a solid
formal framework for the notation can help designers to properly understand their
BPMN models as well as to state and verify model properties. With this aim in
mind, we provide a formal characterisation of BPMN collaborations and some
of the most significant correctness properties in the business process domain;
namely, well-structuredness, safeness and soundness. We exploit this formali-
sation to classify BPMN models according to the properties they satisfy and their
compositionality, resulting in a systematic study that gives evidence of expected
results, closes conjectures and provides novel results. An experimentation to as-
sess the impact of the considered properties on the practice of modelling is carried
out on the BPMN models available in a public and populated repository.

Keywords: Business Process Modelling, BPMN Collaboration, Operational
Semantics, Safeness, Soundness, Classification.

1. Introduction

Modern organisations recognise the importance of having tools to support and
achieve their own objectives. This is properly reflected in a business process
model, that is characterised as “a collection of related and structured activities
undertaken by one or more organisations in order to pursue some particular goal.
[. . .] Business processes are often interrelated, since the execution of a business
process often results in the activation of related business processes within the
same or other organisations” [1].

Preprint submitted to Elsevier September 24, 2021

Several languages have been proposed to model business processes and col-
laborations. The Object Management Group (OMG) standard Business Process
Model and Notation (BPMN) [2] is the most prominent language. In particular,
BPMN collaboration models are used to describe distributed and complex sce-
narios, where multiple participants interact with each other via the exchange of
messages.

Even though it is widely accepted in both academia and industry, BPMN’s
major drawback is due to possible misunderstanding of its semantics. BPMN is
described in natural language, often ambiguous and sometimes containing mis-
leading information [3]. Much effort has been devoted to formalise BPMN se-
mantics by mapping business processes and collaborations into formal notations
(e.g., see [4] for an approach based on Petri Nets). Of course, the resulting models
inherit constraints proper of the target language the mapping considers. Conse-
quently, none of them takes into account BPMN features such as: different ab-
straction levels (i.e., sub-processes, processes and collaborations), asynchronous
communication paradigms, notions of completion due to different types of ‘end
event’ (i.e., simple, message throwing and terminate).

In this paper, we provide a formal characterisation of BPMN collaborations
and of some structural and behavioural properties. The formal characterization
allows BPMN designers to properly understand their models and their expres-
siveness, and turns out to be a formal framework supporting the modelling and
analysis of BPMN collaborations within their lifecycle.

The formalisation of the BPMN collaborations follows a process description
language paradigm, with a formal syntax and an operational semantics describing
the step-by-step behaviour of the collaborations. It faithfully extends [5] with a
textual notation (instead of a graphical one) and takes into account a larger lan-
guage (including, e.g., sub-processes).

The formalisation of BPMN model properties takes into account well-known
correctness properties in the domain of Business Process Management; namely
well-structuredness [6], safeness [7, 8] and soundness [9, 10]. Intuitively, well-
structuredness relates to the way elements are connected. For every split gateway,
there must be a corresponding join gateway such that the model fragment between
the split and the join gateways forms a single-entry-single-exit process fragment.
Instead, safeness and soundness relate to the process behaviour. The former one
guarantees that no more than one token occurs in the same element at the same
time during the process execution. The latter guarantees the successful termina-
tion of the process for all possible executions. Despite the large body of work on
this topic, no formal definition of these properties directly given on BPMN has

2

been provided yet, being instead proposed on different notations (as, for instance,
Petri Nets [11, 8], Workflow Nets [6, 8, 10] and Elementary Nets [7]). Having a
uniform formal framework allowed us to study the relationships between the con-
sidered properties and to classify BPMN models according to the properties they
satisfy. It turns out that a well-structured collaboration is always safe, but not the
vice versa. Well-structuredness implies soundness only at the process level, while
this implication does not scale to collaborations (i.e., there are well-structured col-
laborations that are not sound). Moreover, soundness does not imply safeness and
safe models are not necessarily sound. Some of the elements of BPMN collabo-
rations, i.e. sub-processes, message passing and terminate events, have a specific
impact on the classification of BPMN collaborations, as their usage can move
some models from one class to another.

It is also worth noticing that our framework supports models with arbitrary
topology, to enable the management and classification of both well-structured
but also unstructured models. Unstructured models can be in some cases studied
through their transformation into their structured versions, at the cost of increas-
ing the model size [12]. However, this transformation can either be too large in
size, or not possible at all [13, 14].

The relevance of the properties we consider on BPMN collaborations has been
empirically studied by looking at their impact on the practice of the real-world
modelling. We have analysed the BPMN 2.0 processes and collaborations mod-
els available in a well-known, public, well-populated repository provided by the
PROSLab, named RePROSitory [15]. The verification of the properties on these
models was carried out using the S3 tool1 [16], which implements in Java the
BPMN operational semantics considered here and uses it for performing proper-
ties verification. Notably, as a further contribution of this paper we have extended
S3 in order to include well-structuredness checking. As a result of this empirical
study, for instance, it turns out that BPMN models starts to become unstructured
when their size grows. Hence, even if well-structuredness is considered as a good
modelling practice in the BPMN guidelines, designers tend to deviate by it when
modelling complex scenarios.

The rest of the paper is organised as follows. Sec. 2 provides background no-
tions on BPMN and the considered properties. Sec. 3 introduces the proposed for-
mal framework. Sec. 4 provides the definition of properties, while Sec. 5 makes
it clear the relationships among these properties. Sec. 6 presents the study on

1http://pros.unicam.it/s3/

3

http://pros.unicam.it/s3/

RunningExample
Cu

st
om

er

Customer

Offer
Management

Ask Travel
Offer

Check
Travel
Offer

Is the offer
interesting?

Book
Travel

Activate
Payment

Authorize
Payment

Pay
Travel

Transaction
Completed

Booking
Confirmed

Ticket
Received

Tr
av

el
 A

ge
nc

y

Travel Agency

Offer
Received

Make
Travel
Offer

Confirm
Booking

Order
Ticket

Offer
Completed

Booking
Received

Payment
Received

yes

no

Payment TicketRequest Offer Travel Confirmation

Figure 1: BPMN collaboration model of a travel agency scenario.

safeness and soundness compositionality. Sec. 7 summarizes the obtained results.
Sec. 8 presents the S3 tool and provides a clearer idea of the impact of well-

structuredness, safeness, and soundness on the real-world modelling practice. Fi-
nally, Sec. 9 discusses related works, and Sec. 10 concludes the paper.

2. Basic Notions on BPMN Collaborations

In this section we first introduce a BPMN collaboration model of a travel
agency scenario, to be used throughout the paper as a running example, and then
we present the elements of BPMN collaborations we consider. We provide a de-
tailed explanation of the elements, jointly with their correspondent textual rep-
resentation that will be part of the process description language we take into ac-
count. Notably, we present only the intended meaning of the elements, because
the formal semantics will be given at Sec. 3. We conclude the section discussing
the motivations driving our choice on the considered subset of BPMN elements.

2.1. Travel Agency Collaboration Scenario
In the considered scenario, a Customer requests a travel offer to a Travel

Agency. Then, the Travel Agency continuously offers travels to the Customer,
until an offer is accepted. If the Customer is interested in one offer, he/she de-
cides to book the travel and refuses all the others already offered. As soon as the
booking is received by the Travel Agency, it sends back a confirmation message,
and asks for the payment of the travel. When the Customer authorizes the pay-
ment and pays the travel, the ticket is sent to the Customer, and the Travel Agency
activities are terminated.

4

Running Example (1/9). We design the travel agency scenario as a collaboration
model composed by two pools; namely, the Travel Agency and the Customer, as
reported in Fig. 1. Let us concentrate on the Customer pool. As soon as the pro-
cess starts, due to the presence of a start event, the Customer asks for a travel
offer. This is done by executing a sending task. Then, he/she checks for the
travel offer by executing a receiving task. After, he/she decides either to book the
travel or to wait for other offers, by cycling on two XOR gateways. When the
Customer finds an interesting offer, he/she books the travel, by sending a message
to the Travel Agency by executing another sending task, and waits for the book-
ing confirmation. As soon as the Customer receives the booking confirmation,
the sub-process related to the payment management is activated. The Customer
authorize the payment and then, through an end message event, he/she pays the
travel. At the end the Customer receives the ticket from the Travel Agency and
the process terminates by means of an end event. Symmetrically, as soon as the
Travel Agency process starts, through a start message event, travel offers are con-
tinuously sent to the Customer, by means of a sending task enclosed within a loop
formed by the combination of an AND-split and a XOR-join. When a booking
is received, via an intermediate catching event, it is confirmed and a notification
is sent to the Customer. Finally, after receiving the payment, the Travel Agency
orders and sends the ticket, thus completing its activities by means of a termi-
nate event, which stops and aborts the running process, including the offering of
travels.

Worth to notice is how the inter-pool communication works. The message
exchange is asynchronous, meaning that as soon as a message is sent by a pool the
flow of the same pool can proceed, while the other pool could immediately catch
the message or not depending on its current execution state. In case the message
is not immediately consumed, it remains enqueued till the execution flow reaches
a state in which it can be consumed.

2.2. Activities
Activities (see Table 1) are used to represent specific works to perform within

a process. Activities are drawn as rectangles with rounded corners. Two types
of activities are supported in BPMN: task and sub-process. A task is an atomic
activity, which cannot be interrupted during its execution. Tasks can also send
and receive messages. A sub-process, instead, represents a work that brokes down
into a a process with a finer level of detail. The use of such element can improve
understandability, as it permits to relate different level of abstractions in a process
model. The corresponding textual notation is as follows.

5

- taskpe, e1q denotes the task with incoming edge e and outgoing edge e1,

- taskRcvpe,m, e1q, denotes the task receiving a message m,

- taskSndpe,m, e1q, denotes the task sending a message m,

- subProcpe, P, e1q denotes the sub-process activity with incoming edge e and
outgoing edge e1. When activated, the (sub-)process P behaves according
to its specification (it can include nested sub-process activities, of course).

Activities - Activities -
Graphical Representation Textual Notation
New Process

...

p ...

e'

e'e

e

e'

e'e

e

taskpe, e1qNew Process

...

p ...

e'

e'e

e

e'

e'e

e

m

m

taskRcvpe,m, e1q

New Process

...

p ...

e'

e'e

e

e'

e'e

e

m

m

taskSndpe,m, e1q

New Process

...

p ...

e'

e'e

e

e'e

subProcpe, P, e1q

Table 1: Graphical and textual description of Activities.

2.3. Gateways
Gateways (see Table 2) are used to manage the flow of a process both for par-

allel activities and choices. Gateways act as either join nodes - merging incoming
sequence edges - or split nodes - forking into outgoing sequence edges. Different
types of gateways are available.

6

Gateways - Gateways -
Graphical Representation Textual Notation

New Process

...

...

...

...

......

en

e'

e

e'n

e'1

e1

e'

e

e

e'1

e'n

en

e'n

e'1

e1

andSplitpe, te11, . . . , e
1
nuq

New Process

...

...

...

...

......

en

e'

e

e'n

e'1

e1

e'

e

e

e'1

e'n

en

e'n

e'1

e1

andJoinpte1, . . . , enu, e
1q

New Process

...

...

...

...

......

en

e'

e

e'n

e'1

e1

e'

e

e

e'1

e'n

en

e'n

e'1

e1

xorSplitpe, te11, . . . , e
1
nuq

New Process

...

...

...

...

......

en

e'

e

e'n

e'1

e1

e'

e

e

e'1

e'n

en

e'n

e'1

e1

xorJoinpte1, . . . , enu, e
1q

New Process

...

...

...

...

......

en

e'

e

e'n

e'1

e1

e'

e

e

e'1

e'n

en

e'n

e'1

e1

m1

mn

eventBasedpe, pm1, e
1
1q, . . . , , pmn, e

1
nqq

Table 2: Graphical and textual description of Gateways.

An AND gateway enables parallel execution flows. In particular, an AND-
split gateway is used to model the parallel execution of two or more branches, as
all outgoing sequence edges are activated simultaneously. An AND-join gateway
synchronises the execution of two or more parallel branches, as it waits for all
incoming sequence edges to complete before triggering the outgoing flow. The
corresponding textual notation is as follows.

7

- andSplitpe, te11, . . . , e
1
nuq denotes an AND split gateway with incoming edge

e and outgoing edges e11, . . . , e
1
n.

- andJoinpte1, . . . , enu, e
1q denotes an AND join gateway with incoming

edges e1, . . . , en and outgoing edge e1.

A XOR gateway gives the possibility to describe choices. In particular, a XOR-
split gateway is used after a decision to fork the flow into branches. When ex-
ecuted, it activates exactly one outgoing edge. A XOR-join gateway acts as a
pass-through, meaning that it is activated each time the gateway is reached. The
corresponding textual notation is as follows.

- xorSplitpe, te11, . . . , e
1
nuq denotes a XOR split gateway with incoming edge

e and outgoing edges e11, . . . , e
1
n.

- xorJoinpte1, . . . , enu, e
1q denotes a XOR join gateway with incoming edges

e1, . . . , en and outgoing edge e1.

An Event-Based gateway is used after a decision to fork the flow into branches
according to external choices. Its outgoing branches activation depends on taking
place of catching events. Basically, such events are in a race condition, where the
first event that is triggered wins and disables the other ones.

- eventBasedpe, pm1, e
1
1q, . . . , , pmn, e

1
nqq represents an event based gateway

with incoming edge e and a list of (at least two) message edges, with the
related outgoing edges that are enabled by message reception.

2.4. Events
Events (see Table 3) are used to represent something observable. An event

can be a Start Event representing the point from which a process starts. A Start
Message Event is a start event with an incoming message edge; the event element
catches a message and starts a process. An event can be an Intermediate Event if it
happens during a process execution. If it receives a message it is called Intermedi-
ate Catching Events, while if it sends a message it is called Intermediate Throwing
Events. An End Event represents process termination without having any impact
on the overall execution of the process. There are other different forms for termi-
nation. An End Message Event is an end event with an outgoing message edge;
it sends a message before ending the process. The Terminate End Event, instead,
triggers the immediate termination of a process. When this happens within a sub-
process, the termination effect is limited to the scope of the sub-process, without

8

affecting the enclosing process. This is particularly useful to immediately stop the
execution of parallel flows.

Events - Events -
Graphical Representation Textual Notation

eventcorrespondence

e' e'

e

e

e
e e'

e e'

m

m

m

m

startpe, e1q
eventcorrespondence

e' e'

e

e

e
e e'

e e'

m

m

m

m

startRcvpe,m, e1q

eventcorrespondence

e' e'

e

e

e
e e'

e e'

m

m

m

m

interRcvpe,m, e1q

eventcorrespondence

e' e'

e

e

e
e e'

e e'

m

m

m

m

interSndpe,m, e1q

eventcorrespondence

e' e'

e

e

e
e e'

e e'

m

m

m

m

endpe, e1q

eventcorrespondence

e' e'

e

e

e
e e'

e e'

m

m

m

m endSndpe,m, e1q

eventcorrespondence

e' e'

e

e

e
e e'

e e'

m

m

m

m

terminatepeq

Table 3: Graphical and textual description of Events.

Events are drawn as circles and the corresponding textual notation is as fol-
lows.

- startpe, e1q represents a start event that can be activated by means of the
enabling edge e (which is a spurious edge omitted in the graphical repre-
sentation, as clarified later in Sec. 3.1), and has an outgoing edge e1.

9

- startRcvpe,m, e1q represents a start message event that can be activated by
means of the enabling edge e (which, again, is a spurious edge omitted in
the graphical representation), as soon as a message m is received and it has
outgoing edge e1.

- interRcvpe,m, e1q represents an intermediate catching event with an incom-
ing edge e, an outgoing edge e1, and a received message m.

- interSndpe,m, e1q represents an intermediate throwing event with an incom-
ing edge e, an outgoing edge e1, and a sent message m.

- endpe, e1q represents an end event with an incoming edge e and a completing
edge e1 (which is a spurious edge omitted in the graphical representation).

- endSndpe,m, e1q represents an end message event with incoming edge e,
a message m to be sent, and a completing edge e1 (again omitted in the
graphical representation).

- terminatepeq represents a terminate end event with incoming edge e.

2.5. Pools
Pools (see Table 4) are used to represent participants or organisations involved

in a collaboration and include details on internal process specifications. They
are drawn as rectangles and include a unique name p for the Pool and a process
specification P . The corresponding textual description is poolpp, P q, meaning
that, when activated, p behaves according to the process specification P .

Pool - Pool -
Graphical Representation Textual Notation

New Process

...

p ...

e'

e'e

e

e'

e'e

e

poolpp, P q

Table 4: Graphical and textual description of Pools.

2.6. Tokens
A key concept related to the BPMN process execution refers to the notion of

token. The BPMN standard states that “a token is a theoretical concept that is
used as an aid to define the behaviour of a process that is being performed” [2,

10

Sec. 7.1.1]. A token is commonly generated by a start event, traverses the se-
quence edges of the process and passes through its elements enabling their execu-
tion, and it is consumed by an end event when process completes. The distribution
of tokens in the process elements is called marking, therefore the process execu-
tion is defined in terms of marking evolution. In the collaboration, the process
execution also triggers message flows able to generate messages. We will refer
them as message flow tokens.

Figure 2 represents an example of marking evolution in a BPMN process. To-
kens are graphically depicted, as usual, as black dots placed on start/end events
and sequence edges. The initial configuration is characterized by one token placed
in the start event and no token marking the other elements of the model. From
there, the execution proceeds step-by-step with, first, the movement of the token
from the start event to the edge e1. Then, by passing through the AND-split gate-
way, the token is split in two tokens marking the edges e2 and e3. From this con-
figuration, we have two alternative steps, depending on the interleaving between
the movements of the two tokens. Such interleaving, in the following marking
evolutions, leads to a growing number of alternative executions, until one of the
three final configurations is reached (i.e., a configuration with the two tokens in
the upper end event, another configuration with one token in an end event and the
other token in the other end event, and finally a configuration with the two tokens
in the bottom end event). The existence of different final configurations is caused
by the lack of an AND-join gateway that should merge the tokens produced by
the AND-split. For sake of readability, in Figure 2 we have omitted most of the
intermediate configurations generated by the interleaving of the two tokens.

2.7. On the Considered Subset of BPMN
In selecting the considered BPMN elements, we have mainly focused on the

control flow and communication views. In doing that, we have followed a prag-
matic approach to provide a precise characterization for a subset of BPMN el-
ements that are largely used in practice. Indeed, even though the BPMN spec-
ification is quite wide, only a limited part of its vocabulary is used regularly in
designing BPMN models. This is witnessed by the models included in the BPM
Academic Initiative repository2. Moreover, a previous study we did [17] also con-
firms that our selection of BPMN elements is expressive enough to support the
majority of the interaction patterns proposed in [18] (see, [19, Sec. 8.5] for more

2http://bpmai.org/

11

Figure 2: Marking evolution of a BPMN process.

details).
It is worth noticing that most of the elements we have intentionally left out

can be expressed in terms of the elements we include. We assume that processes
do not contain mixed gateways and tasks with multiple edges. Example of such
transformations are shown in Figure 3. It is in line with [4] and in accordance with
the guidelines in [20, 21]. It is also common to represent the inclusive gateways as
a combination of exclusive and parallel gateways enumerating all possible com-
binations of outgoing edges activation [22]. Tasks with the loop marker can be
easily represented by embedding standard tasks in a looping behaviour expressed
using two exclusive gateways (one in the split mode and the other one in the join
mode).

12

Other elements, such as those concerning error and compensation handling
and multiple instances, are instead left out in order to keep the formal framework
more manageable. For what concerns data objects and gateway conditions, we
abstract them since we aim at considering exhaustively all executions of a given
model, and not only those resulting from specific input values. The introduction of
data, indeed, can only restrict the behaviour of considered models. Notably, data
modelling is optional in BPMN, as the notation mainly focuses on control flow
and, hence, only modelling constructs of this type are mandatory. In summary, for
the BPMN standard, data-related elements remain somehow second class mod-
elling constructs [23]. Finally, we also left out timed constructs. We avoided to
include them in our work because their appropriate formal treatment would signif-
icantly affect our formal framework, making our systematic study harder. Indeed,
the introduction of (stochastic or real) time in our semantics would involve to pass
from LTS to other semantic models (Markov chains, Markov decision processes,
Timed LTS, Timed automata, etc.), which would complicate the development and
proofs of our classification results.

3. Formal Framework

This section presents our BPMN formalisation. Specifically, we first present
the syntax and operational semantics we defined for a relevant subset of BPMN
elements. The direct semantics proposed in this paper is inspired by [15], but
its technical definition is significantly different. In particular, configuration states
are here defined according to a global perspective, and the formalisation now in-
cludes sub-process elements, which were overlooked in the previous semantics
definition.

3.1. Syntax of BPMN Collaborations
To enable the formal treatment of collaborations’ semantics, we defined a

BNF syntax of their model structure (Fig. 4). In the proposed grammar, the
non-terminal symbols C and P represent Collaborations Structure and Processes

(a) (b)

Figure 3: Examples of transformations: (a) mixed gateway
and (b) task with multiple edges.

13

C ::“ poolpp, P q | C ||C

P ::“ startpeenb, eoq | endpei, ecmpq | startRcvpeenb,m, eoq | endSndpei,m, ecmpq

| terminatepeiq | eventBasedpei, pm1, eo1q, . . . , pmh, eohqq

| andSplitpei, Eoq | xorSplitpei, Eoq | andJoinpEi, eoq | xorJoinpEi, eoq

| taskpei, eoq | taskRcvpei,m, eoq | taskSndpei,m, eoq | emptypei, eoq

| interRcvpei,m, eoq | interSndpei,m, eoq | subProcpei, P, eoq | P ||P

Figure 4: Syntax of BPMN Collaboration Structures.

Structure , respectively. The two syntactic categories directly refer to the corre-
sponding notions in BPMN. The terminal symbols, denoted by the sans serif font,
are the typical elements of a BPMN model, i.e. pools, events, tasks, sub-processes
and gateways.

It is worth noticing that we are not proposing an alternative modelling nota-
tion, but we are just using a textual representation of BPMN models to simplify
the presentation of our study. Indeed, even if in principle the graphical notation
could be used for defining the operational semantics of BPMN collaboration mod-
els (as in [15]), we preferred to exploit a textual representation because it is more
manageable for writing operational rules and, most of all, reasoning on model
properties. On the other hand, our syntax is too permissive with respect to the
BPMN notation, as it allows to write malformed collaborations that cannot be
expressed in BPMN. For example, it allows to write the collaboration

poolpp1, pstartpe0, e1q || taskpe2, e3q || endpe3, e4qqq
|| poolpp2, pstartpe5, e6q || taskSndpe6,m, e7qqq

where: the process of participant p1 contains unconnected elements (the outgoing
edge of the start event, i.e. e1, does not coincide with the incoming edge of the
task, i.e. e2); the process of participant p2 has no end event (while BPMN imposes
processes to have at least one end event); and the message flow labelled by m out-
going from the p2’s process has no counterpart. Limiting such expressive power
would require to extend the syntax, thus complicating the definition of the formal
semantics. However, this is not necessary in our work, as we are not proposing an
alternative modelling notation. Therefore, in our analysis we will only consider
terms of the syntax that are derived from BPMN models, thus ridding our formal
treatment of malformed models.

Intuitively, a BPMN collaboration model is rendered in our syntax as a collec-
tion of pools and each pool contains a process. More formally, a Collaboration C
is a composition, by means of operator || of pools of the form poolpp, P q, where: p

14

is the name that uniquely identifies the Pool; P is the Process included in the spe-
cific pool, respectively. Similarly, operator || at process level permits to compose
process elements in order to render a process structure in terms of a collection of
elements. Notably, in our framework, it is not possible to distinguish between the
semantics of communication tasks and of intermediate events. This is due to the
level of abstraction we have used in our formalisation. Indeed, since we do not
consider data handling, the semantics of tasks boils down to coincide with that
of intermediate events. We kept these constructs syntactically different in our tex-
tual representation of BPMN models to reflect their correspondence with different
graphical elements in the BPMN notation.

In the following, m PM denotes a message edge, enabling message exchanges
between pairs of participants in the collaboration, while M P 2M. Moreover, m
denotes names uniquely identifying a message edge. We also observe e P E
denoting a sequence edge, while E P 2E a set of edges; we require |E| ą 1
when it is used in joining and splitting gateways. Similarly, we require that an
event-based gateway should contain at least two message events, i.e. h ą 1 in
each eventBased term. For the convenience of the reader, we use ei for the edge
incoming in an element and eo for the edge outgoing from an element. In the edge
set E we also include spurious edges3 denoting the enabled status of start events
and the completed status of end events, named enabling and completing edges,
respectively. In particular, we use edge eenb, incoming to a start event, to enable
the activation of the process, while ecmp is an edge outgoing from the end events
suitable to check the completeness of the process. They are needed to activate
sub-processes as well as to check their completion. Moreover, we have that e
denotes names uniquely identifying a sequence edge.

The correspondence between the syntax used here to represent Process/Col-
laboration Structures and the graphical notation of BPMN has been already il-
lustrated in Sec. 2. To simplify the definition of well-structured processes (given
later), we include an empty task in our syntax. It permits to connect two gateways
with a sequence flow without activities in the middle.

3We have introduced spurious edges in order to simplify the formalisation of the execution
state of a collaboration. As shown later in Sec. 3.2, we formalise the execution state in terms of
a function from edge names to positive integers. However, as discussed in Sec. 2.6, the execution
state of a collaboration is given by the marking, which is informally depicted in the graphical
notation by tokens (denoted by black dots) placed on both sequence edges and start/end events.
The use of spurious edges, hence, permits to represent the marking of start/end events in terms of
marking of edges, thus making uniform the definition of the domain of the execution state function.

15

To achieve a compositional definition, each sequence (resp. message) edge
of the BPMN model is split in two parts: the part outgoing from the source ele-
ment and the part incoming into the target element. The two parts are correlated
since edge names in the BPMN model are unique. To avoid malformed structure
models, we only consider structures in which for each edge labeled by e (resp.
m) outgoing from an element, there exists only one corresponding edge labeled
by e (resp. m) incoming into another element, and vice versa. Notably, behind
this assumption, we cannot have more than one task/event inside the same process
within a pool that sends/receives the same message m. The technical solution of
splitting edges into two parts, on the one hand, may make our textual representa-
tion a bit cumbersome, but, on the other hand, it allows to easily represent models
with an unstructured topology. Hence, our textual representation enables the study
of model properties in the wide setting of models with arbitrary topology follow-
ing a compositional approach, which is typically neglected in approaches based
on Petri Nets or Workflow Nets.

Here, we define some auxiliary functions defined on the collaboration and
the process structure. Considering BPMN collaborations they may include one or
more participants; function participantpCq returns the process structures included
in a given collaboration structure. Formally, it is defined as follows.

participantpC1 || C2q “ participantpC1q Y participantpC1q

participantppoolpp, P qq “ P

Since we also consider processes including nested sub-processes, to refer to the
enabling edges of the start events of the current level we resort to functions
startpP q.

startpP1 || P2q “ startpP1q Y startpP2q

startpstartpe, e1qq “ teu startpstartRcvpe,m, e1qq “ teu

startpP q “ H for any element P ‰ startpe, e1q or P ‰ startRcvpe,m, e1q

Notably, we assume that each process/sub-process in the collaboration has only
one start event. Function startp¨q applied to C will return as many enabling edges
as the number of involved participants.

startpC1 || C2q “ startpparticipantpC1qq Y startpparticipantpC2qq

startppoolpp, P qq “ startpP q

16

We similarly define functions endpP q and endpCq on the structure of processes
and collaborations in order to refer to end events in the current layer.

endpP1 || P2q “ endpP1q Y endpP2q

endpendSndpe,m, e1qq “ te1u endpendpe, e1qq “ te1u

endpP q “ H for any element P ‰ endpe, e1q or P ‰ endSndpe,m, e1q

Function endpCq on the collaboration structure is defined as follow.

endpC1 || C2q “ endpparticipantpC1qq Y endpparticipantpC2qq

endppoolpp, P qq “ endpP q

We will also exploit function edgespP q to refer the edges of P and function
edgesElpP q to indicate the edges of P without considering the spurious edges
(their inductive definitions are straightforward, for the sake of presentation they
are relegated to Appendix A).

Running Example (2/9). The BPMN model in Fig. 1 is expressed in our syntax as
the following collaboration structure (at an unspecified step of execution):

poolpCustomer, PCq || poolpTravelAgency, PTAq

with PC and PTA are expressed as follows (where for simplicity we identify the
edges in progressive order ei (with i “ 0 . . . 25):

PC “ startpe0, e1q || taskSndpe1,Request, e2q || xorJoinpte2, e3u, e4q ||
taskRcvpe4,Offer, e5q || xorSplitpe5, te3, e6uq ||
taskSndpe6,Travel, e7q || interRcvpe7,Confirmation, e8q ||
subProcpe8, PSub, e13q || interRcvpe13,Ticket, e14q || endpe14, e15q

PSub “ startpe9, e10q || taskpe10, e11q || endSndpe11,Payment, e12q

PTA “ startRcvpe16,Request, e17q || xorJoinpte17, e18u, e19q ||
taskSndpe19,Offer, e20q || andSplitpe20, te21, e18uq ||
interRcvpe21,Travel, e22q || taskSndpe22,Confirmation, e23q ||
interRcvpe23,Payment, e24q || taskSndpe24,Ticket, e25q || terminatepe25q

Moreover, considering functions we defined on the structure we have:
participantppoolpCustomer, PCq || poolpTravelAgency, PTAqq “ tPC , PTAu,
startpPCq “ te0u, startpPTAq “ te16u, and endpPCq “ te15u, endpPTAq “ H.
Finally, edgespPCq “ te0, ..., e15u, edgespPTAq “ te16, ..., e25u, edgesElpPCq “
te1, ..., e8, e10, e11, e13, e14u, edgesElpPTAq “ te17, ..., e25u. l

17

3.2. Semantics of BPMN Collaborations
The syntax presented so far permits to describe the mere structure of a col-

laboration and a process. To describe their semantics we need to enrich it with a
notion of execution state, defining the current marking of sequence and message
edges. We use collaboration configuration and process configuration to indicate
these stateful descriptions.

Formally, a collaboration configuration has the form xC, σ, δy, where: C is a
collaboration structure; σ is the part of the execution state at process level, storing
for each sequence edge the current number of tokens marking it (notice it refers to
the edges included in all the processes of the collaboration), and δ is the part of the
execution state at collaboration level, storing for each message edge the current
number of message tokens marking it. Moreover, a process configuration has the
form xP, σy, where: P is a process structure; and σ is the execution state at process
level. Specifically, a state σ : EÑ N is a function mapping edges to a number of
tokens. The state obtained by updating in the state σ the number of tokens of the
edge e to n, written as σre ÞÑ ns, is defined as follows: pσre ÞÑ nsqpe1q returns n
if e1 “ e, otherwise it returns σpe1q. Moreover, a state δ : M Ñ N is a function
mapping message edges to a number of message tokens; so that δpmq “ n means
that there are n messages of type m sent by a participant to another that have not
been received yet. Update for δ is defined in a way similar to σ’s definitions.

Given the notion of configuration, a collaboration is in the initial state when
each process it includes is in the initial state, meaning that the start event of
each process must be enabled, i.e. it has a token in its enabling edge, while all
other sequence edges (included the enabling edges for the activation of nested
sub-processes), and messages edges must be unmarked.

Definition 1 (Initial state of process). Let xP, σy be a process configuration, the
process configuration is initial if isInitpP, σq holds. Predicate isInitpP, σq holds,
if σpstartpP qq “ 1, and @ e P edgespP qzstartpP q . σpeq “ 0.

Definition 2 (Initial state of collaboration). Let xC, σ, δy be a collaboration
configuration, then a collaboration configuration is initial if isInitpC, σ, δq holds.
Predicate isInitpC, σ, δq holds, if @ P P participantpCqwe have that isInitpP, σq,
and @ m PM . δpmq “ 0.

Running Example (3/9). The initial configuration of the collaboration in
Fig. 1 is as follows. Given participantpCq “ tPC , PTAu, we have that
xPC , σy, σpe0q “ 1 σpeiq “ 0 @ei with i “ 1 . . . 15, and xPTA, σy,

18

σpe16q “ 1 and σpejq “ 0 @ej with j “ 17 . . . 25. We also have that
δpRequest,Offer,Confirmation,Ticket,Travel,Paymentq “ 0. l

The operational semantics is defined by means of a labelled transition sys-
tem (LTS) on collaboration configuration and formalises the execution of message
marking evolution according to the process evolution. Its definition relies on an
auxiliary transition relation on the behaviour of process.

The auxiliary transition relation is a triple xP ,A,Ñy where: P , ranged
over by xP, σy, is a set of process configurations; A, ranged over by α, is a
set of labels (of transitions that process configurations can perform); and ÑĎ
P ˆ A ˆ P is a transition relation. We will write xP, σy α

ÝÑ xP, σ1y to indicate

that pxP, σy, α, xP, σ1yq PÑ and say that process configuration xP, σy performs
a transition labelled by α to become process configuration xP, σ1y. Since process
execution only affects the current states, and not the process structure, for the sake
of readability we omit the structure from the target configuration of the transition.
Thus, a transition xP, σy α

ÝÑ xP, σ1y is written as xP, σy α
ÝÑ σ1. The labels used by

this transition relation are generated by the following production rules.

pActionsq α ::“ τ | !m | ?m pInternal Actionsq τ ::“ ε | kill

The meaning of labels is as follows. Label τ denotes an action internal to
the process, while !m and ?m denote sending and receiving actions, respectively.
The meaning of internal actions is as follows: ε denotes the movement of a token
through the process, while kill denotes the termination action.

The transition relation over process configurations formalises the execution of
a process; it is defined by the rules in Fig. 5. Before commenting on the rules, we
introduce the auxiliary functions they exploit. Specifically, function inc : SˆEÑ
S (resp. dec : Sˆ EÑ S), where S is the set of states, allows updating a state by
incrementing (resp. decrementing) by one the number of tokens marking an edge
in the state. Formally, they are defined as follows: incpσ, eq “ σre ÞÑ σpeq ` 1s
and decpσ, eq “ σre ÞÑ σpeq´1s. These functions extend in a natural ways to sets
of edges as follows: incpσ,Hq “ σ and incpσ, teuYEqq “ incpincpσ, eq, Eq; the
cases for dec are similar. As usual, the update function for δ are defined in a way
similar to σ’s definitions. We also use the function zero : S ˆ E Ñ S that allows
updating a state by setting to zero the number of tokens marking an edge in the
state. Formally, it is defined as follows: zeropσ, eq “ σre ÞÑ 0s. Also in this case
the function extends in a natural ways to sets of edges as follows: zeropσ,Hq “ σ
and zeropσ, teu Y Eqq “ zeropzeropσ, eq, Eq.

19

To check the completion of a sub-process we exploit the boolean predicate
completedpP, σq. It is defined according to the prescriptions of the BPMN stan-
dard, which states that “a sub-process instance completes when there are no more
tokens in the sub-process and none of its activities is still active” [2, pp. 426,
431]. Notice that, according to the above definition, a sub-process is consid-
ered an atomic activity [16] and, for this reason, only one instance at a time
can be enabled. The definition of the completed predicate relies on the function
markedpσ,Eq, used to refer to the set of edges in E with at least one token:

markedpσ, teu Y Eq “

#

teu Ymarkedpσ,Eq if σpeq ą 0;

markedpσ,Eq otherwise.

markedpσ,Hq “ H

Now, the sub-process completion can be formalised as follows.

Definition 3. Let P be a process included in a sub-process element
subProcpe1, P, e2q, the predicate completedpP, σq holds if the following condition
is satisfied:

D e P endpP q . e P markedpσ,endpP qq ^ @e P edgespP qzendpP q . σpeq “ 0

Notably, in the definition above, we require P to be a process included in a
sub-process element, because the predicate completedpP, σq is devoted only to
define the semantics regulating the completion of a sub-process (as shown later in
the rule P -SubProcEnd of the operational semantics), not to define the notion of
process completion typically needed for the definition of the soundness property.
The completion of a sub-process does not depend on the exchanged messages, and
it is defined considering the arbitrary topology of the model, which hence may
have one or more end events with possibly more than one token in the completing
edges.

We now briefly comment on the operational rules in Fig. 5. Rule P -Start
starts the execution of a (sub-)process when it has been activated (i.e., the en-
abling edge e is marked). The effect of the rule is to increment the number of
tokens in the edge outgoing from the start event. Rule P -End is enabled when
there is at least one token in the incoming edge of the end event, which is then
moved to the completing edge. Rule P -StartRcv start the execution of a process
when it is in its initial state. The effect of the rule is to increment the number of

20

xstartpe, e1q, σy
ε
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -Startq

xendpe, e1q, σy
ε
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -Endq

xstartRcvpe,m, e1q, σy
?m
ÝÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -StartRcvq

xendSndpe,m, e1q, σy
!m
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -EndSndq

xterminatepeq, σy
kill
ÝÝÑ decpσ, eq σpeq ą 0 pP -Terminateq

xeventBasedpe, pm1, e
1
1q, . . . , pmh, e

1
hqq, σy

?mj
ÝÝÑ

incpdecpσ, eq, e1jq
σpeq ą 0, 1 ď j ď h pP -EventGq

xandSplitpe, Eq, σy
ε
ÝÑ incpdecpσ, eq, Eq σpeq ą 0 pP -AndSplitq

xxorSplitpe, te1u Y Eq, σy
ε
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -XorSplitq

xandJoinpE, eq, σy
ε
ÝÑ incpdecpσ,Eq, eq @e1 P E . σpe1q ą 0 pP -AndJoinq

xxorJoinpteu Y E, e1q, σy
ε
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -XorJoinq

xtaskpe, e1q, σy
ε
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -Taskq

xtaskRcvpe,m, e1q, σy
?m
ÝÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -TaskRcvq

xtaskSndpe,m, e1q, σy
!m
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -TaskSndq

xinterRcvpe,m, e1q, σy
?m
ÝÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -InterRcvq

xinterSndpe,m, e1q, σy
!m
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -InterSndq

xemptype, e1q, σy
ε
ÝÑ incpdecpσ, eq, e1q σpeq ą 0 pP -Emptyq

xsubProcpe, P, e1q, σy
ε
ÝÑ incpdecpσ, eq, startpP qq

σpeq ą 0,
@e2PedgespP q . σpe2q “ 0

pP -SubProcStartq

xP, σy
α
ÝÑ σ1

pP -SubProcEvolutionq
xsubProcpe, P, e1q, σy

α
ÝÑ σ1

xsubProcpe, P, e1q, σy
ε
ÝÑ incpzeropσ, endpP qq, e1q completedpP, σq pP -SubProcEndq

xP, σy
kill
ÝÝÑ σ1

pP -SubProcKillq
xsubProcpe, P, e1q, σy

ε
ÝÑ incpzeropσ1, edgespP qq, e1q

xP1, σy
kill
ÝÝÑ σ1

pP -Killq
xP1 || P2, σy

kill
ÝÝÑ zeropσ1, edgespP1 || P2qq

xP1, σy
α
ÝÑ σ1 α ‰ kill

pP -Intq
xP1 || P2, σy

α
ÝÑ σ1

Figure 5: BPMN Semantics - Process Level.

21

tokens in the edge outgoing from the start event and remove the token from the en-
abling edge. A label corresponding to the consumption of a message is observed.
Rule P -EndSnd is enabled when there is at least a token in the incoming edge of
the end event, which is then moved to the completing edge. At the same time a la-
bel corresponding to the production of a message is observed. Rule P -Terminate
starts when there is at least one token in the incoming edge of the terminate event,
which is then removed. Rule P -EventG is activated when there is a token in the
incoming edge and there is a message mj to be consumed, so that the application
of the rule moves the token from the incoming edge to the outgoing edge corre-
sponding to the received message. A label corresponding to the consumption of a
message is observed. Rule P -AndSplit is applied when there is at least one token
in the incoming edge of an AND split gateway; as result of its application the rule
decrements the number of tokens in the incoming edge and increments that in each
outgoing edge. Rule P -XorSplit is applied when a token is available in the incom-
ing edge of a XOR split gateway, the rule decrements the token in the incoming
edge and increments the token in one of the outgoing edges, non-deterministically
chosen. Rule P -AndJoin decrements the tokens in each incoming edge and in-
crements the number of tokens of the outgoing edge, when each incoming edge
has at least one token. Rule P -XorJoin is activated every time there is a token
in one of the incoming edges, which is then moved to the outgoing edge. Rule
P -Task deals with simple tasks, acting as a pass through. It is activated only
when there is a token in the incoming edge, which is then moved to the outgoing
edge. Rule P -TaskRcv is activated when there is a token in the incoming edge
and a label corresponding to the consumption of a message is observed. Similarly,
rule P -TaskSnd , instead of consuming, send a message before moving the token
to the outgoing edge. A label corresponding to the production of a message is ob-
served. Rule P -InterRcv (resp. P -InterSnd) follows the same behaviour of rule
P -TaskRcv (resp. P -TaskSnd). Rule P -Empty simply propagates tokens, it acts
as a pass through. Rules P -SubProcStart , P -SubProcEvolution, P -SubProcEnd
and P -SubProcKill deal with the behaviour of a sub-process element. The for-
mer rule is activated only when (i) there is a token in the incoming edge of the
sub-process, which is then moved to the enabling edge of the start event in the
sub-process body, and (ii) all edges of the sub-process are unmarked. Then, the
sub-process behaves according to the behaviour of the elements it contains ac-
cording to the rule P -SubProcEvolution. When the sub-process completes the
rule P -SubProcEnd is activated. It removes all the tokens from the sequence

22

edges of the sub-process body4, and adds a token to the outgoing edge of the
sub-process. Rule P -SubProcKill deals with a sub-process element observing a
killing action in its behaviour due to an occurrence of a terminate event. The sub-
process stops its internal behaviours and passes the control to the upper layer: all
the tokens in the sub-process are removed and a token is added to the outgoing
edge of the sub-process element.

Rule P -Kill deal with the propagation of killing action in the scope of P
and rule P -Int deal with interleaving in a standard way for process elements.
Notice that we do not need symmetric versions of the last two rules, as we identify
processes up to commutativity and associativity of process collection.

Now, the labelled transition relation on collaboration configurations formalises
the execution of message marking evolution according to process evolution. In
the case of collaborations, this is a triple xC,A,Ñy where: C, ranged over by
xC, σ, δy, is a set of collaboration configurations; A, ranged over by α, is a set of
labels (of transitions that collaboration configurations can perform as well as the
process configuration); andÑĎ C ˆAˆ C is a transition relation. We will write
xC, σ, δy

α
ÝÑ xC, σ1, δ1y to indicate that pxC, σ, δy, α, xC, σ1, δ1yq PÑ and say that

collaboration configuration xC, σ, δy performs transition labelled by α to become
collaboration configuration xC, σ1, δ1y. Since collaboration execution only affects
the current states, and not the collaboration structure, for the sake of readability we
omit the structure from the target configuration of the transition. Thus, a transition
xC, σ, δy

α
ÝÑ xC, σ1, δ1y is written as xC, σ, δy α

ÝÑ xσ1, δ1y. The rules related to the
collaboration level are defined in Fig. 6

4Actually, due to the completion definition, only the completing edges of the end events within
the sub-process body need to be set to zero.

23

xP, σy
τ
ÝÑ σ1

pC -Internalq
xpoolpp, P q, σ, δy

τ
ÝÑ xσ1, δy

xP, σy
?m
ÝÝÑ σ1 δpmq ą 0

pC -Receiveq
xpoolpp, P q, σ, δy

?m
ÝÝÑ xσ1, decpδ,mqy

xP, σy
!m
ÝÑ σ1

pC -Deliverq
xpoolpp, P q, σ, δy

!m
ÝÑ xσ1, incpδ,mqy

xC1, σ, δy
α
ÝÑ xσ1, δ1y

pC -Intq
xC1 || C2, σ, δy

α
ÝÑ xσ1, δ1y

Figure 6: BPMN Semantics - Collaboration Level.

The first three rules allow a single pool, representing organisation p, to evolve
according to the evolution of its enclosed process P . In particular, if P per-
forms an internal action, rule C-Internal, or a receiving/delivery action, rule C-
Receive/C-Deliver, the pool performs the corresponding action at collaboration
level.

Notably, the proposed semantics is based on asynchronous communication,
hence the messages are not necessarily processed immediately after their recep-
tion, but are enqueued in the receiver pool. For this reason, rule C-Receive can
be applied only if there is at least one message available in the pool (premise
δpmq ą 0); otherwise, the receiving activity has to wait for the expected message.
Of course, one token is consumed by this transition. Recall indeed that at process
level, label ?m just indicates the willingness of a process to consume a received
message, regardless the actual presence of messages. Moreover, when a process
performs a sending action, represented by a transition labelled by !m, such mes-
sage is delivered to the receiving organization by applying rule C-Deliver. The re-
sulting transition has the effect of increasing the number of tokens in the message
edge m. Rule C-Int permits to interleave the execution of actions performed by
pools of the same collaboration, so that if a part of a larger collaboration evolves,
the whole collaboration evolves accordingly. Notice that we do not need symmet-
ric versions of rule C-Int, as we identify collaborations up to commutativity and
associativity of pools collection.

24

start

Task D

Task C

End 1

End2

Task A

Task B Task E

End 3

start

Task D

Task C

Task A

Task B Task E
End

Figure 7: A non WS process model.

start

Task D

Task C

End 1

End2

Task A

Task B Task E

End 3

start

Task D

Task C

Task A

Task B Task E
End

Figure 8: A WS process model.

4. Properties of BPMN Collaborations

In this section, first we informally introduce the well-structuredness, safeness
and soundness properties. Then, we provide a rigorous characterisation of them,
with respect to the BPMN formalisation presented so far, both at process and
collaboration levels.

4.1. Well-structuredness, Safeness and Soundness for BPMN
We take into account three well-known classes of correctness properties in the

domain of business process management; namely well-structuredness [6], safe-
ness [7, 8] and soundness [9, 10]. Intuitively, well-structuredness relates to the
way elements are connected with each other, while safeness and soundness have
to do with the process behaviour, i.e. to the way processes can be executed.

A BPMN process model is well-structured (WS) if for every split gateway
there is a corresponding join gateway such that the fragment of the model be-
tween the split and the join forms a single-entry-single-exit process fragment (see
Def. 4). The notion is inspired by the one defined on WF-Nets [6]. As an exam-
ple, the process in Fig. 8 is the well-structured version of the unstructured process
in Fig. 7. The notion of well-structuredness is extended from process to collabo-
rations (see Def. 5), requiring well-structuredness to all the processes involved in
the collaboration.

A BPMN process model is safe5, if during its execution no more than one
token occurs along the same sequence edge (see Def. 7). This definition is inspired
by the Petri Net formalism, where safeness means that a Petri Net does not have
more than one token at each place in all reachable markings [8]. Safeness of
processes scales to process collaborations, saying that no more than one token
occurs on the same sequence edge during a collaboration execution (see Def. 8).

5Notably, the notion of safeness is different from that of safety, and is a specific and standard
concept in the BPMN literature.

25

A BPMN process model is sound whenever, during its execution, it is always
possible to reach a marking where either (i) each marked end event is marked
by at most one token and there is no other token around, or (ii) all edges are
unmarked (see Def. 10). Soundness is also inspired by the literature that presents
several versions on different modelling languages [8, 10, 9, 24]. It is extended to
process collaborations (see Def. 11), involving the whole collaboration execution
and requiring that all sent messages are properly received. We also consider a
variant of this property at collaboration level, which is a message-relaxed version,
inspired by [25], that allows completion with pending messages (see Def. 12).

4.2. Well-Structured BPMN Collaborations
The standard BPMN allows process models to have almost any topology.

However, it is often desirable that models abide some structural rules. In this
respect, a well-known property of a process model is that of well-structuredness.
In this paper we have been inspired by the definition of well-structuredness given
by Kiepuszewski et al. [6]. This definition is given on a generic notion of work-
flow model, consisting of a set of process elements and a set of transitions between
them, where the process elements are OR joins, OR splits, AND joins, AND splits
and process activities. Even if the well-structuredness definition given on top of
these models does not directly refer to BPMN, the intuitive meaning underlying
it is well-accepted also for the BPMN modelling notation (see, e.g., [26, Ch. 5]).
Anyway, in order to study the well-structuredness property in the considered sub-
set of BPMN, we extend it by including all the other process elements defined in
our formal framework (i.e., start, intermediate, end and terminate events, event-
based gateway and sub-processes) and by considering collaborations (simply re-
quiring that all processes involved in a collaboration are well-structured, since
communication does not play any role in this property).

Before providing a formal characterisation of well-structured BPMN pro-
cesses and collaborations, we need to introduce some auxiliary functions: inpP q
and outpP q determine, respectively, the incoming and outgoing sequence edges
of a process element P (their full definitions are relegated to Appendix A).
Moreover, to simplify the definition of well-structuredness for processes, we also
provide the definition of well-structured core by means of the boolean predicate
isWSCorep¨q. By core, we mean the part of the process included between a start
event and an end event, independently from the type of the events. Notice, the
notion of the core is relevant only in the scope of the definition of well-structured
process.

26

Definition 4 (Well-structured processes). A process P is well-structured (writ-
ten isWS pP q) if P has one of the following forms:

startpe, e1q || P 1 || endpe2, e3q (1)
startpe, e1q || P 1 || terminatepe2q (2)
startpe, e1q || P 1 || endSndpe2,m, e3q (3)

startRcvpe,m, e1q || P 1 || endpe2, e3q (4)
startRcvpe,m, e1q || P 1 || terminatepe2q (5)
startRcvpe,m, e1q || P 1 || endSndpe2,m, e3q (6)

where inpP 1q “ te1u, outpP 1q “ te2u, and isWSCorepP 1q.
isWSCorep¨q is inductively defined on the structure of its first argument as fol-
lows:

1. isWSCoreptaskpe, e1qq;
2. isWSCoreptaskRcvpe,m, e1qq;
3. isWSCoreptaskSndpe,m, e1qq;
4. isWSCorepemptype, e1qq;
5. isWSCorepinterRcvpe,m, e1qq;
6. isWSCorepinterSndpe,m, e1qq;

7.

@j P r1..ns isWSCorepPjq, inpPjq Ď E, outpPjq Ď E 1

isWSCorepandSplitpe, Eq || P1 || . . . || Pn || andJoinpE 1, e2qq

8.

@j P r1..ns isWSCorepPjq, inpPjq Ď E, outpPjq Ď E 1

isWSCorepxorSplitpe, Eq || P1 || . . . || Pn || xorJoinpE 1, e2qq

9.

@j P r1..ns isWSCorepPjq, inpPjq “ e1j, outpPjq Ď E

isWSCorepeventBasedpe, tpmj, e
1
jq|j P r1..nsuq || P1 || . . . | Pn || xorJoinpE, e2qq

10.

isWSCorepP1q, isWSCorepP2q,
inpP1q “ te

1u, outpP1q “ te
ivu,

inpP2q “ te
viu, outpP2q “ te

2u

isWSCorepxorJoinpte2, e3u, e1q || P1 || P2 || xorSplitpeiv, tev, eviuqq

27

11.6

isWSCorepP 11q, inpP
1
1q “ te

2
u, outpP 11q “ te

3
u

11paq. isWSCorepsubProcpe, startpe1, e2q || P 11 || endpe3, eivq, evqq
11pbq. isWSCorepsubProcpe, startpe1, e2q || P 11 || terminatepe3q, eivqq
11pcq. isWSCorepsubProcpe, startpe1, e2q || P 11 || endSndpe3,m, eivq, evqq
11pdq. isWSCorepsubProcpe, startRcvpe1,m, e2q || P 11 || endpe3, eivq, evqq
11peq. isWSCorepsubProcpe, startRcvpe1,m, e2q || P 11 || terminatepe3q, eivqq
11pfq. isWSCorepsubProcpe, startRcvpe1,m, e2q || P 11 || endSndpe3,m, eivq, evqq

12.

isWSCorepP1q, isWSCorepP2q, outpP1q “ inpP2q

isWSCorepP1 || P2q

According to Def. 4, well-structured processes are given in the forms (1-6),
that is as a (core) process included between any possible combination of differ-
ent types of the start and end events included in the semantics. We allow a start
event or a start message event and one simple end event or terminate event or end
message event. The (core) process between the start and end events can be com-
posed by any element up to the well-structured core definition. Any single task
or intermediate event is a well-structured core (cases 1-6); a composite process
starting with an AND (resp. XOR, resp. Event-based) split and closing with an
AND (resp. XOR, resp. XOR) join is well-structured core if each edge of the split
is connected to a given edge of the join by means of a well-structured core pro-
cesses (cases 7-9); a loop of sequence edges (e1 Ñ e4 Ñ e6 Ñ e2 Ñ e1) formed
by means of a XOR split and a XOR join is well-structured core if the body of
the loop consists of well-structured core processes (case 10). Notably, only loops
formed by XOR gateways are well-structured. For a better understanding, cases
7 - 10 are graphically depicted in Fig. 9. A sub-process is well structure core
if it includes a well-structured core process (case 11). A process element collec-
tion is well-structured core if its processes are well-structured and sequentially
composed (case 12).

Well-structuredness can be also extended to collaborations, by requiring each
process involved in a collaboration to be well-structured.

Definition 5 (Well-structured collaborations). Let C be a collaboration,
isWS pCq is inductively defined as follows:

6In the six inference rules 11(a)-11(f) we use a non-standard notation, to make the definition
of isWSCorep¨q more compact, since these rules share the same premises.

28

P1

…

Pn

ei

e1

en

e’i

e’1

e’n
ei

e1

en
- Case 7 - - Case 8 -

e’i

e’1

e’n

ei

e1

en
- Case 9 -

e’i

e’1

e’n P1

P2

e1 e4 e5

e6e2

e3

- Case 10 -

e e’

P1

…

Pn

P1

…

Pn

e

e

e’

e’

Figure 9: Well-structured nodes (cases 7-10).

• isWS ppoolpp, P qq if P is well-structured;

• isWS pC1 || C2q if isWS pC1q and isWS pC2q.

It is worth noticing that the extension of well-structuredness to collaborations only
focuses on the structure of the involved processes. Indeed, message edges are
already well connected, due to the unique names assumption for message edges,
and hence do not play any role at structural level.

Running Example (4/9). Considering the proposed running example and ac-
cording to the above definitions, process PC is well-structured, while process PTA
is not well-structured, due to the presence of the unstructured loop formed by the
XOR join and an AND split. Thus, the overall collaboration is not well-structured.

l

4.3. Safe BPMN Collaborations
A relevant property in business process domain is safeness, i.e the occurrence

of no more than one token along the same sequence edge during the process exe-
cution.

Before providing a formal characterisation of safe BPMN processes and col-
laborations, we need to introduce the following definition determining the safe-
ness of a process in a given state.

Definition 6 (Current state safe process). A process configuration xP, σy is cur-
rent state safe (cs-safe) if and only if @e P edgesElpP q . σpeq ď 1.

29

We can finally conclude with the definition of safe processes and collaborations
which requires that cs-safeness is preserved along the computations. Now, a pro-
cess (collaboration) is defined to be safe if it is preserved that the maximum mark-
ing does not exceed one along the process (collaboration) execution. We use ÝÑ˚

to denote the reflexive and transitive closure of ÝÑ.

Definition 7 (Safe processes). A process P is safe if and only if, given σ such
that isInitpP, σq, for all σ1 such that xP, σyÝÑ˚σ1 we have that xP, σ1y is cs-safe.

Definition 8 (Safe collaborations). A collaboration C is safe if and only if, given
σ and δ such that isInitpC, σ, δq, for all σ1 and δ1 such that xC, σ, δyÝÑ˚xσ1, δ1y we

have that @ P P participantpCq, xP, σ1y is cs-safe.

Running Example (5/9). Let us consider again our running example depicted
in Fig. 1. Process PC is safe since there is not any process fragment capable of
producing more than one token. Process PTA instead is not safe. In fact, if task
Make Travel Offer is executed more than once, we would have that the AND split
gateway will produce more than one token in the sequence flow connected to the
Booking Received event. Thus, also the resulting collaboration is not safe. l

4.4. Sound BPMN Collaborations
Another relevant property for the business process domain is soundness. As

usual, we define soundness both at the process and collaboration level. In a pro-
cess, the definition of the property is based on the notion of successful termination
in a given state (Def. 9), corresponding to one of the following two scenarios: (i)
all marked end events are marked exactly by a single token and all sequence edges
are unmarked; (ii) no token is observed in the configuration (meaning that a token
has reached a terminate event). Then, the soundness of a process ensures that for
all configurations reachable from the initial state of the process it is possible to
reach one of the two scenarios above (Def. 10).

Definition 9 (Current state sound process). A process configuration xP, σy is
current state sound (cs-sound) if and only if one of the following hold:

(i) @ e P markedpσ,endpP qq . σpeq “ 1 ^ @e P edgespP qzendpP q . σpeq “ 0.

(ii) @ e P edgespP q . σpeq “ 0.

30

Definition 10 (Sound process). A process P is sound if and only if, given σ such
that isInitpP, σq, for all σ1 such that xP, σyÝÑ˚σ1 we have that there exists σ2 such

that xP, σ1yÝÑ˚σ2, and xP, σ2y is cs-sound.

The above definition extends to collaboration by considering the combined
execution of the included processes and taking into account that all the messages
are handled during the execution, i.e. no pending message tokens are observed
(Def. 11).

Definition 11 (Sound collaboration). A collaboration C is sound if and only
if, given σ and δ such that isInitpC, σ, δq, for all σ1 and δ1 such
that xC, σ, δyÝÑ˚xσ1, δ1y we have that there exist σ2 and δ2 such that

xC, σ1, δ1yÝÑ˚xσ2, δ2y, @ P P participantpCq we have that xP, σ2y is cs-sound,

and @m PM . δ2pmq “ 0.

Thanks to the expressibility of our formalisation to distinguish sequence to-
kens from message tokens we relax the soundness property by defining message-
relaxed soundness. It extends the usual soundness notion by considering sound
also those collaborations in which asynchronously sent messages are not handled
by the receiver.

Definition 12 (Message-relaxed sound collaboration). A collaboration C is
Message-relaxed sound if and only if, given σ and δ such that isInitpC, σ, δq,
for all σ1 and δ1 such that xC, σ, δyÝÑ˚xσ1, δ1y we have that there exist σ2 and δ2

such that xC, σ1, δ1yÝÑ˚xσ2, δ2y, and @ P P participantpCq we have that xP, σ2y
is cs-sound.

Running Example (6/9). Let us consider again our running example. It is easily
to see that process PC is sound, since it is always possible to reach the end event
and when reached there is no token marking the sequence flows. Also process
PTA is sound, since when a token reaches the terminate event, all the other tokens
are removed from the edges by means of the killing effect. However, the resulting
collaboration is not sound. In fact, when a travel offer is accepted by the customer,
we would have that the AND-Split gateway will produce two tokens, one of which
re-activates the task Make Travel Offer. Thus, even if the process completes, the
message lists are not empty. However, the collaboration satisfied the message-
relaxed soundness property. l

31

5. Relationships among Properties

In this section we study the relationships among the considered properties both
at the process and collaboration level. In particular we investigate the relationship
between (i) well-structuredness and safeness, (ii) well-structuredness and sound-
ness, and (iii) safeness and soundness. For the sake of readability, the proofs of
these results are reported in the Appendix B.

5.1. Well-structuredness vs. Safeness in BPMN
Considering well-structuredness and safeness we demonstrate that all well-

structured models are safe (Theorem 1), and that the reverse does not hold. To
this aim, first we show that a process in the initial state is cs-safe (Lemma 1 in
the Appendix B). Then, we show that cs-safeness is preserved by the evolution
of well-structured core process elements (Lemma 2 in the Appendix B) and pro-
cesses (Lemma 3 in the Appendix B). These latter two lemmas rely on the notion
of reachable processes/core elements of processes (that is process elements dif-
ferent from start, end, and terminate events). In fact, the syntax in Fig. 4 is too
liberal, as it allows terms that cannot be obtained (by means of transitions) from a
process in its initial state. This last notion, in its own turn, needs the definition of
initial state for a core process element (isInitElpP, σq, see Appendix A).

Definition 13 (Reachable processes). A process configuration xP, σy is reach-
able if there exists a configuration xP, σ1y such that isInitpP, σ1q and xP, σ1y ÝÑ*σ.

Definition 14 (Reachable core process element). A process configuration
xP, σy is core reachable if there exists a configuration xP, σ1y such that
isInitElpP, σ1q and xP, σ1y ÝÑ*σ.

Theorem 1. Let P be a process, if isWS(P) then P is safe.

Proof (sketch). We show that if xP, σy ÝÑ˚σ1 then xP, σ1y is cs-safe, by induction
on the length n of the sequence of transitions from xP, σy to xP, σ1y. l

The reverse implication of Theorem 1 is not true. In fact there are safe pro-
cesses that are not well-structured. The collaboration diagram represented in
Fig. 10 is an example. The involved processes are trivially safe, since there are
not fragments capable of generating multiple tokens; however they are not well-
structured.

We now extend the previous results to collaborations.

Theorem 2. Let C be a collaboration, if C is well-structured then C is safe.

32

ExampleTheorema1

O
RG

 A

Task A

Task B

Task C

O
RG

 B
Task D

Figure 10: A safe BPMN collaboration not well-structured.

Proof (sketch). By contradiction. l

5.2. Well-structuredness vs. Soundness in BPMN
Considering the relationship between well-structuredness and soundness we

prove that a well-structured process is always sound (Theorem 3), but there are
sound processes that are not well-structured. To this aim, first we show that a
reachable well-structured core process element can always complete its execution
(Lemma 4 in Appendix B). This latter result is based on the auxiliary definition
of the final state of core elements in a process, given for all elements with the
exception of start and end events (isCompleteElpP, σq, we refer to Appendix A
for the complete account of its definition).

Theorem 3. Let isWS pP q, then P is sound.

Proof (sketch). By case analysis. l

The reverse implication of Theorem 3 is not true. In fact there are sound
processes that are not well-structured; see for example the process represented in
Fig. 11. This process is surely unstructured, and it is also trivially sound, since
it is always possible to reach an end event without leaving tokens marking the
sequence flows.

Task D

Task CTask A

Task B

Figure 11: An example of sound process not Well-Structured.

However, Theorem 3 does not extend to the collaboration level. In fact, when
we put well-structured processes together in a collaboration, this could be either
sound or unsound. This is also valid for message-relaxed soundness.

33

Theorem 4. Let C be a collaboration, isWS pCq does not imply C is sound.

Proof (sketch). By contradiction. l

Theorem 5. Let C be a collaboration, isWS pCq does not imply C is message-
relaxed sound.

Proof (sketch). By contradiction. l

5.3. Safeness vs. Soundness in BPMN
Considering the relationship between safeness and soundness we demonstrate

that there are unsafe models that are sound. This is a peculiarity of BPMN, faith-
fully implemented in our semantics, thank to its capability to support the terminate
event and (unsafe) sub-processes. Let us first reason at process level considering
some examples.

Theorem 6. Let P be a process, P is unsafe does not imply P is unsound.

Proof (sketch). By contradiction. l

Let us consider now the collaboration level. We have that unsafe collabora-
tions could either sound or unsound, as proved by the following Theorem.

Theorem 7. Let C be a collaboration, C is unsafe does not imply C is unsound.

Proof (sketch). By contradiction. l

Running Example (7/9). Considering the collaboration in our running example,
Customer is both safe and sound, while the process of the Travel Agency is unsafe
but sound, since the terminate event permits a to reach a marking where all edges
are unmarked. The collaboration is not safe, and it is also unsound but message-
relaxed sound, since there could be messages in the message lists.

6. Safeness and Soundness: A compositionality study

In this section we study safeness and soundness compositionality, i.e. how the
behaviour of processes affects that of the entire resulting collaboration. In particu-
lar, we show the interrelationships between the studied properties at collaboration
and at process level. At process level we also consider the compositionality of
sub-processes, investigating how sub-processes behaviour impacts on the safe-
ness and soundness of process including them. Again, for the sake of readability
the proofs of these results are reported in Appendix B

34

6.1. On Compositionality of Safeness
We show here that safeness is compositional, that is the composition of safe

processes always results in a safe collaboration.

Theorem 8. Let C be a collaboration, if all processes in C are safe then C is
safe.

Proof (sketch). By contradiction. l

We also show that the unsafeness of a collaboration cannot be in general
determined by information about the unsafeness of the processes that compose it.
Indeed, putting together an unsafe process with a safe or unsafe one, the obtained
collaboration could be either safe or unsafe. Let us consider now some cases.

Running Example (8/9). In our example, the collaboration is composed by a safe
process and an unsafe one. In fact, focussing on the process of the Travel Agency,
we can immediately see that it is not safe: the loop given by a XOR join and an
AND split produces multiple tokens on one of the outgoing edges of the AND
split. Now, if we consider this process together with the safe process of Cus-
tomer, the resulting collaboration is not safe. Indeed, the XOR split gateway,
which checks if the offer is interesting, forwards only one token on one of the two
paths. As soon as a received offer is considered interesting, the Customer process
proceeds and completes. Thus, due to the lack of safeness, the travel agency will
continue to make offers to the customer, but no more offer messages arriving from
the Travel Agency will be considered by the customer. l

Example 1. Another example refers to the case in which a collaboration com-
posed by a safe process and an unsafe one results in a safe collaboration, as
shown in Fig. 12. If we focus only on the process in ORG B we can immediately
notice that it is not safe: again the loop given by a XOR join and an AND split
produces multiple tokens on the same edge. However, if we consider this process
together with the safe process of ORG A, the resulting collaboration is safe. In
fact, task D receives only one message, producing a token that is successively split
by the AND gateway. No more message arrives from the send task, so, although
there is a token is blocked, we have no problem of safeness. l

Example 2. In Fig. 13 we have two unsafe processes, since each of them contains
a loop capable of generating an unbounded number of tokens. However, if we

35

unsafecoll

O
RG

 A

TASK A

TASK B

O
RG

 B

TASK C

O
RG

 A

Task C

O
RG

 B

TASK D

Figure 12: Safe collaboration with safe and unsafe processes.

unsafecoll

O
RG

 A

TASK A

TASK B

O
RG

 B

TASK C

O
RG

 A

ORG A

Task A Task B

O
RG

 B

ORG B

TASK D Task D

Figure 13: Safe collaboration with unsafe processes.

consider the collaboration obtained by the combination of these processes, it turns
out to be safe. Indeed, as in the previous example, tasks C and B are executed
only once, as they receive only one message. Thus, the two loops are blocked and
cannot effectively generate multiple tokens. l

Example 3. Also the collaboration in Fig. 14 is composed by two unsafe pro-
cesses: process in ORG A contains an AND split followed by a XOR join that
produces two tokens on the outgoing edge of the XOR gateway; process in ORG
B contains the same loop as in the previous examples. In this case the collabora-
tion composed by these two processes is unsafe. Indeed, the XOR join in ORG A
will effectively produce two tokens since the sending of task B is not blocking. l

Let us now to consider processes including sub-processes. We show that the
composition of unsafe sub-processes always results in un-safe processes, but the
vice versa does not hold. There are also un-safe processes including safe sub-
process when the unsafeness does not depend from the behaviour of the sub-
process.

36

unsafecoll

O
RG

 A

TASK A

TASK B

O
RG

 B

TASK C

Figure 14: Unsafe collaboration with unsafe processes.

Theorem 9. Let P be a process including a sub-process subProcpei, P1, eoq, if P1

is unsafe then P is unsafe.

Proof (sketch). By contradiction. l

6.2. On Compositionality of Soundness
As well as for the safeness property, we show now that it is not feasible to de-

tect the soundness of a collaboration by relying only on information about sound-
ness of processes that compose it. However, the unsoundness of processes implies
the unsoundness of the resulting collaboration.

Theorem 10. Let C be a collaboration, if some processes in C are unsound then
C is unsound.

Proof (sketch). By contradiction. l

On the other hand, when we put together sound processes, the obtained col-
laboration could be either sound or unsound, since we have also to consider mes-
sages. It can happen that either a process waits for a message that will never be
received or it receive more than the number of messages it is able to process. Let
us consider some examples.
Running Example (9/9). In our running example, the collaboration is composed
by two sound processes. In fact, the Customer process is well-structured, thus
sound. Focussing on the process of the Travel Agency, it is also sound since when
it completes the terminate end event aborts all the running activities and removes
all the tokens still present. However, the resulting collaboration is not sound, since
the message lists could not be empty. l

37

appendix

Task B

Task A

Task C

O
RG

 A

Task A

Task B

O
RG

 B

Task D

Task C

Figure 15: An example of unsound collaboration with sound processes.

Example 4. In Fig. 15 we have a collaboration resulting from the composition of
two sound processes. If we focus only on the processes in ORG A and ORG B we
can immediately note that they are sound. However, the resulting collaboration
is not sound. In fact, for instance, if Task A is executed, Task C in ORG B will
never receive the message and the AND join gateway cannot be activated, thus
the process of ORG B cannot complete its execution. l

Example 5. Also the collaboration in Fig. 16 is trivially composed by two sound
processes. However, in this case also the resulting collaboration is sound. In fact,
Task E will always receive the message by Task B and the processes of ORG A
and ORG B can correctly complete. l

Let’s now to consider soundness in a multi-layer structure. We show that
the composition of unsound sub-processes does not results in unsound processes.
There are also sound processes including unsound sub-process. In fact, when
we put unsound sub-process together in a process, this could be either sound or
unsound.

Theorem 11. Let P be a process including a sub-process subProcpei, P1, eoq, if
P1 is unsound does not imply P is unsound.

Proof (sketch). By contradiction. l

Remark 1. We do not consider well-structuredness and message-relaxed sound-
ness compositionality. In fact, the compositionaly of well-structuredness is im-
plied by the property definition, while it is not possible to study the message-
relaxed soundness compositionality since this property cannot be defined at the
process level (where enqueuing of messages is not considered).

38

appendix

Task B

Task A

Task C

O
RG

 A

Task A

Task B

Task C

Task D
O

RG
 B

Task F

Task E

Figure 16: Sound collaboration with sound processes.

7. Classification Results

In this section, we discuss how our framework enables a more precise classi-
fication of the BPMN models with respect to others in the literature.

7.1. Advances with respect to already available classifications
Differently from other classification works in the literature (at the process

level) relying on different notations (as, for instance, Workflow Nets [27, 28] and
π-calculus [29]), our study directly addresses BPMN collaboration models. By re-
lying on a uniform formal framework, we properly study the relationships among
the considered properties. Fig. 17 summarizes the obtained results. It shows that:

(i) all well-structured collaborations are safe, but the reverse does not hold;

(ii) there are well-structured collaborations that are neither sound nor message-
relaxed sound;

(iii) there are sound and message-relaxed sound collaborations that are not safe.

Item (i) states that well-structured collaborations represent a proper subclass of
safe collaborations. We show that such an inclusion is valid at process level. On
Workflow Nets, instead, a process model, to be safe, has to be well-structured and
sound [28].

Item (ii) states that there are well-structured collaborations that are not sound.
Well-structuredness, instead, implies soundness at the process level. This con-
firms the results provided on Workflow Nets, where well-structuredness implies

39

Safe

Sound
Message-Relaxed

Sound Well - Structured

Figure 17: Classification of BPMN collaborations.

soundness [30], and relaxes the one obtained in Petri Nets [27], where relaxed
soundness and well-structuredness together imply soundness.

(i) and (ii) confirm the limits of well-structuredness. It turns out to be a very
strict correctness criterion, as some safe and sound models that are not well-
structured are taken a part.

Item (iii) shows that there are sound and message-relaxed sound collabora-
tions that are not safe. This can also be observed at process level resulting in a
novel contribution strictly related to the expressiveness of BPMN and its differ-
ences with respect to other workflow languages. In fact, Van der Aalst shows
that soundness of a Workflow Net is equivalent to liveness and boundedness of
the corresponding short-circuited Petri Net [31]. Similarly, in workflow graphs
and, equivalently, free-choice Petri Nets, soundness can be characterized in terms
of two types of local errors, viz. deadlock and lack of synchronization: a work-
flow graph is sound if it contains neither a deadlock nor a lack of synchronization
[32, 33]. Thus, a sound workflow is always safe. In BPMN instead there are
unsafe processes that are sound.

Summing up, item (i) together with (ii) and (iii), are novel results, also at
process level. As clarified below, this is mainly due to the effects of the behaviour
of the terminate event and sub-processes, that have an impact on the classification
of the models, both at the process and collaboration level.

7.2. Advances in Classifying BPMN Models
Our formalisation focusses on the following BPMN features: different ab-

straction levels (i.e., sub-processes, processes and collaborations), asynchronous
communication paradigm between pools, and different types of process/collabo-
ration completion.

Our formalisation of collaboration models allows to observe both the execu-
tion of the processes involved in the collaboration, through the flow of tokens
along sequence edges, and the exchange of messages between pools, through the
flow of messages along message edges. There is a clear difference between the
notion of safeness directly defined on BPMN collaborations with respect to that

40

defined on Petri Nets and applied to the Petri Nets resulting from the translation of
BPMN collaborations. Safeness of a BPMN collaboration only refers to tokens on
the sequence edges of the involved processes, while in its Petri Nets translation it
refers to tokens both on message and sequence edges. Indeed, such distinction is
not considered in the available mappings [4, 34], because a message is rendered as
a (standard) token in a place. Hence, a safe BPMN collaboration, where the same
message is sent more than once (e.g., via a loop), is erroneously considered un-
safe by relying on the Petri Nets notion (i.e., 1-boundedness), because enqueued
messages are rendered as a place with more than one token. Therefore, the notion
of safeness defined for Petri Nets cannot be directly applied as it is to BPMN col-
laboration models. Similarly, regarding to the soundness property, we are able to
consider different notions of soundness according to the requirements we impose
on message queues (e.g., ignoring or not pending messages). Again, due to lack
of distinction between message and sequence edges, these fine-grained reasonings
are precluded using the current translations from BPMN to Petri Nets.

The study of BPMN models via the frameworks based on Petri Nets has an-
other limitation concerning the management of the terminate event. Most of the
available mappings, such as the ones in [34] and [35], do not consider the ter-
minate event, while in the one provided in [4], terminate events are treated as
a special type of error events which, however, occur mainly on sub-processes,
whose translation assumes safeness. This does not allow reasoning on most of
the models including the terminate event and, more in general, on all models in-
cluding unsafe sub-processes. Nevertheless, given the local nature of Petri Nets
transitions, such cancellation patterns are difficult to handle. This is confirmed in
[36], stating that modelling a vacuum cleaner, (i.e., a construct to remove all the
tokens from a given fragment of a net) it is possible but results in a spaghetti-like
model.

The ability of our formal framework to properly distinguish sequence flow
tokens and message flow tokens, jointly with our management of the terminate
event and sub-processes, without any of the above mentioned restrictions, allowed
us to provide a more precise classification of the BPMN models as summarized in
Fig. 18(a) and Fig. 18(b).

In particular, Fig. 18(a) underlines reasonings that can be done at process level
on soundness (independently from safeness and well-structureness). It clearly
emerges the impact of the terminate event on the soundness of models, as using a
terminate event in place of an end event might let sound an unsound model. For
example, let us consider the process in Fig. 19; it is a simple process that first runs
in parallel Task A and Task B, then performs two times Task C. According to the

41

Sound Sound-Safe Safe

Terminate
Terminate

sub-process

Message
Disregarding

Sound

sub-process sub-process

Sound

sub-process

Sound Sound-Safe Safe

Terminate
Terminate

sub-process

Message-Relaxed

 Sound

sub-process sub-process

Sound

sub-process

(a) (b)

Figure 18: Reasoning at process level (a) and collaboration level (b).

Task 1

Task 2

Task 3

Task 4

Task A

Task B

Task C

Task B

Task A

Task C

Figure 19: Unsound process.

Task 1

Task 2

Task 3

Task 4

Task A

Task B

Task C

Task B

Task A

Task C

Figure 20: Sound process with an unsound sub-process.

proposed classification the model is unsound. In fact, there is a marking where the
end event has two tokens. Now, let us consider the model obatined by replacing
the end event in Fig. 19 with a terminate event. The resulting model is sound and
this is due to the behaviour of the terminate event that, when reached, removes all
tokens in a process. It is worth noticing that, although the two models are quite
similar, in terms of our classification they result to be significantly different.

Also the use of sub-processes can impact on the satisfaction of the soundness
property. Fig. 20 shows a simple process model where the unsound process in
Fig. 19 is included in the sub-process. According to the BPMN standard, a sub-
process completes only when all the internal tokens are consumed, and then just
one token is propagated along the including process. Thus, it results that the
model in Fig. 20 is sound. Its behaviour would not correspond to that of the
process obtained by flattening it, as the resulting model is unsound. Notice, this
reasoning is not affected by safeness and, in particular, it cannot be extended to
collaborations since, as we will show in Sec. 6, soundness is not compositional;
namely, the composition of two sound processes not necessarily turns out to be
sound.

Interesting situations also arise when focussing on the collaboration level, as
highlighted in Fig. 18(b). Worth to notice is the possibility to transform, with a
small change, an unsound collaboration into a sound one.

In Fig. 21, Fig. 22 and Fig. 23 we report a simple example showing the impact
of sub-processes. Also in this case the models are rather similar, but according
to our classification the result is completely different. The collaboration model

42

classificationCollex1
O

RG
 A

Task A

Task B

Task C

O
RG

 B
Task D

O
RG

 A

ORG A

Task B

Task A

Task C

O
RG

 B

Task D

O
RG

 B

Task D

O
RG

 A

ORG A

Task B

Task A

Task C

Figure 21: An example of unsound and
message-relaxed unsound collaboration.

classificationCollex1

O
RG

 A

Task A

Task B

Task C

O
RG

 B

Task D

O
RG

 A

ORG A

Task B

Task A

Task C

O
RG

 B

Task D

O
RG

 B

Task D

O
RG

 A

ORG A

Task B

Task A

Task C

Figure 22: An example of message-relaxed
sound and unsound collaboration.

classificationCollex1

O
RG

 A

Task A

Task B

Task C

O
RG

 B

Task D

O
RG

 A

ORG A

Task B

Task A

Task C

O
RG

 B

Task D

O
RG

 B
Task D

O
RG

 A

ORG A

Task B

Task A

Task C

Figure 23: An example of message-relaxed
sound and sound collaboration.

in Fig. 21 is neither sound nor message-relaxed sound, since on ORG A there is
a configuration with two tokens on the end event and a pending message. Now
let us consider another model obtained from that in Fig. 21 by introducing a sub-
process. The resulting collaboration is as in Fig. 22 and turns out to be unsound
and message-relaxed sound, since the use of the sub-process mitigates the causes
of message-relaxed unsoundness. In fact there will be only the issue of a pending
message, since Task C sends two messages and only one will be consumed by Task
D. Differently, Fig. 23 shows that enclosing within a sub-process only the part of
the model generating multiple tokens leads to a positive effect on the soundness
of the model. The collaboration is both sound and message-relaxed sound.

8. Relevance into Practice: the S3 tool

To get a clearer idea of the impact of well-structuredness, safeness, and sound-
ness on the real-world modelling practice, we have analysed the BPMN 2.0 pro-
cess and collaboration models available in a well-known, public, well-populated
repository provided by the PROS Lab,7 namely RePROSitory [15]. It includes
164 models8 that has been retrieved by research papers accepted from the BPM

7https://pros.unicam.it/reprository
8https://pros.unicam.it:4200/guest/collection/a.m1903202001038

43

https://pros.unicam.it/reprository
https://pros.unicam.it:4200/guest/collection/a.m1903202001038

conference, starting from 2011 that is the year when the BPMN standard has been
released. Thus, the repository is particularly suitable to investigate real modelling
practice, modelling styles and the relevance of modelling constructs.

From the technical point of view, well-structuredness, safeness and soundness
have been checked using the S3 tool9. In this regards, an additional contribution
we provide in the paper is the extension of the S3 Java stand-alone application
with a new verification component for checking well-structuredness10. The appli-
cation allows the user to load a .bpmn file to be checked, and hence to verify the
considered properties. The graphical interface provides a text area reporting the
verification results, and a button to visualise in a separate window the generated
LTS.

Figure 24: S3 Modelling Environment Interface.

Running a massive verification we obtained the results reported in Table 5.
The models are grouped in classes depending on their size. Notably, given the
number of models that are included in the classes with size 40-49, 50-59 and 60-
69, we do not consider these classes in our reasoning below, even if also in these
cases the theoretical results are confirmed by the empirical study.

Let us focus on the well-structuredness; 49% of models in the repository sat-
isfy it. Anyway, more interesting is the trend of the number of well-structured
models with respect to their size.

9http://pros.unicam.it/s3/
10The updated stand-alone application of S3 is available at http://pros.unicam.it:

8080/S3Stand-alone/S3.zip

44

http://pros.unicam.it/s3/
http://pros.unicam.it:8080/S3Stand-alone/S3.zip
http://pros.unicam.it:8080/S3Stand-alone/S3.zip

Size Dataset WS Non-WS Safe MR-Sound Sound
0 - 9 59 34 (58%) 25 (48%) 57 (97%) 44 (75%) 44 (75%)

10 - 19 77 39 (51%) 38 (49%) 72 (94%) 58 (75%) 58 (75%)
20 - 29 20 6 (30%) 14 (70%) 18 (90%) 14 (70%) 14 (70%)
30 - 39 5 0 (0%) 5 (100%) 4 (80%) 3 (60%) 3 (60%)
40 - 49 1 0 (0%) 1 (100%) 1(100%) 0 (0%) 0 (0%)
50 - 59 1 1(100%) 0 (0%) 1(100%) 1(100%) 1(100%)
60 - 69 1 0 (0%) 1 (100%) 1(100%) 0(0%) 0(0%)

164 80 (49%) 84 (51%) 154 (94%) 120 (73%) 120 (73%)
Table 5: Classification of the models in RePROSitory.

Min Time Max Time Avg. Time Median Time St.Dev.
0,000058182 2117,04589 24,42860718 0,0013911705 215,9426315

Table 6: S3 performance in seconds

It shows that in practice BPMN models starts to become unstructured when
their size grows. This means that, even if structuredness is a good property, it
should be regarded as a general guideline; one can deviate from it if necessary,
especially in modelling complex scenarios. The balancing between the two classes
motivates, on the one hand, our design choice of considering in our formalisation
BPMN models with an arbitrary topology and, on the other hand, the necessity of
studying well-structuredness and the related properties.

Concerning safeness, it results that 154 models are safe. The classes that
surely cannot be neglected in our study, as they are suitable to model realistic
scenarios, are those with size 0 - 9, 10 - 19, and 20-29 including 156 models, of
which only 9 are unsafe. This makes evident that modelling safe models is part of
the practice, and that imposing well-structuredness is sometimes too restrictive,
since there is a huge class of models that are safe even if with an unstructured
topology.

Concerning soundness, it results that there are 120 sound models. Mod-
elling in a sound way is a common practice, recognising soundness as one of
the most important correctness criteria. Moreover, the data shows that there are
well-structured models that are not sound, which confirms the limitation of well-
structuredness. Concerning message-relaxed soundness, it results that the number
of models satisfying this property are the same of the the sound ones. This could
be due to a limitation of the data-set for what concerns the presence of collabora-
tion diagrams, as it only includes 13 diagrams of this type. Table 6 provides some
insights on the performance of S3 for the verification of the proposed properties

45

on the 164 models of our dataset11. As it can be observed, the S3 tool performs
quite well in the majority of the cases with results under the second (see the Me-
dian time). The time used in the verification of a single model is influenced by
its complexity in terms of elements and from the degree of parallelism that they
have. The results obtained by the S3 tool in Table 5 give us also a measure of
its effectiveness. Indeed, the percentage of properties satisfied are quite low, es-
pecially for well-structuredness and soundness. This is a clear evidence that also
expert users need to be supported by verification tools, like S3, in the modelling
activity.

9. Related Work

In this paper we provide a formal characterisation of well-structuredness for
BPMN models. To do that we have been inspired by the definition of well-
structuredness given in [6]. Other attempts are also available in the literature. Van
der Aalst et al. [37] state that a workflow net is well-structured if the split/join
constructions are properly nested. El-Saber and Boronat [38] propose a formal
definition of well-structured processes, in terms of a rewriting logic, but they do
not extend this definition at collaboration level.

We then consider safeness, showing that this is a significant correctness prop-
erty. Dijkman et al. [4] discuss about safeness in Petri Nets resulting from the
translation of BPMN. In such work, safeness of BPMN terms means that no activ-
ity will ever be enabled or running more than once concurrently. This definition
is given using natural language, while in our work we give a precise characterisa-
tion of safeness for both BPMN processes and collaborations. Other approaches
introducing mapping from BPMN to formal languages, such as YAWL [39] and
COWS [40], do not consider safeness, even if it is recognised as an important
characteristic [41].

Moreover, soundness is considered as one of the most important correctness
criteria. There is a jungle of other different notions of soundness in the literature,
referring to different process languages and even for the same process language,
e.g. for EPC a soundness definition is given by Mendling in [42], and for Work-
flow Nets by van der Aalst [10] provides two equivalent soundness definitions.
However, these definitions cannot be used directly for BPMN because of its pe-
culiarities. They typically relies on the satisfaction of three sub-properties (i)

11The experiments have been carried out on a machine equipped with a i7-8565U CPU @
1.80GHz × 8 and 16 Gb of RAM.

46

option to complete: for any model execution it is always still possible to reach the
state where the place end is marked; (ii) proper completion: at the moment the
place end is marked, all other places should be unmarked; (iii) no dead activities:
it should be possible to execute an arbitrary activity. Comparing this definition
given on Workflow Nets with ours, we have that the no dead activities and the op-
tion to complete properties are equivalent to requiring the complete execution of a
process from any state in the system (Def. 10). In fact, the only way to have dead
activities is that the incoming sequence flow of an activity in the process is never
reached by a token. This can happen either when there is a deadlock upstream the
considered activity or when there are some conditions on gateways. The first case
is subsumed in the notion of completeness, while the second case is not caught by
our semantics. The proper completion in our case is slightly different (Def. 9),
since we rely on the BPMN notion of completeness [2, pp. 426, 431], requiring
that all tokens in that instance must reach an end node. In the BPMN standard,
indeed, more than one end event are allowed, while in Workflow Nets only one
end event is admitted. For this reason, in our definition we require that all the
marked end events must have at most one token, while the rest of the elements
must be unmarked. In addition, we are able to manage the soundness of collab-
orations in a native way (Def. 11-12), distinguishing the token nature (control
flow vs message flow) that are not contemplated in Workflow Nets. Although the
BPMN process flow resembles to some extent the behaviour of Petri Nets, it is not
the same. BPMN 2.0 provides a comprehensive set of elements that go far beyond
the definition of mere place/transition flows and enable modelling at a higher level
of abstraction.

Other studies try to characterize inter-organizational soundness are available.
A first attempt was done using a framework based on Petri Nets [9]. The authors
investigate IO-soundness presenting an analysis technique to verify the correct-
ness of an inter-organizational workflow. However, the study is restricted to struc-
tured models. Soundness regarding collaborative processes is also given in [43]
in the field of the Global Interaction Nets, in order to detect errors in technology-
independent collaborative business processes models. However, differently from
our work, this approach does not apply to BPMN, which is the modelling notation
aimed by our study. Concerning message-relaxed soundness, we have been moti-
vated by Puhlmann and Weske [25], who define interaction soundness, which in
turn is based on lazy soundness [29]. The use of a mapping into π-calculus, rather
than of a direct semantics, bases the reasoning on constrains given by the target
language. In particular, the authors refer to a synchronous communication model
not compliant with the BPMN standard. Our framework instead natively imple-

47

ments the BPMN communication model via an asynchronous approach. More-
over, the interaction soundness assumes structural soundness as a necessary con-
dition that we relax.

Therefore, as also already discussed in Sec. 7.1 and Sec. 7.2, our investiga-
tion of properties at collaboration level provides novel insights with respect to the
state-of-the-art of BPMN formal studies.

10. Concluding Remarks

Our study formally defines some important correctness properties, namely
well-structuredness, safeness, and soundness, both at the process and collabo-
ration level of BPMN models. We demonstrate the relationships between the
studied properties, with the aim of classifying BPMN collaborations according
to the properties they satisfy. Rather than converting the BPMN models to Petri
or Workflow Nets and studying relevant properties on the models resulting from
the mapping, we directly define such properties on BPMN, thus dealing with its
complexity and specificities directly. Our approach is based on a uniform formal
framework and is not limited to models with a specific topology, i.e., models do
not need to be block-structured.

Specifically, we show that well-structured collaborations represent a subclass
of safe ones. In fact, there is a class of collaborations that are safe, even if with an
unstructured topology. These models are typically discarded by the modelling ap-
proaches in the literature, as they are over suspected of carrying bugs. However,
we have shown that some of these models can play a significant role in prac-
tice. We also show that there are well-structured collaborations that are neither
sound nor message-relaxed sound. Finally, we demonstrate there are sound and
message-relaxed sound collaborations that are not safe. The resulting classifica-
tion also provides a novel contribution by extending the reasoning from processes
to collaborations. Moreover, being close to the BPMN standard, it permits to
catch the language peculiarities, as the asynchronous communication model and
the completeness notion that distinguishes the effect of a terminate end event from
that of a classic end event. Finally, the empirical investigation we did by means of
the S3 tool confirms our theoretical study, and makes evident its importance into
practice.

In the future, we plan to continue our program to reason on the properties of
BPMN collaboration models, by considering variants of the correctness properties
and a larger set of BPMN elements. In particular, we would like to check if the
obtained results are still valid in an extended framework.

48

References

[1] Lindsay, A., Downs, D., Lunn, K.: Business processes — attempts to find a
definition. Information and Software Technology 45(15) (2003) 1015–1019

[2] OMG: Business Process Model and Notation (BPMN 2.0) (2011)

[3] Suchenia, A., Potempa, T., Ligeza, A., Jobczyk, K., Kluza, K.: Selected ap-
proaches towards taxonomy of business process anomalies. In: Advances
in business ICT: new ideas from ongoing research. Volume 658 of SCI.
Springer (2017) 65–85

[4] Dijkman, R., Dumas, M., Ouyang, C.: Semantics and analysis of business
process models in BPMN. Information and Software Technology 50(12)
(2008) 1281–1294

[5] Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F.: A formal approach
to modeling and verification of business process collaborations. Science of
Computer Programming 166 (2018) 35–70

[6] Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On structured work-
flow modelling. In: Information Systems Engineering, 25 Years of CAiSE.
Volume 9539 of LNCS. Springer (2000) 431–445

[7] Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Lectures on Petri
Nets: basic models. Springer (1998) 12–121

[8] Van der Aalst, W.M.: Workflow verification: finding control-flow errors us-
ing Petri Net based techniques. In: Business Process Management, Models,
Techniques, and Empirical Studies. Volume 1806 of LNCS. Springer (2000)
161–183

[9] Van der Aalst, W.M.: Process-oriented architectures for electronic com-
merce and interorganizational workflow. Information Systems 24(8) (1999)
639–671

[10] Van der Aalst, W., Van Hee, K., Ter Hofstede, A., Sidorova, N., Verbeek,
H., Voorhoeve, M., Wynn, M.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Aspects of Computing 23(3) (2011) 333–
363

49

[11] Murata, T.: Petri Nets: properties, analysis and applications. IEEE Proceed-
ings 77(4) (1989) 541–580

[12] Dumas, M., La Rosa, M., Mendling, J., Mäesalu, R., Reijers, H.A., Seme-
nenko, N.: Understanding business process models: the costs and benefits of
structuredness. In: CAiSE. Volume 7328 of LNCS. Springer (2012) 31–46

[13] Polyvyanyy, A., García-Bañuelos, L., Dumas, M.: Structuring acyclic pro-
cess models. Information Systems 37(6) (2012) 518–538

[14] Polyvyanyy, A., Garcia-Banuelos, L., Fahland, D., Weske, M.: Maximal
structuring of acyclic process models. The Computer Journal 57(1) (2014)
12–35

[15] Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F.: A formal approach
to modeling and verification of business process collaborations. Science of
Computer Programming 166 (2018) 35–70

[16] Corradini, F., Morichetta, A., Polini, A., Re, B., Rossi, L., Tiezzi, F.: Cor-
rectness checking for BPMN collaborations with sub-processes. Journal of
Systems & Software 166 (2020)

[17] Muzi, C., Pufahl, L., Rossi, L., Weske, M., Tiezzi, F.: Formalising BPMN
service interaction patterns. In: The Practice of Enterprise Modeling. Vol-
ume 335 of LNBIP., Springer (2018) 3–20

[18] Barros, A., Dumas, M., ter Hofstede, A.H.: Service interaction patterns. In:
BPM. Volume 3649 of LNCS., Springer (2005) 302–318

[19] Muzi, C.: Formalisation of BPMN models: a focus on correctness proper-
ties. Phd thesis, University of Camerino (1999/2000)

[20] Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling
guidelines (7PMG). Information and software technology 52(2) (2010) 127–
136

[21] Corradini, F., Ferrari, A., Fornari, F., Gnesi, S., Polini, A., Re, B., Spagnolo,
G.O.: A guidelines framework for understandable BPMN models. Data and
Knowledge Engineering 113 (2018) 129–154

[22] Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance
checking - relating processes and models. Springer (2018)

50

[23] Meyer, A., Smirnov, S., Weske, M.: Data in business processes. EMISA
Forum 31 (2011) 5–31

[24] El-Saber, N.: CMMI-CM compliance checking of formal BPMN models us-
ing MAUDE. PhD thesis, University of Leicester - Department of Computer
Science (2015)

[25] Puhlmann, F., Weske, M.: Interaction soundness for service orchestrations.
In: Service-Oriented Computing. Volume 4294 of LNCS. Springer (2006)
302–313

[26] Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Busi-
ness Process Management. Springer (2018)

[27] Dehnert, J., Zimmermann, A.: On the suitability of correctness criteria for
business process models. In: Business Process Management. Volume 3649
of LNCS. Springer (2005) 386–391

[28] Van der Aalst, W.M.: Structural characterizations of sound workflow nets.
Computing Science Reports 96(23) (1996) 18–22

[29] Puhlmann, F., Weske, M.: Investigations on soundness regarding lazy activ-
ities. In: Business Process Management. Volume 4102 of Lecture Notes in
Computer Science. Springer (2006) 145–160

[30] Van Hee, K., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve, M.:
History-based joins: semantics, soundness and implementation. In: Interna-
tional Conference on Business Process Management, Springer (2006) 225–
240

[31] Van der Aalst, W.M.: Verification of workflow nets. In: International con-
ference on application and theory of Petri Nets, Springer (1997) 407–426

[32] Favre, C., Völzer, H.: Symbolic execution of acyclic workflow graphs. Vol-
ume 6336 of LNCS. Springer (2010) 260–275

[33] Prinz, T.M.: Fast soundness verification of workflow graphs. In: Zentral-
europäischer Workshop über Services und ihre Komposition. Volume 1029
of LNCS. Springer (2013) 31–38

[34] K., M., W., M.: Behavioural Models - From Modelling Finite Automata to
Analysing Business Processes. Springer (2016)

51

[35] Kheldoun, A., Barkaoui, K., Ioualalen, M.: Formal verification of complex
business processes based on high-level Petri Nets. Information Sciences
385-386 (2017) 39–54

[36] Ter Hofstede, A.: Workflow patterns: on the expressive power of (Petri Net
based) workflow languages. PhD thesis, University of Aarhus (2002)

[37] Van Der Aalst, W.M.: The application of Petri Nets to workflow manage-
ment. Journal of Circuits, Systems and Computers 08(01) (1998) 21–66

[38] El-Saber, N., Boronat, A.: BPMN formalization and verification using
MAUDE. In: Behaviour Modelling Foundations and Applications, ACM
(2014) 1–12

[39] Decker, G., Dijkman, R., Dumas, M., García-Bañuelos, L.: Transforming
BPMN diagrams into YAWL nets. In: Business Process Management. Vol-
ume 5240 of LNCS. Springer (2008) 386–389

[40] Prandi, D., Quaglia, P., Zannone, N.: Formal analysis of BPMN via a trans-
lation into COWS. In: Coordination models and languages. Volume 5052 of
LNCS. Springer (2008) 249–263

[41] Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets.
In: Foundations of software technology and theoretical computer science.
Volume 761 of LNCS. Springer (1993) 326–337

[42] Mendling, J.: Detection and prediction of errors in EPC business process
models. PhD thesis, Wirtschaftsuniversität Wien Vienna (2007)

[43] Roa, J., Chiotti, O., Villarreal, P.: A verification method for collabora-
tive business processes. In: Business Process Management. Volume 99 of
LNBIP. Springer (2011) 293–305

52

Appendix A. Definitions
Here we reported the complete definitions of some auxiliary notions used in the paper.

We define function edgespP q to refer the edges in the scope of P and edgesElpP q to
indicate the edges in the scope of P without considering the spurious edges.

edgespP1 || P2q “ edgespP1q Y edgespP2q

edgespstartpe, e1qq “ te, e1u

edgespendpe, e1qq “ te, e1u

edgespstartRcvpe,m, e1qq “ te, e1u

edgespendSndpe,m, e1qq “ te, e1u

edgespterminatepeqq “ teu

edgespeventBasedpe, pm1, e
1
1q, . . . , pmh, e

1
hqqq “ te, e

1
1, . . . , e

1
hu

edgespandSplitpe, e11, . . . , e
1
hqq “ te, e

1
1, . . . , e

1
hu

edgespxorSplitpe, e11, . . . , e
1
hqq “ te, e

1
1, . . . , e

1
hu

edgespandJoinpe1, . . . , eh, e
1qq “ te1, . . . , eh, e

1u

edgespxorJoinpe1, . . . , eh, e
1qq “ te1, . . . , eh, e

1u

edgesptaskpe, e1qq “ te, e1u

edgesptaskRcvpe,m, e1qq “ te, e1u

edgesptaskSndpe,m, e1qq “ te, e1u

edgespemptype, e1qq “ te, e1u

edgespinterRcvpe,m, e1qq “ te, e1u

edgespinterSndpe,m, e1qq “ te, e1u

edgespsubProcpe, P, e1qq “ te, e1u Y edgespP q

53

edgesElpP1 || P2q “ edgesElpP1q Y edgesElpP2q

edgesElpstartpe, e1qq “ te1u

edgesElpendpe, e1qq “ teu

edgesElpstartRcvpe,m, e1qq “ te1u

edgesElpendSndpe,m, e1qq “ teu

edgesElpterminatepeqq “ teu

edgesElpeventBasedpe, pm1, e
1
1q, . . . , pmh, e

1
hqqq “ te, e

1
1, . . . , e

1
hu

edgesElpandSplitpe, e11, . . . , e
1
hqq “ te, e

1
1, . . . , e

1
hu

edgesElpxorSplitpe, e11, . . . , e
1
hqq “ te, e

1
1, . . . , e

1
hu

edgesElpandJoinpe1, . . . , eh, e
1qq “ te1, . . . , eh, e

1u

edgesElpxorJoinpe1, . . . , eh, e
1qq “ te1, . . . , eh, e

1u

edgesElptaskpe, e1qq “ te, e1u

edgesElptaskRcvpe,m, e1qq “ te, e1u

edgesElptaskSndpe,m, e1qq “ te, e1u

edgesElpemptype, e1qq “ te, e1u

edgesElpinterRcvpe,m, e1qq “ te, e1u

edgesElpinterSndpe,m, e1qq “ te, e1u

edgesElpsubProcpe, P, e1qq “ te, e1u Y edgesElpP q

We inductively define functions inpP q and outpP q, which determine the incoming
and outgoing sequence edges of a process element P .

54

inpstartpe, e1qq “ H outpstartpe, e1qq “ te1u
inpendpe, e1qq “ teu outpendpe, e1qq “ H
inpstartRcvpe,m, e1qq “ H outpstartRcvpe,m, e1qq “ te1u
inpendSndpe,m, e1qq “ teu outpendSndpe,m, e1qq “ H
inpterminatepeqq “ teu outpterminatepeqq “ H
inpandSplitpe, Eqq “ teu outpandSplitpe, Eqq “ E
inpxorSplitpe, Eqq “ teu outpxorSplitpe, Eqq “ E
inpandJoinpE, e1qq “ E outpandJoinpE, e1qq “ te1u
inpxorJoinpE, e1qq “ E outpxorJoinpE, e1qq “ te1u
inpeventBasedpe, pm1, e

1
1q, . . . , pmh, e

1
hqqq outpeventBasedpe, pm1, e

1
1q, . . . , pmh, e

1
hqqq

“ teu “ te1ju with 1 ă j ă h

inptaskpe, eqq “ teu outptaskpe, e1qq “ te1u
inptaskRcvpe,m, e1qq “ teu outptaskRcvpe,m, e1qq “ te1u
inptaskSndpe,m, eqq “ teu outptaskSndpe,m, e1qq “ te1u
inpemptype, e1qq “ teu outpemptype, e1qq “ te1u
inpinterRcvpe,m, e1qq “ teu outpinterRcvpe,m, e1qq “ te1u
inpinterSndpe,m, e1qq “ teu outpinterSndpe,m, e1qq “ te1u
inpsubProcpe, P1, e

1qq “ teu outpsubProcpe, P1, e
1qq “ te1u

inpP1 || P2q “ pinpP1q Y inpP2qq outpP1 || P2q “ poutpP1q Y outpP2qq

z poutpP1q Y outpP2qq z pinpP1q Y inpP2qq

Definition 15 (Initial state of core elements in P). Let P be a process, then
isInitElpP, σq is inductively defined on the structure of process P as follows:
isInitElptaskpe, e1q, σq if σpeq “ 1 and σpe1q “ 0
isInitElptaskRcvpe,m, e1q, σq if σpeq “ 1 and σpe1q “ 0
isInitElptaskSndpe,m, e1q, σq if σpeq “ 1 and σpe1q “ 0
isInitElpemptype, e1q, σq if σpeq “ 1 and σpe1q “ 0
isInitElpinterRcvpe,m, e1q, σq if σpeq “ 1 and σpe1q “ 0
isInitElpinterSndpe,m, e1q, σq if σpeq “ 1 and σpe1q “ 0
isInitElpandSplitpe, Eq, σq if σpeq “ 1 and @e1 P E . σpe1q “ 0
isInitElpxorSplitpe, Eq, σq if σpeq “ 1 and @e1 P E . σpe1q “ 0
isInitElpandJoinpE, eq, σq if @e1 P E . σpe1q “ 1 and σpeq “ 0
isInitElpxorJoinpE, eq, σq if De1 P E . σpe1q “ 1 and σpeq “ 0
isInitElpeventBasedpe, pm1, eo1q, . . . , pmk, eokqq, σq if σpeq “ 1

and @e1 P teo1, . . . , eoku . σpe1q “ 0
isInitElpsubProcpe, P, e1qq if σpeq “ 1, σpe1q “ 0

and @e2 P edgespP q . σpe2q “ 0
isInitElpP1||P2, σq if @e P inpP1 || P2q : isInitElpgetInElpe, P1 || P2qq

and @e P pedgespP1 || P2qzinpP1 || P2qq : σpeq “ 0

where getInElpe, P q returns the element in P with incoming edge e:

55

• getInElpe, taskpe1, e2qq “

"

taskpe1, e2q if e “ e1

ε otherwise

• getInElpe, taskRcvpe1,m, e2qq “

"

taskRcvpe1,m, e2q if e “ e1

ε otherwise

• getInElpe, taskSndpe1,m, e2qq “

"

taskSndpe1,m, e2q if e “ e1

ε otherwise

• getInElpe, emptype1, e2qq “

"

emptype1, e2q if e “ e1

ε otherwise

• getInElpe, interRcvpe1,m, e2qq “

"

interRcvpe1,m, e2q if e “ e1

ε otherwise

• getInElpe, interSndpe1,m, e2qq “

"

interSndpe1,m, e2q if e “ e1

ε otherwise

• getInElpe, andSplitpe1, Eqq “

"

andSplitpe1, Eq if e “ e1

ε otherwise

• getInElpe, andJoinpE, e1qq “

"

andJoinpE, e1q if e P E
ε otherwise

• getInElpe, xorSplitpe1, Eqq “

"

xorSplitpe1, Eq if e “ e1

ε otherwise

• getInElpe, xorJoinpE, e1qq “

"

xorJoinpE, e1q if e P E
ε otherwise

• getInElpe, eventBasedpe1, pm1, e
2
1q, . . . , pmk, e

2
kqqq “

"

eventBasedpe1, pm1, e
2
1q, . . . , pmk, e

2
kqq if e “ e1

ε otherwise

• getInElpe, subProcpe1, P, e2qq “

"

subProcpe1, P, e2q if e “ e1

ε otherwise

56

• getInElpe, P1 || P2q “ getInElpe, P1q, getInElpe, P2q

Definition 16 (Final state of core elements in P). Let P be a process, then
isCompleteElpP, σq is inductively defined on the structure of process P as follows:
isCompleteElptaskpe, e1q, σq if σpeq “ 0 and σpe1q “ 1
isCompleteElptaskRcvpe,m, e1q, σq if σpeq “ 0 and σpe1q “ 1
isCompleteElptaskSndpe,m, e1q, σq if σpeq “ 0 and σpe1q “ 1
isCompleteElpemptype, e1q, σq if σpeq “ 0 and σpe1q “ 1
isCompleteElpinterRcvpe,m, e1q, σq if σpeq “ 0 and σpe1q “ 1
isCompleteElpinterSndpe,m, e1q, σq if σpeq “ 0 and σpe1q “ 1
isCompleteElpandSplitpe, Eq, σq if σpeq “ 0 and @e1 P E . σpe1q “ 1
isCompleteElpxorSplitpe, Eq, σq if σpeq “ 0 and De1 P E . σpe1q “ 1

and @e2 P Eze1 . σpe2q “ 0
isCompleteElpandJoinpE, eq, σq if @e1 P E . σpe1q “ 0 and σpeq “ 1
isCompleteElpxorJoinpE, eq, σq if @e1 P E . σpe1q “ 0 and σpeq “ 1
isCompleteElpeventBasedpe, pm1, eo1q, . . . , pmk, eokqq, σq if σpeq “ 0

and De1 P teo1, . . . , eoku . σpe1q “ 1
and @e2 P teo1, . . . , eokuze1 . σpe2q “ 0

isCompleteElpsubProcpe, P, e1qq if σpeq “ 0, σpe1q “ 1
and @e2 P edgespP q . σpe2q “ 0

isCompleteElpP1||P2, σq if @e P outpP1 || P2q : isCompleteElpgetOutElpe, P1 || P2qq

and @e P pedgespP1 || P2qzoutpP1 || P2qq : σpeq “ 0

where getOutElpe, P q returns the element in P with outgoing edge e:

• getOutElpe, taskpe1, e2qq “

"

taskpe1, e2q if e “ e2

ε otherwise

• getOutElpe, taskRcvpe1,m, e2qq “

"

taskRcvpe1,m, e2q if e “ e2

ε otherwise

• getOutElpe, taskSndpe1,m, e2qq “

"

taskSndpe1,m, e2q if e “ e2

ε otherwise

• getOutElpe, emptype1, e2qq “

"

emptype1, e2q if e “ e2

ε otherwise

• getOutElpe, interRcvpe1,m, e2qq “

"

interRcvpe1,m, e2q if e “ e2

ε otherwise

57

• getOutElpe, interSndpe1,m, e2qq “

"

interSndpe1,m, e2q if e “ e2

ε otherwise

• getOutElpe, andSplitpe1, Eqq “

"

andSplitpe1, Eq if e P E
ε otherwise

• getOutElpe, andJoinpE, e1qq “

"

andJoinpE, e1q if e “ e1

ε otherwise

• getOutElpe, xorSplitpe1, Eqq “

"

xorSplitpe1, Eq if e P E
ε otherwise

• getOutElpe, xorJoinpE, e1qq “

"

xorJoinpE, e1q if e “ e1

ε otherwise

• getOutElpe, eventBasedpe1, pm1, e
2
1q, . . . , pmk, e

2
kqqq “

"

eventBasedpe1, pm1, e
2
1q, . . . , pmk, e

2
kqq if e P te21, . . . , e

2
ku

ε otherwise

• getOutElpe, subProcpe1, P, e2qq “

"

subProcpe1, P, e2q if e “ e1

ε otherwise

• getOutElpe, P1 || P2q “ getOutElpe, P1q, getOutElpe, P2q

58

Appendix B. Proofs

In this appendix we report the proofs of the results presented in the paper.

Lemma 1. Let P be a process, if isInitpP, σq then xP, σy is cs-safe.

Proof. Trivially, from definition of isInitpP, σq. By definition of isInitpP, σq, we have
that σpeq “ 1 where e P startpP q and @ e1 P edgespP qzstartpP q . σpe1q “ 0, i.e. only
the start event has a marking and all the other edges are unmarked. Hence, we have that
@e P edgesElpP q . σpeq ď 1, which allows us to conclude. l

Lemma 2. Let isWSCorepP q, and let xP, σy be a core reachable and cs-safe process
configuration, if xP, σy α

ÝÑ σ1 then xP, σ1y is cs-safe.

Proof. We proceed by induction on the structure of WSCore process elements.
Base cases: since by hypothesis isWSCorepP q, it can only be either a task or an interme-
diate event.

• P “ taskpe, e1q. By hypothesis xP, σy is cs-safe, then edgesElpP q “

edgesElptaskpe, e1qq “ te, e1u is such that σpeq ď 1 and σpe1q ď 1. The only
rule that can be applied to infer the transition xP, σy α

ÝÑ σ1 is P -Task . In order
to apply the rule there must be σpeq ą 0; hence 0 ă σpeq ď 1 , i.e. σpeq “ 1.
We can exploit the fact that xP, σy be is a core reachable configuration to prove
that σpe1q “ 0. The application of the rule produces σ1 “ xincpdecpσ, eq, e1qy, i.e.
σ1peq “ 0 and σ1pe1q “ 1. Thus, σ1peq “ 0 and σ1pe1q “ 1. Hence, we have that
@e3 P edgesElpP q . σ1pe3q ď 1, which allows us to conclude.

• P “ taskRcvpe,m, e1q. By hypothesis xP, σy is cs-safe, then edgesElpP q “
edgesElptaskRcvpe,m, e1qq “ te, e1u is such that σpeq ď 1 and σpe1q ď 1. The
only rule that can be applied to infer the transition xP, σy α

ÝÑ σ1 is P -TaskRcv . In
order to apply the rule there must be σpeq ą 0; hence 0 ă σpeq ď 1 , i.e. σpeq “ 1.
We can exploit the fact that xP, σy be is a core reachable configuration to prove
that σpe1q “ 0. The application of the rule produces σ1 “ xincpdecpσ, eq, e1qy, i.e.
σ1peq “ 0 and σ1pe1q “ 1. Thus, σ1peq “ 0 and σ1pe1q “ 1. Hence, we have that
@e3 P edgesElpP q . σ1pe3q ď 1, which allows us to conclude.

• P “ taskSndpe,m, e1q. By hypothesis xP, σy is cs-safe, then edgesElpP q “
edgesElptaskSndpe,m, e1qq “ te, e1u is such that σpeq ď 1 and σpe1q ď 1. The
only rule that can be applied to infer the transition xP, σy α

ÝÑ σ1 is P -TaskSnd . In
order to apply the rule there must be σpeq ą 0; hence 0 ă σpeq ď 1 , i.e. σpeq “ 1.
We can exploit the fact that xP, σy be is a core reachable configuration to prove
that σpe1q “ 0. The application of the rule produces σ1 “ xincpdecpσ, eq, e1qy, i.e.
σ1peq “ 0 and σ1pe1q “ 1. Thus, σ1peq “ 0 and σ1pe1q “ 1. Hence, we have that
@e3 P edgesElpP q . σ1pe3q ď 1, which allows us to conclude.

59

• P “ interRcvpe,m, e1q. By hypothesis xP, σy is cs-safe, then edgesElpP q “
edgesElpinterRcvpe,m, e1qq “ te, e1u is such that σpeq ď 1 and σpe1q ď 1. The
only rule that can be applied to infer the transition xP, σy α

ÝÑ σ1 is P -InterRcv . In
order to apply the rule there must be σpeq ą 0; hence 0 ă σpeq ď 1 , i.e. σpeq “ 1.
We can exploit the fact that xP, σy be is a core reachable configuration to prove
that σpe1q “ 0. The application of the rule produces σ1 “ xincpdecpσ, eq, e1qy, i.e.
σ1peq “ 0 and σ1pe1q “ 1. Thus, σ1peq “ 0 and σ1pe1q “ 1. Hence, we have that
@e3 P edgesElpP q . σ1pe3q ď 1, which allows us to conclude.

• P “ interSndpe,m, e1q. By hypothesis xP, σy is cs-safe, then edgesElpP q “
edgesElpinterSndpe,m, e1qq “ te, e1u is such that σpeq ď 1 and σpe1q ď 1. The
only rule that can be applied to infer the transition xP, σy α

ÝÑ σ1 is P -InterSnd . In
order to apply the rule there must be σpeq ą 0; hence 0 ă σpeq ď 1 , i.e. σpeq “ 1.
We can exploit the fact that xP, σy be is a core reachable configuration to prove
that σpe1q “ 0. The application of the rule produces σ1 “ xincpdecpσ, eq, e1qy, i.e.
σ1peq “ 0 and σ1pe1q “ 1. Thus, σ1peq “ 0 and σ1pe1q “ 1. Hence, we have that
@e3 P edgesElpP q . σ1pe3q ď 1, which allows us to conclude.

• P “ emptype, e1q. By hypothesis xP, σy is cs-safe, then edgesElpP q “

edgesElpemptype, e1qq “ te, e1u is such that σpeq ď 1 and σpe1q ď 1. The only
rule that can be applied to infer the transition xP, σy α

ÝÑ σ1 is P -Empty . In order
to apply the rule there must be σpeq ą 0; hence 0 ă σpeq ď 1 , i.e. σpeq “ 1.
We can exploit the fact that xP, σy be is a core reachable configuration to prove
that σpe1q “ 0. The application of the rule produces σ1 “ xincpdecpσ, eq, e1qy, i.e.
σ1peq “ 0 and σ1pe1q “ 1. Thus, σ1peq “ 0 and σ1pe1q “ 1. Hence, we have that
@e3 P edgesElpP q . σ1pe3q ď 1, which allows us to conclude.

Inductive cases:

• Let us consider xandSplitpe, Eq || P1 || . . . || Pn || andJoinpE
1, e1q, σy, with @j P

r1..ns isWSCorepPjq, inpPjq Ď E, outpPjq Ď E1. There are the following
possibilities:

– xandSplitpe, Eq, σy evolves by means of rule P -AndSplit . We can exploit
the fact that this is a core reachable well-structured configuration to prove
that σpeq “ 1 and @e2 P E .σpe2q “ 0. Thus, xandSplitpe, Eq, σy ε

ÝÑ σ1 with
σ1 “ incpdecpσ, eq, Eq. Hence, @e3 P edgesElpandSplitpe, Eqq . σpe3q ď
1. By hypothesis xandSplitpe, Eq || P1 || . . . || Pn || andJoinpE

1, e1q, σy is
cs-safe, i.e. if @e2 P E .σ1pe2q “ 1, that is there is a token on the outgoing
edges of the AND-Split in the state xandSplitpe, Eq, σ1y, then all the other
edges are unmarked. This means that cs-safeness is not affected. Therefore,
the overall term xandSplitpE, eq || P1 || . . . || Pn || andJoinpE

1, e1q, σ1y is
cs-safe.

60

– Node P1 || . . . || Pn evolves without affecting the split and join gateways. In
this case we can easily conclude by inductive hypothesis.

– Node P1 || . . . || Pn evolves and affects the split and/or join gateways. In this
case we can reason like in the first case, by relying on inductive hypothesis.

– xandJoinpE1, e1q, σy evolves by means of rule P-AndJoin . We can ex-
ploit the fact that this is a core reachable well-structured configura-
tion to prove that @e2 P E1 .σpe2q “ 1 and σpe1q “ 0. Thus
xandJoinpE1, e1q, σy

ε
ÝÑ σ1 with σ1 “ incpdecpσ,E1q, e1q. Hence, @e3 P

edgesElpandJoinpE1, e1qq . σpe3q ď 1. By hypothesis xandSplitpE, eq ||
P1 || . . . || Pn || andJoinpE

1, e1q, σy is cs-safe, i.e. if there is a token on the
outgoing edge of the AND-Join in the state xandJoinpE1, e1q, σ1y all the other
edges do not have tokens. This means that cs-safeness is not affected. There-
fore, the overall term xandSplitpE, eq || P1 || . . . || Pn || andJoinpE

1, e1q, σ1y
is cs-safe.

• Let us consider xxorSplitpe, Eq || P1 || . . . || Pn || xorJoinpE
1, e2q, σy, with @j P

r1..ns isWSCorepPjq, inpPjq Ď E, outpPjq Ď E1. There are the following
possibilities:

– xxorSplitpe, Eq, σy evolves by means of rule P-XorSplit . We can exploit the
fact that this is a core reachable well-structured configuration to prove that
σpeq “ 1 and @e2 P E .σpe2q “ 0. Thus, xorSplitpe, te1uYEq, σy ε

ÝÑ σ1, with
σ1 “ incpdecpσ, eq, e1q. Hence, @e3 P edgesElpxorSplitpe, Eqq . σpe3q ď 1.
By hypothesis xxorSplitpe, Eq || P1 || . . . || Pn || xorJoinpE

1, e2q, σy is cs-
safe, i.e. if σ1pe1q “ 1, that is there is a token on one of the outgoing edges
of the XOR-Split in the state xxorSplitpe, Eq, σ1y, then all the other edges are
unmarked. This means that cs-safeness is not affected. Therefore, the overall
term xxorSplitpe, Eq || P1 || . . . || Pn || xorJoinpE

1, e2q, σ1y is cs-safe.

– Node P1 || . . . || Pn evolves without affecting the split and join gateways. In
this case we can easily conclude by inductive hypothesis.

– Node P1 || . . . || Pn evolves and affects the split and/or join gateways. In this
case we can reason like in the first case, by relying on inductive hypothesis.

– xxorJoinpteu Y E, e1q, σy evolves by means of rule P-XorJoin . We can
exploit the fact that this is a core reachable well-structured configuration
to prove that σpeq “ 1, @e2 P E1 .σpe2q “ 0 and σpe1q “ 0. Thus
xxorJoinpteu Y E, e1q, σy

ε
ÝÑ σ1, with σ1 “ incpdecpσ, eq, e1q. Hence, @e3 P

edgesElpxorJoinpteuYE, e1qq . σpe3q ď 1. By hypothesis xxorSplitpe, Eq |
| P1 || . . . || Pn || xorJoinpE

1, e2q, σy is cs-safe, i.e. if there is a token on
the outgoing edge of the XOR-Join in the state xxorJoinpteu Y E, e1q, σ1y

61

all the other edges do not have tokens. This means that cs-safeness is not
affected. Therefore, the overall term xxorSplitpe, Eq || P1 || . . . || Pn ||
xorJoinpE1, e2q, σ1y is cs-safe.

• Let us consider eventBasedpe, tpmj , e
1
jq|j P r1..nsuq || P1 || . . . | Pn ||

xorJoinpE, e2q, with @j P r1..ns isWSCorepPjq, inpPjq “ e1j , outpPjq Ď E.
There are the following possibilities:

– xeventBasedpe, tpmj , e
1
jq|j P r1..nsuq, σy evolves by means of rule P-

EventG . We can exploit the fact that this is a core reachable well-structured
configuration to prove that σpeq “ 1 and @e1j |j P r1..ns.σpe1jq “ 0.

Thus, xeventBasedpe, tpmj , e
1
jq|j P r1..nsuq, σy

?mj
ÝÝÑ σ1, with σ1 “

incpdecpσ, eq, e1jq. Hence, @e3 P edgesElpeventBasedpe, tpmj , e
1
jq|j P

r1..nsuqq . σpe3q ď 1. By hypothesis xeventBasedpe, tpmj , e
1
jq|j P

r1..nsuq, σy is cs-safe, i.e. if σ1pe1jq “ 1, that is there is a to-
ken on one of the outgoing edges of the Event Based in the state
xeventBasedpe, tpmj , e

1
jq|j P r1..nsuq, σ1y, then all the other edges are

unmarked. This means that cs-safeness is not affected. Therefore, the
overall term xeventBasedpe, tpmj , e

1
jq|j P r1..nsuq || P1 || . . . | Pn ||

xorJoinpE, e2q, σ1y is cs-safe.

– Node P1 || . . . || Pn evolves without affecting the split and join gateways. In
this case we can easily conclude by inductive hypothesis.

– Node P1 || . . . || Pn evolves and affects the split and/or join gateways. In this
case we can reason like in the first case, by relying on inductive hypothesis.

– xxorJoinpteu Y E, e1q, σy evolves by means of rule P-XorJoin . We can
exploit the fact that this is a core reachable well-structured configuration
to prove that σpeq “ 1, @e2 P E1 .σpe2q “ 0 and σpe1q “ 0. Thus
xxorJoinpteu Y E, e1q, σy

ε
ÝÑ σ1, with σ1 “ incpdecpσ, eq, e1q. Hence, @e3 P

edgesElpxorJoinpteuYE, e1qq . σpe3q ď 1. By hypothesis xxorSplitpe, Eq |
| P1 || . . . || Pn || xorJoinpE

1, e2q, σy is cs-safe, i.e. if there is a token on
the outgoing edge of the XOR-Join in the state xxorJoinpteu Y E, e1q, σ1y
all the other edges do not have tokens. This means that cs-safeness is not
affected. Therefore, the overall term xxorSplitpe, Eq || P1 || . . . || Pn ||
xorJoinpE1, e2q, σ1y is cs-safe.

• Let us consider xorJoinpte2, e3u, e1q || P1 || P2 || xorSplitpeiv, tev, eviuq with
inpP1q “ te1u, outpP1q “ teivu, inpP2q “ teviu, outpP2q “ te2u. We have
the following possibilities:

– xxorJoinpte2, e3u, e1q, σy evolves by means of rule P-XorJoin . We can ex-
ploit the fact that this is a core reachable well-structured configuration to

62

prove that the term is marked σpe1q “ 0 and either σpe2q “ 1 or σpe3q “ 1;
let us assume the marking is σpe3q “ 1 (since the other case is similar).
Thus xxorJoinpte2, e3u, e1q, σy ε

ÝÑ σ1 with σ1 “ incpdecpσ, e3q, e1q. Hence,
edgesElpxorJoinpte2, e3u, e1qq “ te2, e3, e1u and σ1pe1q “ 1, σ1pe3q “ 0
and σ1pe2q “ 0, that is @e P edgesElpxorJoinpte2, e3u, e1qq . σ1peq ď 1.
By hypothesis xxorJoinpte2, e3u, e1q || P1 || P2 || xorSplitpe

iv, tev, eviuq, σy
is cs-safe, i.e. if there is a token on e1 in the state xxorJoinpte2, e3u, e1q, σ1y
all the other edges do not have token. This means that cs-safeness is not
affected. Therefore, the overall term xxorJoinpte2, e3u, e1q || P1 || P2 ||

xorSplitpeiv, tev, eviuq, σ1y is cs-safe.

– Node P1 || P2 evolves without affecting the split and join gateways. In this
case we can easily conclude by inductive hypothesis.

– Node P1 || P2 evolves and affects the xor join and xor split gateways. In this
case we can reason like in the first case, by relying on inductive hypothesis.

– xxorSplitpeiv, tev, eviuq, σy evolves by means of rule P-XorSplit . We can
exploit the fact that this is a core reachable well-structured configura-
tion to prove that the term is marked as σpeivq “ 1. Hence, it evolves
in a cs-safe term; in fact let us assume that it evolves in this way
xxorSplitpeiv, tev, eviuq, σy

ε
ÝÑ σ1 with σ1 “ incpdecpσ, eivq, evq. Hence,

edgesElpxorSplitpeiv, tev, eviuqq “ teiv, ev, eviu and σ1peivq “ 0, σ1pevq “
1, σ1peviq “ 0, that is @e P edgesElpxorSplitpeiv, tev, eviuqq . σ1peq ď 1. By
hypothesis xxorJoinpte2, e3u, e1q || P1 || P2 || xorSplitpe

iv, tev, eviuq, σy is
cs-safe, i.e. if there is a token on ev in the state xxorSplitpeiv, tev, eviuq, σ1y
all the other edges do not have token. This means that cs-safeness is not
affected. Therefore, the overall term xxorJoinpte2, e3u, e1q || P1 || P2 ||

xorSplitpeiv, tev, eviuq, σ1y is cs-safe.

• Let us consider subProcpe, startpe1, e2q || P 11 || endpe3, eivq, evq. By hypothe-
sis this is a cs-safe process configuration, then edgesElpsubProcpe, startpe1, e2q|
| P 11 || endpe3, eivq, evqq “ te, e2, e3, evu Y edgesElpP 11q are such that @evi P
edgesElpsubProcpe, startpe1, e2q||P 11 || endpe

3, eivq, evqq . σpeviq ď 1. We have the
following possibilities:

– xsubProcpe, P1, e
vq, σy evolves by means of rule P -SubProcStart . In order

to apply the rule it should be σpeq ą 0; hence, by cs-safeness, 0 ă σpeq ď 1,
i.e. σpeq “ 1. We can exploit the fact that this is a reachable process
configuration to prove that σpevq “ 0 and σpedgespP1qq “ 0. Thus,
xsubProcpe, P1, e

vq, σy
ε
ÝÑ σ1 with σ1 “ incpdecpσ, eq, startpP1qq. Hence,

@evi P edgesElpsubProcpe, startpe1, e2q||P 11 || endpe
3, eivq, evqq . σ1peviq ď 1.

By hypothesis xsubProcpe, P1, e
vq, σy is cs-safe and reachable, i.e. if there

63

is a token on startpP1q in the state xsubProcpe, P1, e
vq, σ1y, then all other

edges are unmarked. This means that cs-safeness is not affected. Therefore,
the overall term is cs-safe.

– P1 evolves. Thus, xsubProcpe, P1, e
vq, σy can evolve by means of rules

P -SubProcEvolution , P -SubProcEnd or P -SubProcKill . In all the cases
we can conclude by relying on the inductive hypothesis and on the fact that
we consider core reachable configurations.

• Let us consider xP, σy “ xP1 || P2, σy. The relevant case for cs-safeness is when P
evolves by applying P -Int1 . We have that xP1 || P2, σy

α
ÝÑ σ1 with xP1, σy

α
ÝÑ σ1.

By definition of edgesElp¨q function we have that edgesElpP q “ edgesElpP1qY

edgesElpP2q. By inductive hypothesis we have that @e P edgesElpP1q . σpeq ď 1
which is cs-safe. Since P2 is well structured and cs-safe, then also xP2, σ

1y is cs-
safe, which permits us to conclude.

l

Lemma 3. Let P be WS, and let xP, σy be a process configuration reachable and cs-safe,
if xP, σy α

ÝÑ σ1 then xP, σ1y is cs-safe.

Proof. According to Def. 4, P can have 6 different forms. We proceed by case analysis
on the parallel component of xP, σy that causes the transition xP, σy α

ÝÑ σ1.
We show now the case P“ startpe, e1q || P 1 || endpe2, e3q.

• startpe, e1q evolves by means of the rule P-Start . In order to apply the rule there
must be σpeq ą 0, hence, by cs-safeness, σpeq “ 1. We can exploit the fact that this
is a reachable well-structured configuration to prove that σpe1q “ 0. The rule pro-
duces the following transition xstartpe, e1q, σy ε

ÝÑ σ11 with σ11 “ incpdecpσ, eq, e1q
where σ11peq “ 0 and σ11pe

1q “ 1. Now, xP, σ11y “ xstartpe, e1q || P 1 |
| endpe2, e3q, σ11y can evolve only through the application of P -Int1 producing
xP, σ1y with σ1pinpP 1qq “ 1.

By hypothesis xP, σy is cs-safe, thus σpe2q ď 1, σpe3q ď 1 and @ev P

edgesElpP 1q . σpevq ď 1.

Now @ev P edgesElpP 1q . σpevq ď 1 and @ev P edgesElpP 1q . σ1pevq ď 1.
Therefore edgesElpP q “ te1, e2u Y edgesElpP 1q are such that σ1pe1q “ 1,
σ1pinpP 1qq ď 1, σ1poutpP 1qq ď 1, σ1pe2q ď 1. Thus, xP, σ1y is cs-safe.

• endpe2, e3q evolves by means of the rule P-End . We can exploit the fact that
this is a reachable well-structured configuration to prove that the term is marked
as σpe2q “ 1 and σpe3q “ 0. The rule produces the following transition

64

xendpe2, e3q, σy
ε
ÝÑ σ11 with σ11 “ incpdecpσ, e2q, e3q. Now, xP, σy can only

evolve by applying P -Int1 producing xP, σ1y.

By hypothesis xP, σy is cs-safe, then σpe2q ď 1, σpe3q ď 1 and P 1 is cs-safe.
Reasoning as previously we can conclude that xP, σ1y is cs-safe.

• P 1 moves, that is xP 1, σy α
ÝÑ σ1. By Lemma 2 xP 1, σ1y is safe, thus

@e P edgesElpP 1q . σ1peq ď 1. By hypothesis, P is cs-safe therefore
edgesElpstartpe, e1qq “ te1u is such that σ1pe1q ď 1 and edgesElpendpe2, e3qq “
te2u is such that σ1pe2q ď 1. We can conclude that xP, σ1y is safe.

Now we consider the case P“ startpe, e1q || P 1 || terminatepe2q.

• The start event evolves: like the previous case.

• The end terminate event evolves: the only transition we can apply is P-
Terminate .We can exploit the fact that this is a reachable well-structured con-
figuration to prove that the term is marked as σpe2q “ 1. By applying the rule
we have xterminatepe2q, σy

kill
ÝÝÑ σ11 with σ11 “ decpσ, e2q. Now, xP, σy can only

evolve by applying P -Kill1 producing xP, σ1y where σ1 is completed unmarked;
therefore it is cs-safe.

• P 1 moves: similar to the previous case.

Now we consider the case P“ startpe, e1q || P 1 || endSndpe2,m, e3q.

• The start event evolves: like the previous case.

• The end message event evolves: the only transition we can apply is P-EndSnd . We
can exploit the fact that this is a reachable well-structured configuration to prove
that the term is marked as σpe2q “ 1 and σpe3q “ 0. By applying the rule we
have xendSndpe2,m, e3q, σy !m

ÝÑ σ11 with σ11 “ incpdecpσ, e2q, e3q Now, xP, σy
can only evolve by applying P -Int1 producing xP, σ1y. By hypothesis xP, σy is
cs-safe, then σpe2q ď 1, σpe3q ď 1 and P 1 is cs-safe. Reasoning as previously we
can conclude that xP, σ1y is cs-safe.

• P 1 moves: similar to the previous cases.

Now we consider the case P“ startRcvpe,m, e1q || P 1 || endpe2, e3q.

• startRcvpe,m, e1q evolves by means of the rule P-StartRcv . In order to apply the
rule there must be σpeq ą 0, hence, by cs-safeness, σpeq “ 1. We can exploit the
fact that this is a reachable well-structured configuration to prove that σpe1q “ 0.
The rule produces the following transition xstartRcvpe,m, e1q, σy ?m

ÝÝÑ σ11 with

65

σ11 “ incpdecpσ, eq, e1q where σ11peq “ 0 and σ11pe
1q “ 1. Now, xP, σ11y “

startRcvpe,m, e1q || P 1 || endpe2, e3q, σ11y can evolve only through the application
of P -Int1 producing xP, σ1y with σ1pinpP 1qq “ 1.

By hypothesis xP, σy is cs-safe, thus σpe2q ď 1, σpe3q ď 1 and @ev P

edgesElpP 1q . σpevq ď 1.

Now @ev P edgesElpP 1q . σpevq ď 1 and @ev P edgesElpP 1q . σ1pevq ď 1.
Therefore edgesElpP q “ te1, e2u Y edgesElpP 1q are such that σ1pe1q “ 1,
σ1pinpP 1qq ď 1, σ1poutpP 1qq ď 1, σ1pe2q ď 1. Thus, xP, σ1y is cs-safe.

• endpe2, e3q evolves by means of the rule P-End . It follows as in the first case.

• P 1 moves, that is xP 1, σy α
ÝÑ σ1. By Lemma 2 xP 1, σ1y is safe, thus

@e P edgesElpP 1q . σ1peq ď 1. By hypothesis, P is cs-safe there-
fore edgesElpstartRcvpe,m, e1qq “ te1u is such that σ1pe1q ď 1 and
edgesElpendpe2, e3qq “ te2u is such that σ1pe2q ď 1. We can conclude that
xP, σ1y is safe.

Now we consider the case P“ startRcvpe,m, e1q || P 1 || terminatepe2q.

• startRcvpe,m, e1q evolves by means of the rule P-StartRcv : like in the previous
case.

• The end terminate event evolves: the only transition we can apply is P-Terminate:
like in the case P“ startpe, e1q || P 1 || terminatepe2q.

• P 1 moves, that is xP 1, σy α
ÝÑ σ1. By Lemma 2 xP 1, σ1y is safe, thus

@e P edgesElpP 1q . σ1peq ď 1. By hypothesis, P is cs-safe there-
fore edgesElpstartRcvpe,m, e1qq “ te1u is such that σ1pe1q ď 1 and
edgesElpterminatepe2qq “ te2u is such that σ1pe2q ď 1. We can conclude that
xP, σ1y is safe.

Now we consider the case P“ startRcvpe,m, e1q || P 1 || endSndpe2,m, e3q.

• startRcvpe,m, e1q evolves by means of the rule P-StartRcv : like in the previous
case.

• endSndpe2,m, e3q evolves by means of P-EndSnd : like in the case P“
startpe, e1q || P 1 || endSndpe2,m, e3q.

• P 1 moves, that is xP 1, σy α
ÝÑ σ1. By Lemma 2 xP 1, σ1y is safe, thus

@e P edgesElpP 1q . σ1peq ď 1. By hypothesis, P is cs-safe there-
fore edgesElpstartRcvpe,m, e1qq “ te1u is such that σ1pe1q ď 1 and
edgesElpendSndpe2,m, e3qq “ te2u is such that σ1pe2q ď 1. We can conclude
that xP, σ1y is safe.

66

l

Theorem 1. Let P be a process, if P is well-structured then P is safe.

Proof. We have to show that if xP, σy ÝÑ˚ σ1 then xP, σ1y is cs-safe. We proceed by
induction on the length n of the sequence of transitions from xP, σy to xP, σ1y.
Base Case (n “ 0): In this case σ “ σ1, then isInitpP, σ1q is satisfied. By Lemma 1 we
conclude xP, σ1y is cs-safe.
Inductive Case: In this case xP, σy ÝÑ˚ xP, σ2y

α
ÝÑ xP, σ1y for some process xP, σ2y. By

induction, xP, σ2y is cs-safe. By applying Lemma 3 to xP, σ2y α
ÝÑ xP, σ1y, we conclude

xP, σ1y is cs-safe. l

Theorem 2. Let C be a collaboration, if C is well-structured then C is safe.

Proof. By contradiction, let us assume C is well-structured and C is unsafe. By Def. 8,
given σ and δ such that isInitpC, σ, δq there exists a collaboration configuration xC, σ1, δ1y
such that xC, σ, δy ÝÑ˚ xC, σ1, δ1y and DP in C, xP, σ1y not cs-safe. From hypothesis
isInitpC, σ, δq, we have isInitpP, σq. Thus, also xP, σ1y is reachable. From hypothesis C
is well-structured, we have that P is WS. Therefore, by Theorem 1, P is safe. By Def. 7,
xP, σ1y is cs-safe, which is a contradiction. l

Lemma 4. Let isWSCorepP q and let xP, σy be core reachable, then there exists σ1 such
that xP, σy ÝÑ˚σ1 and isCompleteElpP, σ1q.

Proof. We proceed by induction on the structure of isWSCorepP q. Base cases: by defi-
nition of isWSCorepq, P can only be either a task or an intermediate event.

• P “ taskpe, e1q. The only rule we can apply is P-Task . In order to apply the
rule there must be σpeq ą 0. Since isWSCorepP q, xP, σy is safe, hence σpeq “
1. Since the process configuration is core reachable we have σpe1q “ 0. The
application of the rule produces xtaskpe, e1q, σy ε

ÝÑ σ1 with σ1 “ incpdecpσ, eq, e1q.
Thus, we have σ1peq “ 0 and σ1pe1q “ 1, which permits us to conclude.

• P “ taskRcvpe,m, e1q. The only rule we can apply is P-TaskRcv . In order to
apply the rule there must be σpeq ą 0. Since isWSCorepP q, xP, σy is safe, hence
σpeq “ 1. Since the process configuration is core reachable we have σpe1q “
0. The application of the rule produces xtaskRcvpe,m, e1q, σy ?m

ÝÝÑ σ1 with σ1 “
incpdecpσ, eq, e1q. Thus, we have σ1peq “ 0 and σ1pe1q “ 1, which permits us to
conclude.

67

• P “ taskSndpe,m, e1q. The only rule we can apply is P-TaskSnd . In order to
apply the rule there must be σpeq ą 0. Since isWSCorepP q, xP, σy is safe, hence
σpeq “ 1. Since the process configuration is core reachable we have σpe1q “
0. The application of the rule produces xtaskSndpe,m, e1q, σy !m

ÝÑ σ1 with σ1 “
incpdecpσ, eq, e1q. Thus, we have σ1peq “ 0 and σ1pe1q “ 1, which permits us to
conclude.

• P “ interRcvpe,m, e1q. The only rule we can apply is P-InterRcv . In order to
apply the rule there must be σpeq ą 0. Since isWSCorepP q, xP, σy is safe, hence
σpeq “ 1. Since the process configuration is core reachable we have σpe1q “
0. The application of the rule produces xinterRcvpe,m, e1q, σy ε

ÝÑ σ1 with σ1 “
incpdecpσ, eq, e1q. Thus, we have σ1peq “ 0 and σ1pe1q “ 1, which permits us to
conclude.

• P “ interSndpe,m, e1q,. The only rule we can apply is P-InterSnd . In order
to apply the rule there must be σpeq ą 0. Since isWSCorepP q, xP, σy is safe,
hence σpeq “ 1. Since the process configuration is core reachable we have σpe1q “
0. The application of the rule produces xinterSndpe,m, e1q, σy !m

ÝÑ σ1 with σ1 “
incpdecpσ, eq, e1q. Thus, we have σ1peq “ 0 and σ1pe1q “ 1, which permits us to
conclude.

• P “ emptype, e1q,. The only rule we can apply is P-Empty . In order to apply the
rule there must be σpeq ą 0. Since isWSCorepP q, xP, σy is safe, hence σpeq “ 1.
Since the process configuration is core reachable we have σpe1q “ 0. The appli-
cation of the rule produces xemptype, e1q, σy

ε
ÝÑ σ1 with σ1 “ incpdecpσ, eq, e1q.

Thus, we have σ1peq “ 0 and σ1pe1q “ 1, which permits us to conclude.

Inductive cases: we consider one case, the other are dealt with similarly.

• Let us consider P “ xandSplitpe, Eq || P1 || . . . || Pn || andJoinpE
1, e1q, σy. There

are the following possibilities:

– xandSplitpe, Eq, σy evolves by means of rule P -AndSplit . We can exploit
the fact that this is a core reachable well-structured configuration to prove
that σpeq “ 1 and @e2 P E .σpe2q “ 0. Thus, xandSplitpe, Eq, σy ε

ÝÑ σ11 with
σ11 “ incpdecpσ, eq, Eq. Now, P can evolve only through the application
of P -Int1 producing xP, σ12y with σ12pinpP1qq “ . . . “ σ12pinpPnqq “ 1.
By inductive hypothesis there exists a state σ13 such that isCompleteElpP1 |

| . . . || Pn, σ
1
3q. Now, P can only evolve by applying rule P -Int1 , producing

xP, σ14y where @e3 P E1 . σ14pe
3q “ 1. Now, xandJoinpE1, e1q, σ14y can

evolve by means of rule P -AndJoin . The application of the rule produces
xandJoinpE1, e1q, σ14y

ε
ÝÑ σ1 with σ1 “ incpdecpσ14, E

1q, e1q, i.e. σ1pe1q “ 1
and @e3 P E1 . σ1pe3q “ 0. This permits us to conclude.

68

– P1 || . . . || Pn evolves without affecting the split and join gateways. In this
case we can easily conclude by inductive hypothesis.

– P1 || . . . || Pn evolves and affects the split and/or join gateways. In this case
we can reason like in the first case.

• Let us consider P “ xxorSplitpe, Eq || P1 || . . . || Pn || xorJoinpE
1, e2q, σy. There

are the following possibilities:

– xxorSplitpe, Eq, σy evolves by means of rule P -XorSplit . We can exploit the
fact that this is a core reachable well-structured configuration to prove that
σpeq “ 1 and @e2 P E .σpe2q “ 0. Thus, xxorSplitpe, te1u Y Eq, σy

ε
ÝÑ σ11

with σ11 “ incpdecpσ, eq, e1q. Now, P can evolve only through the applica-
tion of P -Int1 producing xP, σ12ywith σ12pinpP1qq “ . . . “ σ12pinpPnqq “ 1.
By inductive hypothesis there exists a state σ13 such that isCompleteElpP1 |

| . . . || Pn, σ
1
3q. Now, P can only evolve by applying rule P -Int1 , pro-

ducing xP, σ14y where De3 P E1 . σ14pe
3q “ 1, let us say σ14pe

ivq “ 1.
Now, xxorJoinpteivu Y E1, e1q, σ14y can evolve by means of rule P -XorJoin .
The application of the rule produces xxorJoinpteivu YE1, e1q, σ14y

ε
ÝÑ σ1 with

σ1 “ incpdecpσ, eivq, e1q, i.e. σ1pe1q “ 1 and @e3 P E1 . σ1pe3q “ 0. This
permits us to conclude.

– P1 || . . . || Pn evolves without affecting the split and join gateways. In this
case we can easily conclude by inductive hypothesis.

– P1 || . . . || Pn evolves and affects the split and/or join gateways. In this case
we can reason like in the first case.

• Let us consider P “ eventBasedpe, tpmj , e
1
jq|j P r1..nsuq || P1 || . . . | Pn ||

xorJoinpE, e2q. There are the following possibilities:

– xeventBasedpe, tpmj , e
1
jq|j P r1..nsuq, σy evolves by means of rule

P -EventG . We can exploit the fact that this is a core reachable well-
structured configuration to prove that σpeq “ 1 and @e1j |j P r1..ns.σpe

1
jq “

0. Thus, xeventBasedpe, tpmj , e
1
jq|j P r1..nsuq, σy

?mj
ÝÝÑ σ11 with σ11 “

incpdecpσ, eq, e1jq. Now, P can evolve only through the application of P -Int1
producing xP, σ12y with σ12pinpP1qq “ . . . “ σ12pinpPnqq “ 1. By induc-
tive hypothesis there exists a state σ13 such that isCompleteElpP1 || . . . |
| Pn, σ

1
3q. Now, P can only evolve by applying rule P -Int1 , producing

xP, σ14y where De3 P E1 . σ14pe
3q “ 1, let us say σ14pe

ivq “ 1. Now,
xxorJoinpteivu Y E, e1q, σ14y can evolve by means of rule P -XorJoin . The
application of the rule produces xxorJoinpteivu Y E, e1q, σ14y

ε
ÝÑ σ1 with

σ1 “ incpdecpσ, eivq, e1q, i.e. σ1pe1q “ 1 and @e3 P E . σ1pe3q “ 0. This
permits us to conclude.

69

– P1 || . . . || Pn evolves without affecting the split and join gateways. In this
case we can easily conclude by inductive hypothesis.

– P1 || . . . || Pn evolves and affects the split and/or join gateways. In this case
we can reason like in the first case.

• Let us consider xorJoinpte2, e3u, e1q || P1 || P2 || xorSplitpeiv, tev, eviuq with
inpP1q “ te1u, outpP1q “ teivu, inpP2q “ teviu, outpP2q “ te2u. There are
the following possibilities:

– xxorJoinpte2, e3u, e1q, σy evolves by means of rule P-XorJoin . We can ex-
ploit the fact that this is a core reachable well-structured configuration to
prove that the term is marked σpe1q “ 0 and either σpe2q “ 1 or σpe3q “ 1;
let us assume the marking is σpe3q “ 1 (since the other case is similar).
Thus xxorJoinpte2, e3u, e1q, σy ε

ÝÑ σ11 with σ11 “ incpdecpσ, e3q, e1q. Now,
P can evolve only through the application of P -Int1 producing xP, σ12y
with σ12pinpP1qq “ σ12pinpP2qq “ 1. By inductive hypothesis there ex-
ists a state σ13 such that isCompleteElpP1 || P2, σ

1
3q. Now, P can only

evolve by applying rule P -Int1 , producing xP, σ14y with, σ14pe
ivq “ 1.

Now, xxorSplitpeiv, tev, eviuq, σ14y can evolve by means of rule P -XorSplit .
The application of the rule produces xxorSplitpeiv, tev, eviuq, σ1y ε

ÝÑ σ1 with
σ1 “ incpdecpσ14, e

ivq, evq, i.e. σ1pevq “ 1 and σ1peivq “ σ1peviq “ 0. This
permits us to conclude.

– P1 || P2 evolves without affecting the split and join gateways. In this case we
can easily conclude by inductive hypothesis.

– P1 || P2 evolves and affects the split and/or join gateways. In this case we
can reason like in the first case.

• Let us consider subProcpe, startpe1, e2q || P 11 || endpe3, eivq, evq with
isWSCorepP 11q, inpP

1
1q “ te

2u, outpP 11q “ te
3u. Let us call P1 “ startpe1, e2q ||

P 11 || endpe
3, eivq, thus the overall term becomes subProcpe, P1, e

vq The we have:

– subProcpe, P1, e
vq evolves by means of rule P -SubProcStart . We can ex-

ploit the fact that this is a core reachable well-structured configuration to
prove that σpeq “ 1 and @evi P edgesElpsubProcpe, P1, e

vqqzteu . σpeviq “
0. The application of the rule produces xsubProcpe, P1, e

vq, σy
ε
ÝÑ σ11 with

σ11 “ incpdecpσ, eq, startpP1qq. Now, P1 can evolve only through the appli-
cation of P -Int1 . Thus, xsubProcpe, P1, e

vq, σy can evolve by means of rules
P -SubProcEvolution , or P -SubProcKill . In all the cases, by relying on the
inductive hypothesis there exists a state σ13 such that isCompleteElpP1, σ

1
3q.

This means that there is a token on the incoming edge of the end event

70

of process P1 and all other edges are unmarked, that is σ13pendpP1qq “

σ13pe
sfivq “ 1 and @e P edgespP1qzendpP1q . σpeq “ 0. Indeed, predicate

completedpP1, σ
1
3q holds. We can now apply rule P -SubProcEnd produc-

ing xsubProcpe, P1, e
vq, σ13y

ε
ÝÑ σ1 with σ1 “ incpzeropσ, endpP1qq, e

vq that
permits us to conclude.

• Let us consider xP, σy “ xP1 || P2, σy, with
isWSCorepP1q, isWSCorepP2q, outpP1q “ inpP2q. The relevant case for cs-
safeness is when P evolves by applying P -Int1 . We have that xP1 || P2, σy

α
ÝÑ σ11

with xP1, σy
α
ÝÑ σ11. By inductive hypothesis we have that there exists σ1

such that isCompleteElpP1, σ
1q. By hypothesis outpP1q “ inpP2q thus,

isCompleteElpgetOutElpe, P1 || P2qq “ isCompleteElpgetOutElpe, P1qq, that
holds by inductive hypothesis. By hypothesis P2 is well structured and core
reachable, then we have that edgespP2qzoutpP2qq : σ1peq “ 0 By definition of
isCompleteElpP1, || P2, σ

1q we can conclude.

l

Theorem 3. Let isWS pP q, then P is sound.

Proof. According to Def. 4, P can have 6 different forms. We consider now the case
P“ startpe, e1q || P 1 || endpe2, e3q.

Let us assume that isInitpP, σq. Thus we have that σpstartpP qq “ 1, and @ eiv P
edgespP qzstartpP q . σpeivq “ 0. Therefore the only parallel component of P that can
infer a transition is the start event. In this case we can apply only the rule P -Start . The
rule produces the following transition, xstartpe, e1q, σy ε

ÝÑ σ1 with σ1 “ incpdecpσ, eq, e1q
where σ1peq “ 0 and σ1pe1q “ 1. Now xP, σ1y can evolve through the application of
rule P -Int1 producing xP, σ11y, with σ11pinpP

1qq “ 1. Now P 1 moves. By hypothesis
isWSCorepP 1q, thus by Lemma 4 there exists a process configuration xP 1, σ12y such that
xP 1, σ11y ÝÑ

˚σ12 and isCompleteElpP 1, σ12q. The process can now evolve thorough rule
P -Int1 . By hypothesis the process is WS, thus, after the application of the rule we obtain
xstartpe, e1q || P 1 || endpe2, e3q, σ13y, where σ13pe

2q “ 1 and @ev P edgespP 1q . σ13pe
vq “

0. We can now apply rule P -End that decrements the token in e2 and produces a token in
e3, which permits us to conclude.

l

Theorem 4. Let C be a collaboration, isWS pCq does not imply C is sound.

71

Proof. Let C be a WS collaboration, and let us suppose that C is sound. Then, it is
sufficient to show a counter example, i.e. a WS collaboration that is not sound. Let us
consider, for instance, the collaboration in Fig. B.25. By Definition, the collaboration is
WS. The soundness of the collaboration instead depends on the evaluation of the condition
of the XOR-Split gateway in ORG A. If a token is produced on the upper flow and Task
A is executed then Task C in ORG B will never receive the message and the AND-Join
gateway can not be activated, thus the process of ORG B can not reach a marking where
the end event has a token. l

appendix

Task B

Task A

Task C

O
RG

 A

Task A

Task B

O
RG

 B

Task D

Task C

Figure B.25: An example of unsound collaboration with sound WS processes.

Theorem 5. Let C be a collaboration, isWS pCq does not imply C is message-relaxed
sound.

Proof. Let C be a WS collaboration, and let us suppose that C is message-relaxed sound.
Then, it is sufficient to show a counter example, i.e. a WS collaboration that is not
message-relaxed sound. We can consider again the collaboration in Fig. B.25. By rea-
soning as previously, the message-relaxed soundness of the collaboration depends on the
evaluation of the condition of the XOR-Split gateway in ORG A. This permits us to con-
clude. l

Theorem 6. Let P be a process, P is unsafe does not imply P is unsound.

Proof. Let P be a unsafe process, and let us suppose that P is unsound. Then, it is suffi-
cient to show a counter example, i.e. a unsafe collaboration that is sound. We can consider
the process in Fig. B.26. It is unsafe since the AND split gateway creates two tokens that
are then merged by the XOR join gateway producing two tokens on the outgoing edge of
the XOR join. However, after Task C is executed and one token enables the terminate end
event, the kill label is produced and the second token in the sequence flow is removed
(rule P-Terminate), rendering the process sound. l

Theorem 7. Let C be a collaboration, C is unsafe does not imply C is unsound.

72

appendix

Task B

Task A

Task C

O
RG

 A

Task A

Task B

O
RG

 B

Task D

Task C

Figure B.26: An example of unsafe but sound process.

Proof. Let C be a unsafe collaboration, and let us suppose that C is unsound. Then, it
is sufficient to show a counter example, i.e. a unsafe collaboration that is sound. We
can consider the collaboration in Fig. B.27. Process in ORG A and ORG B are trivially
unsafe, since the AND split gateway generates two tokens that are then merged by the
XOR join gateway producing two tokens on the outgoing edge of the XOR join. By
definition of safeness collaboration the considered collaboration is unsafe. Concerning
soundness, processes of ORG B and ORG A are sound. In fact, in each process, after one
token enables the terminate end event, the kill label is produced and the second token in
the sequence flow is removed (rule P-Terminate), resulting in a marking where all edges
are unmarked. Thus, the resulting collaboration is sound. l

appendix

Task B

Task A

Task C

O
RG

 A

Task A

Task B

O
RG

 B

Task D

Task C

Figure B.27: An example of unsafe but sound collaboration.

Theorem 8. Let C be a collaboration, if all processes in C are safe then C is safe.

Proof. By contradiction let C be unsafe, i.e. there exists a collaboration xC, σ1, δ1y such
that xC, σ, δyÝÑ˚xσ1, δ1y with poolpp, P q in C and xP, σ1y not cs-safe. By hypothesis
all processes of C are safe, hence it is safe the process, say P , of organisation p. As
xC, σ1, δ1y results from the evolution of xC, σ, δy, the process xP, σ1y must derive from
xP, σy as well, that is xP, σyÝÑ˚σ1. By safeness of P , we have that xP, σ1y is cs-safe,
which is a contradiction. l

Theorem 9. Let P be a process including a sub-process subProcpe, P1, e
1q, if P1 is un-

safe then P is unsafe.

73

Proof. Let us suppose P “ subProcpe, P1, e
1q || P2 By contradiction let P be safe,

i.e. given σ such that isInitpP, σq, for all σ1 such that xP, σyÝÑ˚σ1 we have that

xP, σ1y is cs-safe. By hypothesis P1 is unsafe, i.e. given σ11 such that isInitpP1, σ
1
1q,

there exists σ12 such that xP1, σ
1
1yÝÑ

˚σ12 and xP1, σ
1
2y not cs-safe. Thus, De3 P

edgesElpP1q . σ
1
2pe

3q ě 1. By definition of function edgesElp¨q, we have that
edgesElpP q “ edgesElpsubProcpe, P1, e

1qq Y edgesElpP2q. By safeness of P we
have that given σ such that isInitpP, σq, for all σ1 such that xP, σyÝÑ˚σ1 we have that

xP, σ1y is such that @e P edgesElpP q . σ1peq ď 1. Choosing σ1 “ σ12 we have that
De3 P edgesElpP q . σ12pe

3q ě 1. Thus, P is not cs-safe, which is a contradiction. l

Theorem 10. Let C be a collaboration, if some processes in C are unsound then C is
unsound.

Proof. Let P1 and P2 be two processes such that P1 is unsound, and let C be the collabo-
ration obtained putting together P1 and P2. By contradiction let C be sound, i.e., given σ
and δ such that isInitpC, σ, δq, for all σ1 and δ1 such that xC, σ, δyÝÑ˚xσ1, δ1y we have that

there exist σ2 and δ2 such that xC, σ1, δ1yÝÑ˚xσ2, δ2y, and @ P P participantpCq we have

that xP, σ2y is cs-sound and @m P M . δ2pmq “ 0. Since P1 is unsound, we have that,
given σ11, such that isInitpP1, σ

1
1q, for all σ12such that xP1, σyÝÑ

˚σ12 we have that does not

exist σ13 such that xP1, σ
1
2yÝÑ

˚σ13, and xP1, σ
1
3y is cs-sound. Choosing xC, σ1, δ1y such that

poolpp, P1q in C 1, by unsoundness of P1 we have that there exists a process in C 1 that is
not cs-sound, which is a contradiction. l

Theorem 11. Let P be a process including a sub-process subProcpe, P1, e
1q, if P1 is

unsound does not imply P is unsound.

Proof. Let P1 be a unsound, and let us suppose that P is unsound. Then, it is sufficient
to show a counter example, i.e. an sound process including an unsound sub-process. We
can consider process in Fig. B.28. The process is unsound since when there is a token in
the end event of ORG A there is still a pending sequence token to be consumed. If we
include the part of the model generating multiple tokens in the scope of a sub-process,
as it is shown in Fig. B.29, that is when the process includes a sub-process, the process
is sound. In fact, when there is a token in the end event of ORG A no other pending
sequence tokens need to be processed. l

74

O
R

G
 A

Task B

Task A

Task C

Soundness: NO
Safeness: NO
Message-Disregarding Sound: SI

there are Message Disregarding Sound collaboration that are not safe

there are Message Disregarding Sound collaboration that are not SOUND

Figure B.28: An example of unsound process.

O
R

G
 A

Task B

Task A

Task C

Soundness: NO
Safeness: NO
Message-Disregarding Sound: SI

there are Message Disregarding Sound collaboration that are not safe

there are Message Disregarding Sound collaboration that are not SOUND

Figure B.29: An example of sound process with unsound sub-process.

75

	Introduction
	Basic Notions on BPMN Collaborations
	Travel Agency Collaboration Scenario
	Activities
	Gateways
	Events
	Pools
	Tokens
	blackOn the Considered Subset of BPMN

	Formal Framework
	Syntax of BPMN Collaborations
	Semantics of BPMN Collaborations

	Properties of BPMN Collaborations
	Well-structuredness, Safeness and Soundness for BPMN
	Well-Structured BPMN Collaborations
	Safe BPMN Collaborations
	Sound BPMN Collaborations

	Relationships among Properties
	Well-structuredness vs. Safeness in BPMN
	Well-structuredness vs. Soundness in BPMN
	Safeness vs. Soundness in BPMN

	Safeness and Soundness: A compositionality study
	On Compositionality of Safeness
	On Compositionality of Soundness

	Classification Results
	Advances with respect to already available classifications
	Advances in Classifying BPMN Models

	Relevance into Practice: the S3 tool
	Related Work
	Concluding Remarks
	Definitions
	Proofs

