Correctness Checking for BPMN Collaborations with
Sub-Processes

Flavio Corradini, Andrea Morichetta, Andrea Polini, Barbara Re,
Lorenzo Rossi, Francesco Tiezzi
{name.surname}Qunicam.it

Computer Science Division, School of Science and Technology, University of Camerino

Abstract

BPMN collaboration models are commonly used to describe the behaviour
and interactions of processes in an inter-organisational context. An impor-
tant role in this kind of models is played both by the message flow, and
by sub-processes. The interplay between these features of BPMN models
can conceal subtle or unexpected effects, which makes the design activity
error-prone, thus leading to the possible inclusion of incorrect behaviour. In
this paper, we face this problem by providing a framework for checking the
correctness of BPMN models. In particular we are interested on collabora-
tion models that include message exchange and/or sub-processes, and with a
special focus on properties well-established in the business process domain,
namely safeness and soundness. To enable such a verification, we have (i)
defined an operational semantics for BPMN collaborations, (ii) formalised
safeness and soundness properties, and a new relaxed version of soundness
for detecting situations where asynchronous messages are not handled cor-
rectly by the receiver, (iii) applied the related checks on state-space repre-
sentations (i.e., labelled transition systems) of collaborations, and (iv) im-
plemented the overall formal framework that has been also integrated in
the Camunda modelling environment. The resulting verification framework
and tool, named S2, have been validated in relation to its effectiveness, effi-
ciency and usability, both by using models available on a publicly accessible
repository, and by carrying out experiments with a group of designers.

Keywords: BPMN 2.0; Collaborations; Sub-Processes; Message Flow;
Formal Verification.

Preprint submitted to JSS September 24, 2021

1. Introduction

Designing inter-organisational information systems generally require to
provide descriptions of the system at different levels of abstraction. On the
one hand, the model designer can better manage the complexity he/she has
to handle going from abstract descriptions of the system towards more de-
tailed ones, so to focus from time to time on specific aspects of the system,
or parts of it. On the other hand, going from a detailed description to an
abstract one permits to have models that are less crowded and more un-
derstandable to the interested readers, thus keeping the information flow in
line with general comprehension capabilities [11]. A further relevant aspect
of inter-organisational information systems concerns the capability of the
involved participants to cooperate by exchanging messages.

Nowadays, the most widely used notation to model inter-organisational
information systems is the BPMN 2.0 standard® [44]. The notation offers
collaboration diagrams that provide a way to represent both the message
exchange among different participants, and details on the process of every
single participant. Besides, within a process, the sub-process element can be
used to represent a compound activity that can be expanded or collapsed at
designer convenience to regulate the abstraction level of the model. However,
the combined usage of messages and sub-processes in a collaboration model
can lead to intricate and cumbersome behaviours, which may hide undesired
situations not promptly identifiable by the designer. In the business process
modelling domain such undesirable behaviours are typically related to the
violation of general correctness properties expressly defined in workflow net,
such as safeness [2] and soundness [1]. Soundness requires that a process
can not run into a deadlock or in an undesired state where the control flow
leads to execute the same part doubly (lack of synchronisation). Safeness
requires not to have multiple tokens in a place representing a condition.
Unfortunately, although much formalism has been used in BPMN processes
verification, like Petri Nets [43] [37], Workflow Nets [3], and Elementary
Nets [53], there is a lack of support to check such correctness properties of
BPMN collaboration models due to the difficulty to distinguish messages
from control flow in the model. Therefore studying these properties directly
on BPMN does not leave any room for ambiguity, and increases the potential
for formal reasoning on BPMN. Furthermore, the majority of correctness
tool in the literature consider sub-process as a normal process; merging the

!BPMN (Business Process Model and Notation) is an OMG standard for modelling
business process [44].

content in a global flatted process is incorrect according to the standard [44].
This impact, even more, the correctness check when message exchanges and
sub-process are combined since possible messages can be lost during the
execution.

In this paper, our intention is to introduce a unique formal framework
to allow BPMN designers, both novice and experienced, to achieve a bet-
ter understanding of their models, and relative properties. This results in a
systematic methodological approach to improve the design of BPMN collab-
orations. We face this crucial issue by providing a framework, based on
formal methods, enabling the verification of safeness and sound-
ness properties for collaboration diagrams, taking into account
distinctive characteristics introduced by message exchanges and
sub-process elements. More specifically, the major contributions of this
paper are as follows discussed.

We have defined a structural operational semantic for rigorously
characterising the semantics of the considered class of BPMN models con-
sidering as first-class citizens BPMN specificities, reasoning on collabora-
tion, process and sub-process levels and asynchronous communication. The
proposed operational semantics associates to each collaboration diagram a
formal model in the form of a Labelled Transition System (LTS). In our
framework, we do not impose any syntactical restriction on the usage of
the modelling notation, such as well-structuredness (which, roughly, im-
poses gateways in a process to form single-entry-single-exit fragments). De-
spite the fact that we are aware of the benefits of structuredness in process
modelling [36, 16], we aim at removing such restriction by considering pro-
cess models with an arbitrary topology, in order to give more flexibility
and freedom to designers. Indeed, designers often do not adopt a well-
structured approach [45], because the modelling activity results to be less
complex [28] and the models more expressive (it is well known that not all
process models with an arbitrary topology can be transformed into equiva-
lent well-structured processes [46, 47]). In addition, well-structuredness per
se does not guarantee that models are correct (e.g., sound [14]), while it is
mainly a way contributing at solving some modelling issues [3].

We have introduced the notion of safeness, soundness and a novel
relaxed variant of the soundness property, which is specially devised
for dealing with the exchange of messages in collaboration diagrams. Safe-
ness of a BPMN collaboration only refers to tokens on the sequence edges,
while in the Petri Nets translation (e.g., [15]) refers to tokens both on mes-
sage and sequence edges. This is due to an inaccurate mapping that consid-
ers a message as a (standard) sequence edge token in a place. Hence, a safe

BPMN collaboration where the same message is sent more than once (e.g.,
via a loop), it is erroneously considered unsafe by relying on the Petri Nets
notion (i.e., 1-boundedness), because pending messages are rendered as a
place with more than one token. Therefore, the notion of safeness defined
for Petri Nets cannot be safely applied as it is to collaboration models. Sim-
ilarly, regarding the soundness property, we can consider different notions of
soundness according to the requirements we impose on message queues (e.g.,
ignoring or not the pending messages). Again, due to lack of distinction be-
tween message and sequence edges, this fine-grained reasoning is precluded
using the current translations from BPMN to Petri Nets. For these reasons
we have introduced the new message relaxed sound notion, that
does not require that the receiver handles each asynchronously exchanged
message. Checking this property in combination with the usual one per-
mits to spot those warning situations in which the control flow execution
completes but some messages are pending. These situations, indeed, do not
necessarily correspond to incorrect behaviours. For example, in case of a
race condition from messages caused by an event-based gateway, only one
message among the waited ones is consumed, while the others remain en-
queued. Instead, the case where decisions have enabled a control flow that
skips the reception of a message may be either undesirable or acceptable,
depending on the specific application context. In such a case, the model
designer is in charge of checking the nature and relevance of the pending
message. The presented notions are directly defined on the BPMN collabo-
rations, and there is a clear difference compared to the one defined on Petri
Nets and applied to the Petri Nets resulting from the translation of BPMN
collaborations, e.g. via the mappings in [15] and in [25].

We have implemented in Java the operational semantics and
the correctness checking techniques. It results in efficient checking
techniques on LTSs for the considered properties, and proved that these
checks correspond to the formal definitions of the properties. In particu-
lar, we provide a werification tool, called S3, accessible as a RESTful ser-
vice, as a web-application based on the Camunda modelling environment
(https://bpmn.io/modeler/), and as a Java stand-alone application. Last
but not least, we have extensively validated the proposed verifica-
tion framework and the S tool. Firstly, we have checked if safeness,
soundness and message-relaxed soundness are correctly handled by model
designers, or if, instead, they release models violating such properties. We
did such investigation using S* on BPMN models publicly available on a
freely accessible repository. Successively, involving a group of students, we
have checked if the S? can effectively support designers in delivering models

Pool

—_—
Sequence Edge / \

Task Sub-Process O O
o - -

Message Edge o Start Intermediate End
Connecting Edges Activities Events
AND-split AND-join XOR-split XOR-join Event-Based
Gateways

Figure 1: BPMN Collaboration Elements

respecting safeness, soundness and message-relaxed soundness properties,
and if S is perceived as a usable and useful tool by its final users. Finally,
we have measured the S? performances to assess its suitability in relation
to its possible adoption in practice. In particular, we have compared the
performances of S? with those of a widely used tool, that is LoLA [54].
The rest of the paper is organised as follows. Sec. 2 discusses the moti-
vations underlying our work. Sec. 3 provides the formal framework at the
basis of our approach. Sec. 4 shows how the formal concepts have been
realised in our verification tool S3, while Sec. 5 presents the results of the
experiments we have carried out to validate both the formal framework and
the tool. Finally, Sec. 6 discusses related works and Sec. 7 concludes the

paper.

2. Motivations

This section provides some basic notions on the BPMN standard [44]
and on the main elements that constitute the notation. Successively we
discuss some simple scenarios to better highlight the possible issues related
to the combined usage of sub-process elements and message exchange within
a model. Finally, we introduce a case study that we then use for illustrative
purposes.

2.1. BPMN Owverview

In the last years BPMN has acquired a clear relevance among the no-
tations used to model business processes both in academia and industry,
and then to implement supporting information systems. The notation is
extremely rich but, as shown in [42], only less than 20% of its elements is
regularly used in designing business process models. Our study has been
currently restricted to such a subset as illustrated in Fig. 1. The meaning
of the considered elements is explained in the following.

Pools are used to represent the participants (organisations, offices, etc.)
involved in a collaboration, and they include details on internal process
specifications. Connecting Edges are used to connect BPMN elements.
In particular, a Message FEdge is a dashed connector used to visualise com-
munication flows between organisations, while a Sequence Fdge is a solid
connector used to specify the internal execution flow of a process. Activi-
ties are used to represent specific activities to be performed within a process.
A task is an atomic activity for which further details are not provided. It
can also be used to send and receive messages to another pool. A sub-process
is used to represent an activity that can be broken down to a finer level of
detail. The use of such element can improve understandability, as it per-
mits to relate different level of abstractions in a process model. Events,
drawn as circles, are used to represent something that can happen. A Start
FEvent represents the point from which the process starts, an Intermediate
Event represents something that happens during process execution, an End
FEvent represents the process termination. To improve the understandabil-
ity of models, we add labels to end events when they are more than one
in the same process. When an intermediate event is source or target of a
message edge, it is called Message Fvent. According to the different kinds
of message edge connections, we can observe the following situations: (i)
Throw Intermediate Fvent is an intermediate event with an outgoing mes-
sage edge; the event element sends a message; (ii) Catch Intermediate Event
is an intermediate event with an incoming message edge; the event element
receives a message. Gateways are used to manage the control flow of a pro-
cess. Gateways act as either join nodes (merging incoming sequence edges)
or split nodes (forking into outgoing sequence edges). As best practice, in
our work we enforce that a gateway cannot have both multiple input and
multiple output flows; such behaviour can be achieved by two gateways in
sequence to first converge and then diverge the flows. Different types of
gateways are available. An AND gateway permits to manage parallel exe-
cution flows. An AND-split gateway is used to model the parallel activation
of two or more branches, as all outgoing sequence edges are started simul-
taneously. An AND-join gateway synchronises the execution of two or more
parallel branches, as it waits for all incoming sequence edges to complete
before triggering the outgoing flow. A XOR gateway gives the possibility
to describe internal choices. In particular, a XOR-split gateway is used to
introduce branches to be selected on the base of exclusive conditions. When
executed, the gateway activates only one outgoing edge corresponding to the
satisfied condition. A XOR-join gateway acts as a pass-through, meaning
that its outgoing edge is activated each time the gateway is reached. An

Event-Based gateway is similar to the XOR-split gateway, but the activa-
tion of its outgoing branches depends on the occurrence of a set of catching
events. Basically, such events are in a race condition: the first event that is
triggered wins the race and disables all the other ones.

The execution of BPMN models is based on the notion of token. This is
a theoretical concept used as an aid to define the behaviour of processes, and
hence collaborations, that are being performed [44, Sec. 7.1.1]. Roughly, a
token is generated by a start event, traverses the sequence edges of a process
and passes through its elements enabling their execution, and finally it is
consumed by an end event. In a collaboration, the process execution can
trigger the exchange of messages.

2.2. On Correctness of BPMN Collaborations

The verification of BPMN diagrams is a widely investigated domain
[41, 22, 20]. However, to the best of our knowledge, there are no com-
prehensive studies on how correctness is impacted by the introduction of
message exchanges, sub-process elements, and their combined usage during
the verification phase.

As specified in the standard [44, Sec. 8.3.2, pp.74], message exchanges
in collaboration diagrams are assumed to behave accordingly to an asyn-
chronous paradigm. This allows the sending partner to avoid waiting for
the reception of a sent message. Asynchronous communication may lead to
collaborative scenarios that do not satisfy the soundness property (requiring
all processes involved in a collaboration to successful complete), because one
or more messages remain pending while the whole collaboration somehow
completes. However, the occurrence of such a situation should not be nec-
essarily considered as an error, but its assessment should be better left to
the model designer.

To clarify the point, three simple examples from the manufacturing do-
main are proposed in Fig. 2. In Fig. 2 (A) we consider a scenario where the
CEO of a manufacturing company needs that either the marketing manager
or the production manager joins him at a meeting with potential customers.
While the marketing manager always answers to the request by providing
his availability, the production manager may not answer in case he is too
busy with the management of the production line. It is irrelevant for the
CEO who will join him at the meeting: he will simply select for this duty
the manger that replies first. This is expressed in the model by means of an
event-based gateway. Indeed, the reception of a message from a manager has
two effects: (i) it disables the reception of a message from the other manager;
(ii) it triggers a series of activities for sending the meeting information to

the manager who answered first, and cancelling the assistance request to the
other one. It is worth noticing that, due to the race-condition nature of the
event-based gateway semantics, once a message from a manager is received
by the CEO, the possibly subsequent message from the other manager is
ignored and remains pending. Anyway, this is completely acceptable in this
scenario. A similar situation can be observed in Fig. 2 (B), depicting the
collaboration between a component buyer and a supplier for the order of
components whose price changes on a daily basis. Every working day, the
buyer checks the stock availability for a given kind of components and, in
case of need, evaluates the offer that each day the related supplier provides
him. If the offer is positively evaluated, the order for the needed amount of
components is added to the the next order to that supplier (the subsequent
order management activities are omitted here for the sake of simplicity).
In case the buyer does not need to purchase new components, a pending
message from the supplier will be left in the buyer’s queue. Again, in this
situation the presence of a pending message does not affect the correct com-
pletion of the collaboration, as the offer can be simply ignored by the buyer
when he is not interested in new components. Finally, Fig. 2 (C) shows
a scenario where, differently from the previous two examples, the presence
of pending messages at the collaboration completion is not desirable. We
consider a customer of a motorbike manufacturer that, after the choice of
the motorbike model, selects the engine and the accessories, and then con-
cludes the purchase with the payment directed to the sales department of
the motorbike manufacturing company. Notably, the choices of engine and
accessories can be done in any order. However, in this BPMN model, the
Perform Payment task is executed every time one of such choices is done,
resulting in a double sending of the payment message. Even if only one out
of the two messages will be effectively consumed by the sales department,
which prevents a double payment, this model behaviour does not correctly
represent the real situation and, hence, it has to be considered as a mod-
elling error. It can be simply fixed by replacing the XOR join gateway in
the customer process by an AND join gateway; in this way, the payment is
performed only once, because the corresponding task is activated only when
both the engine and the accessories are selected.

The property of soundness is the most commonly requested quality crite-
ria for business processes, since it considers both control-flow and message-
flow for ensuring correctness. However, in some cases it may result too
strict for evaluating a collaboration, in particular when message exchanges
and sub-processes are used. To better handle these scenarios, we propose
here the “message-relaxed soundness” property, which is a relaxed version

Marketing Manager

Request Request
Cancelled Withdrawn

D)

Meeting
Confirmation

-+

Receive
Availability
Request

Provide
Availability

t
N ! Join Meeting
| |

| | | |

Confirmation| I cancelation

Availabity | Availability | _
Request X
'

Confirmation]

Ask Availabiliy Sénd"’::geting

Marketing
Available
o
2
o
Production
Available
Ask Availabilly Se"dl r’:’;se"r‘g Cancel Request
|
| Q |
] |] T
Availability Availability Confirmation
Request | Confirmation | S=ee | Gancelation
T
| | |
| | | Join Meeting
|
5 Too busy? i
g Receive Meeti
e . eeting
5 ° Provide |
g Availability Avallablity Confirmation
E Request
£
S
E
<}
a Request Request
Cancelled Withdrawn
Ignore Request
No need of
components Components
ordered
9 Add to the
H Order
g - N
3 =
g
£ Check Stock Receive Offer Evaluate Offer
S fability

Components not
Need new & J ordored
components? 1}

| Offer

O—p Send Daily Offer —O
(B)

Supplier

Customer

Select Engine
Choose Perform
Motorbike Payment

Select
Accessories

| Payment

=

Receive
Payment

Sales Department

(C)
Figure 2: BPMN Models with Pending Messages
9

(A) Sound Process

(] =] (]
X Components Quality Check Quality Check Notify Order Delivery
Assembly Inquiry Report Completion Motorbike

(B) Unsound Process

Figure 3: BPMN Manufacturer Models

of soundness that permits to distinguish those situations where the violation
of the soundness property is only due to possible issues related to message
exchanges. These issues have to be considered as warnings by the designer,
who can decide to leave the model as-it-is, as they are due to messages
that can be ignored (see Fig. 2 (A)-(B)), or to fix the inconsistencies (see
Fig. 2 (C)).

In relation to the sub-process element, the BPMN standard defines it
as an actiwity that encapsulates a process that is in turn modelled by activ-
ities, gateways, events, and sequence flows [44, Sec. 13.2.4, pp.430]. Once
activated, a sub-process instance remains in the execution state as long as
the encapsulated process is running. Then, only when none of its internal
activity is active the sub-process completes [44, pp. 431], and as a result
the control is passed to the sequence edge outgoing from the sub-process
element. Therefore, according to the standard, a collapsed sub-processes
can be considered as a “normal” task consuming an incoming token when it
starts, and then it produces just an outgoing token when it ends. For this
reason, the sub-process element cannot be considered just syntactic sugar,
hence it is not possible to perform verification activities just flattening the
model, i.e. by simply substituting the sub-process element by its internal
content.

To illustrate such a situation we resort again to models from the manu-

10

facturing domain. We consider now a company that produces and assemblies
motorbike components for different brands. Whenever the company receives
an order from the customer, it analyses the request and activates the pro-
duction process. Such a process is composed of three parallel activities
referring to the production of three main components of the motorbike: the
hydraulic system, the electrical circuit, and the engine. As soon as any of
these components is produced, it is immediately assembled with the rest of
the motorbike. Notice that, for security reason, only one type of component
can be assembled at the same time. When the assembly is fully completed,
and hence the production process is terminated, the motorbike is ready for
the quality check. This check is performed by an autonomous participant
acting as an external third party. The quality check procedure consists in
performing a quality test and in the preparation of the resulting report, sent
to the company that verifies the result. Then, the company notifies the order
completion to the customer and delivers to him the motorbike. Fig. 3 shows
two BPMN models of such a scenario; for the sake of presentation, only
the manufacturer participant is reported, the other ones will be introduced
in the collaboration later. In the process of the manufacturer participant
specified in Fig. 3 (A) the production phase is embedded into a sub-process,
while Fig. 3 (B) shows the same process where the sub-process has been
flattened into the main process. Notably, differently from what could be
expected, according to the definition provided by the standard the two pro-
cesses lead to different results when the soundness property is checked. In
particular, even if the sub-process in Fig. 3 (A) is unsound, the overall pro-
cess is sound, since only one token is propagated after the execution of the
sub-process, which then ensures the proper completion of the process. A dif-
ferent result can be observed for the flattened process model in Fig. 3 (B).
In this case we are in front of an unsound process, since the two tokens
generated by the AND-split gateway will both reach the end event, affecting
then the proper completion of the overall process. It is worth noticing that
the model fragment starting with an AND-split gateway and ending with a
XOR-join gateway, which duplicates the incoming token, is a natural way
to model the parallel execution of the manufacturing activities that must be
followed by the assembly task, which according to the requirements cannot
be parallelised but separately executed for each produced component.
Finally, to better illustrate the subtle effects possibly resulting from the
interplay of sub-processes and message exchanges, we extend the
manufacturing model by including the other participants involved in the or-
der management collaboration. The model in Fig. 4 shows the interactions
of the manufacturer with a customer and a quality certification office. Fo-

11

Figure 4: Order Management (Message-Relaxed Sound Collaboration)

cussing on the customer, he sends the order to the manufacturer and then,
before receiving the bike, he can possibly receive and check the order com-
pletion notification. The process of the manufacturer is similar to the one
previously described, but this time the sub-process includes the request for
quality checking within the sub-process. This is a modelling error leading
to the sending of a new request for quality verification for each assembly
step, which is undesired according to the requirements of this scenario. The
effect on the resulting model is that the unsoundness of the process included
in the sub-process element is brought outside, causing the request of many
activations of the quality certification process. In addition, also the notify
order completion message will not be always received by the customer. This
could be due, for instance, to the fact that the customer could deliver the
order using different channels (e.g., web portal or mobile app), one of which
does not permit to check the status of the order. The considered situation is
quite common when one of the partners in a collaboration evolves acquiring
the capability of sending additional information. However, to still ensure
interoperability among the interacting partners, the loss of such additional
messages is typically not judged as erroneous.

Summing up, the scenario in Fig. 4 includes two different situations
where the soundness property is violated due to issues related to message
exchanges. However, they are judged differently: negatively for the first
case, since it corresponds to an unintended behaviour, while for the second
case the loss of a message can be acceptable. Fig. 5 reports a revised version
of the collaboration in which the highlighted issue is solved by bringing the
sending task outside of the sub-process. Notably, the collaboration is still
not sound, but it satisfies the message relaxed soundness and, in fact, it can

12

Figure 5: Order Management - Revised (Message-Relaxed Sound Collaboration)

be considered adequate by the designer.

The presented examples are intentionally kept simple, as they have been
conceived to clarify the motivations of our work. Anyway, in real contexts
these situations can easily arise, especially when complex scenarios are con-
sidered. To support this statement, we show in Fig. 6 a possible extension
of the manufacturing collaboration with further details, which make the
model richer (as it consists of more than 50 elements) and more realistic.
Roughly, besides detailing the involved processes with further tasks, we in-
troduce another participant to the collaboration devoted to deal with the
delivery of motorbikes. On the one hand, this model provides evidence of the
applicability of our approach to concrete scenarios. On the other hand, it
shows that identifying possibly undesired behaviours, even for experienced
designers, may become increasingly difficult when considering larger and
more complex models. Indeed, despite at a first glance the model may seem
(message-relaxed) sound, it actually is unsound. The unsoundness is due
to a deadlock in the customer process: while the manufacturer only sends
a single notification message, now the customer can check the order sta-
tus more than once (see the loop around the Check Order Status task), and
hence he may remain blocked waiting for an order status message. The error
handling can be fixed by removing this looping behaviour in the customer,
or, if the intention of the designer is to keep it, the manufacturer process can
be extended in order to send more order status messages before the order
completion one.

Figure 6: Order Management - Extension

13

3. The Formal Framework

This section presents the formal framework at the basis of our correct-
ness checking approach for BPMN models and, hence, of the related S3
tool. We first present the syntax and operational semantics we defined for
a subset of BPMN elements. We then exploit this formal characterisation
to define the notions of safeness and (two variants of) soundness for BPMN
collaborations.

The considered subset of BPMN elements includes those elements needed
to describe message exchanges and sub-processes, which play a key role in
our work while being usually not considered or over-abstracted by other
formalisations (e.g. [18, 15]). In selecting the other elements, following a
pragmatic approach, we focused on those regularly used in practice to design
process models [42]. We have hence left out those features of BPMN whose
formal treatment is orthogonal to the addressed problem. In particular,
we have not considered such aspects and constructs as inclusive gateways,
timed events, error handling, data objects, and multiple instances.

To better illustrate the technicalities of our formal framework we use
as a running example the model from the manufacturing domain shown in
Fig. 2 (B).

3.1. Syntax of BPMN Collaborations

To enable the formal treatment of the collaborations’ semantics we re-
sort to a textual representation of BPMN elements. In particular, we de-
fined a BNF syntax of their model structure in Fig. 7. In the proposed
grammar, the non-terminal symbol C represents a Collaboration Structure,
while the terminal symbols, denoted by the sans serif font, are the consid-
ered BPMN elements, i.e. events, tasks, sub-processes and gateways. Even
if the reader could notice that our syntax is too permissive with respect to
the BPMN notation, we will consider only collaborations that are admitted
by the standard. Indeed, we are not proposing an alternative modelling
notation, but we are only using a textual representation of BPMN models,
which is more manageable for writing operational rules than the graphical
notation. Therefore, in our analysis we will only consider terms of the syntax
that are derived from BPMN models produced by using a BPMN graphical
modelling environment such as Camunda.

In the following, [E denotes the set of sequence edges, e € E a sequence
edge, while E € 2F a set of edges. For reader’s convenience, we refer with e;
to the edge incoming into an element and with e, the edge outgoing from an
element. In the edge set E we also include spurious edges for denoting the

14

enabled status of start events and the complete status of end events, named
enabling and completing edges, respectively. They are needed to guarantee
activation of sub-processes as well as to check their completion. Moreover,
M denotes the set of message edges, and m € M denotes a message edge,
allowing message exchanges between pairs of participants in the collabora-

tion.

The correspondence between the syntax used here and the graphical

notation of BPMN is straightforward, we just highlight below the key points
for the study carried out in this paper.

start(ecnp, €0) TEpresents a start event that can be activated by means
of the enabling edge e.,; and has an outgoing edge e,.

startRcv(m, e,) represents a message start event that can be activated
by means of the receiving of a message m and has an outgoing edge
€o-

end(e;j, ecmp) represents an end event with an incoming edge e; and a
completing edge ecpp-

andSplit(e;, E,) (resp. xorSplit(e;, F,)) represents an AND (resp. XOR)
split gateway with incoming edge e; and outgoing edges F,.
andJoin(E;, e,) (resp. xorJoin(E;, e,)) represents an AND (resp. XOR)
join gateway with incoming edges E; and outgoing edge e,.
eventBased(e;, (m1,€01), ..., (Mp, eon)) represents an event-based gate-
way with incoming edge e; and a list of message edges with the related
outgoing edges e,; that are enabled by message reception.

task(e;, e,) represents a non-communicating task with incoming edge
e; and outgoing edge e,; communicating task taskRcv(e;, m,e,) (resp.
taskSnd(e;, m, e,)) also receives (resp. sends) a message m.
interRcv(e;, m,e,) (resp. interSnd(e;, m,e,)) represents an intermedi-
ate receiving (resp. sending) event with an incoming edge e; and an
outgoing edge e, that are able to receive (resp. send) a message m.
subProc(e;, C, e,) represents a sub-process element with incoming edge
e; and outgoing edge e,. When activated, the enclosed process C
behaves according to the elements it consists of, including nested sub-
process elements.

start(eens, €0) | startRcv(m,e,) | end(e;,ecmp) | andSplit(e;, E,)
xorSplit(e;, E,) | andJoin(E;,e,) | xorloin(E;,e,)
eventBased(e;, (M1,€01), ..., (Mp,e0n)) | task(e;,e,) | taskRev(e;, m,e,)
taskSnd(e;,m,e,) | interRev(e;, m,e,) | interSnd(e;, m,e,)

subProc(e;, C,e,) | C|C

Figure 7: Syntax of BPMN Collaboration Structures
15

e (| C represents a composition of elements in order to render a collab-
oration structure in terms of a collection of elements.
To achieve a compositional definition, each sequence (resp. message) edge
of the BPMN model is split in two parts: the part outgoing from the source
element and the part incoming into the target element. The two parts are
correlated since edge names in the BPMN model are unique.

Example 1. Let us consider the BPMN model in Fig. 2 (B). The textual
representation of its structure is as follows (for reader’s convenience, we
use ei-’ and €}, with i and j natural numbers, to denote sequence edges of the
component buyer and the supplier, respectively):

start(e}, e | task(eb, e | xorSplit(el, {e}, el }) | end(e},, eb)
| taskRov(eh, Offr,) | ask(el) | xorSpii(eL. {eh, ko))
| end(eg, e7;) | task(ely, ely) | end(efs, e]3)

start(ef, e3) | taskSnd(e3, Offer, e5) | end(ef, e})

To conveniently refer to the start events of a collaboration C we resort
to function start(C'), which returns the set of the enabling edges of C":

start(Cy | C2) = start(Cy) U start(Cy)
start(start(eenp, €0)) = {€enb} start(C) = for any C # start(ecpnp, €0)

The above function applied on the whole collaboration will return as many
edges as the number of start events involved in the collaboration (as the
enabling edges of nested sub-processes are ignored), while the application of
the function to a process/sub-process returns only one edge. We similarly
define the function end(C') on the structure of collaborations in order to
refer to end events of C:

end(Cy | C2) = end(C1) U end(C?)
end(end(e;, ecmp)) = {€cmp} end(C) =0 for any C # end(e;, ecmp)

Example 2. Let Cys be the collaboration structure defined in Example 1.
Its start and end events can be referred by the edges identified as follows:

start(Cps) = {e?, et} end(Cps) = {eg,el{l,e%, ei}

16

8.2. Semantics of BPMN Collaborations

The syntax presented so far permits to describe the mere structure of a
collaboration. To describe its semantics we need to enrich it with a notion
of execution state, defining the current marking of sequence and message
edges. We call collaboration configuration this stateful description.

Formally, a configuration has the form (C,o,d), where: C is a collabo-
ration structure; o is the first part of the execution state, storing for each
sequence edge the current number of tokens marking it; and ¢ is the second
part of the execution state, storing for each message edge the current number
of message tokens marking it. Specifically, a state o : E — N is a function
mapping edges to numbers of tokens (N is the set of natural numbers). The
state obtained by updating in the state o the number of tokens of the edge e
to n, written as o - {e — n}, is defined as follows: (o -{e — n})(¢’) returns n
if ¢’ = e, otherwise it returns o(e’). Moreover, 6 : M — N is a function map-
ping message edges to numbers of message tokens; thus, §(m) = n means
that there are n messages of type m sent by a participant to another one
that have not been consumed yet. Update of § is defined in a way similar to
the o’s definition. In the initial state of a collaboration, the start event of
each process in the collaboration must be enabled, i.e. it has a token in its
enabling edge, while all other sequence edges (included the enabling edges
for the activation of sub-processes) and message edges must be unmarked.

Definition 1 (Initial state of collaboration). Let C' be a collaboration,

the collaboration configuration (C,o0,6) is the initial one, i.e. predicate
isInit({C, 0,0)) holds, ifV eenp € start(C) . o(eeny) = 1, V e € E\start(C) . o(e) =
0, andV meM . d(m)=0.

Example 3. Let Cys be the collaboration structure defined in Example 1.
The initial configuration of the collaboration is (Cys, 00, d0), where:

ao(e}) = oo(ef) =1
cole?) = oo(el) = 0 Vi, j # 1
So(Offer) = 0

q q

The operational semantics is defined by means of a labelled transition
system (LTS). In our case, this is a triple (C, £, —) where: C, ranged over
by (C,0,d), is a set of collaboration configurations; £, ranged over by [, is a
set of labels (of transitions that collaboration configurations can perform);
and —-C C x L x C is a transition relation. Labels [represent computational
steps: !m and ?m denote sending and receiving actions, respectively, while

17

FE denotes the set of edges from which a token is moved, thus permitting to
identify the current position in the execution flow (for the sake of readabil-
ity, we write the set {e} as e). We will write (C, o,) SN (0’,0") to indicate
that ((C,0,0),1,(C,0’,0")) €= and say that ‘the collaboration in the config-
uration (C, 0, 0) can do a transition labelled | and become the collaboration
configuration (C,o’,¢') in doing so’. Notice that we omit the collaboration
structure from the target configuration of the transition, since collaboration
execution only affects the current states and not the collaboration structure.
Notably, despite the presence of labels, this has to be thought of as a reduc-
tion semantics, because labels are not used for synchronisation (as instead
it usually happens in labeled semantics), but only for keeping track of the
performed actions in order to enable the verification.

Before introducing the semantic rules, we define the auxiliary functions
they exploit. Specifically, function inc: S x E — S (resp. dec: S x E — S),
where S is the set of states, allows updating a state by incrementing (resp.
decrementing) by one the number of tokens marking an edge in the state.
Formally, they are defined as follows: inc(c,e) = o - {e — o(e) + 1} and
dec(o,e) = o-{e — o(e)—1}. These functions extend in a natural way to sets
of edges as follows: inc(o,0) = o and inc(o,{e} U E)) = inc(inc(o,e), E);
the cases for dec are similar. The functions inc and dec for § are defined in a
way similar to o’s definitions. We also use the function zero : SXxE — S that
allows updating a state by setting to zero the number of tokens marking an
edge in the state. Formally, it is defined as follows: zero(o,e) = o-{e — 0}.
Also in this case the function extends in a natural way to sets of edges as
follows: zero(o,0) = o and zero(o, {e} U E)) = zero(zero(o,e), E).

Example 4. Let us consider the state og in Example 3. The state o1 ob-
tained by moving the token from the edge el{ to the edge eg is obtained as

follows: o1 = inc(o},e}) with oy = dec(ay, €?).

We also use the function marked(o, E) to refer to the set of edges in E
marked by at least one token, which is defined as follows: marked(o, () = 0,
and marked(c,{e} U E) returns {e} U marked(o, E) if o(e) > 0, otherwise
it returns marked(o, E).

Example 5. Let us consider the state o1 in FExample 4. The marked edges
of the collaboration in this state are as follows:

marked(o1,{€8, ... e85, el,...,e5}) = {eb, 5}

18

To check the completion of a sub-process, we exploit the boolean predi-
cate completed(C, o) defined as follow.

decmp € end(C) . eemp € marked(o, end(C)) N Ve € E\end(C) .o(e) =0

It requires that at least one token reaches an end node, and there is no more
token on the sequence edges of the sub-process; this subsumes that more end
nodes can be marked. Notably, the completion of a sub-process does not
depend on the exchanged messages, and it is defined considering the arbi-
trary topology of the model. This definition complies with the prescriptions
of the BPMN standard [44, pp. 426, 431].

Example 6. Let us consider again the state o1 in Example 4 and the collab-
oration structure Cys in Example 1. We have that completed(Cys, 01) = false
because all edges ef}, €%, €45, €] in end(Cys) (see Example 2) are unmarked,

i.e. they are not in marked(o1,{e},... el5, e, ..., e5}) (see Example 5).

Now, we can define in Fig. 8 the transition relation over collaboration
configurations, which formalises the execution of a collaboration in terms of
edge and message marking evolution. We briefly comment on salient points.
Rule Start starts the execution of a process/sub-process when it has been
activated (i.e., its enabling edge e, is marked). The effect of the rule is to
increment the number of tokens in the edge outgoing from the start event
and to decrease the number of tokens in the enabling edge. Rule End instead
is enabled when there is at least one token in the incoming edge of the end
event, which is then moved to the completing edge. Rule StartRcv start the
execution of a process when there is at least a token in the incoming message.
The effect of the rule is to increment the number of tokens in the edge
outgoing from the start event and remove the token from the message edge.
Rule AndSplit is applied when there is at least one token in the incoming
edge of an AND split gateway; as result of its application the rule decrements
the number of tokens in the incoming edge and increments those in each
outgoing edge. Similarly, rule XorSplit is applied when a token is available
in the incoming edge of a XOR split gateway, the rule moves the token
from the incoming edge to one of the outgoing edges, non-deterministically
chosen. Rule AndJoin decrements the tokens in each incoming edge and
increments the number of tokens of the outgoing edge, when each incoming
edge has at least one token. Rule XorJoin is activated every time there is
a token in one of the incoming edges, which is then moved to the outgoing
edge. Rule FventBased is activated when there is a token in the incoming
edge and there is a message m; to be consumed, so that the application

19

(start(eenp, €0), 0, 8) —=% (inc(dec(o, €enp), €0),) a(eenb) (Start)
(end(e;, €emp), 0, 6) —= (inc(dec(o,€;), eemp);0) ole;) > (End)
(startRev(m, e,), 0, d) §) —m (inc(o,e,), dec(6,m)) 6(m) > (StartRcv)
(andSplit(e;, E,), 0,8) —= (inc(dec(o, e;), E,),8) o(e;) > (AndSplit)
(xorSplit(e;, {es} U Ey), 0, 5> = (inc(dec(o, €;),e,),0) o(e;) > (XorSplit)
(andJoin(E;, e,),0,8) — (inc(dec(a, E;),e,),0) Ve € E; . a(e)>0 (AndJoin)
(xorJoin({e;} U By, e,),0,08) —= (inc(dec(o, e;),e,),0) o(e;) >0 (XorJoin)
(eventBased(e;, (ml’5:11@)(’@&(’;:?)’,e:;))),’c(l’e,cé(g,;))} ;é)] >§ (;1,76(mj) o (BventG)
(task(e;, e,),0,0) —5 (inc(dec(o,), e,),8) ole;) >0 (Task)

(taskRev(e;, m, e,), 0,8) —= (inc(dec(o, e;),e,), dec(d,m)) o(e;) > 0,6(m)>0 (TaskRcv)
(taskSnd(e;, m, &,), 7, 8) —= (inc(dec(o, e:), &), inc(5,m)) o(e;) >0 (TaskSnd)
(interRev(e;, m,e,), 0,0) — (inc(dec(o, &), e,),dec(s,m)) o(e)>0,6(m)>0 (InterRcv)
(interSnd(e;, m, e,), 0, 8) — (inc(dec(o, e;), e,), inc(d,m)) o(e;) >0 (InterSnd)

(subProc(e;, C,e,), 0,0) — (inc(dec(o, e;), start(C)),8) o(e;) >0 (SubPsiart)

<SUbPrOC(ei7 C, ea)7 g, (5> marked(o, end(€) compl@t6d<c7 g) (SUbPend)
(inc(zero(o, end(C)), e,), 0)

(C,0,8) 5 (0,8

; (SubPyyp,)
(subProc(e;, C,e,),0,8) — (0, 6")
Ch,0,8) - (0,8 Co,0,68 o8
Cuod 2e8)) _GedoEs)
(C1] Ca,0,8) — (o/,0") (C1] Ca,0,0) — (o',0")

Figure 8: BPMN Collaboration Semantics
of the rule moves the token from the incoming edge to the outgoing edge
corresponding to the received message, whose number of message tokens
is decreased (i.e., a message from the corresponding queue is consumed).
Rule Task deals with simple tasks, acting as a pass through. It is activated
only when there is a token in the incoming edge, which is then moved to
the outgoing edge. Rule TaskRcv is activated when there is a token in

20

the incoming edge and, in addition, there is a message to be consumed.
Similarly, rule TaskSnd sends a message before moving the token to the
outgoing edge. Rule InterRcv (resp. InterSnd) follows the same behavior
of rule TaskRcv (resp. TaskSnd). Rules SubPsigri, SubPpry, and Sube,q deal
with the sub-process element. Rule SubPg,,+ is activated only when there is
a token in the incoming edge of the sub-process, which is then moved to the
enabling edge of the start event in the sub-process body. Then, by applying
SubP,,, the sub-process behaves as its body till it completes, according to
the completion check performed by the rule SubP,.,;. When this last rule
is applied, it removes all tokens from the sub-process, and adds a token to
the outgoing edge of the sub-process. Actually, due to the definition of sub-
process completion, only the completing edges of the end events within the
sub-process body need to be set to zero. Finally, Int; and Ints deal with
interleaving in a standard way.

Example 7. Fig. 9 (upper part) shows an excerpt of the LTS representing
the semantics of the collaboration Cys (the full LTS consists of 27 states).
The execution states o; and d; of the considered configurations, together with
a graphical representation of the corresponding token markings, are reported
in the lower part of Fig. 9.

The LTS is obtained by applying the rules in Fig. 8, starting from the
initial configuration (Cys,00,00). To clarify how the LTS is generated, we
describe below how the two transitions from the initial configuration are in-

ferred:

e focussing on the start event of the buyer, the collaboration Cys has
the form start(e},eb) | Cj, (see Example 1), hence by rule (Int;) the
execution state produced by the transition is the same obtained from
(start(e%, €8), 00, 00) by applying rule (Start); formally, the transition
is inferred as follows:

- (Start)
(start(e}, €b), 00, Bo) — (o1, 5p)

(Intz)

b
€1

(start(el, €3) | Cys, 90,80) — (o1,0)
with o1 = inc(dec(oo,€?),eb);

o focussing instead on the start event of the supplier, the collaboration
Chs has the form Cl. | start(e},e3) | C}. (see Example 1), thus leading

21

(Cps.03,50)

(Chs,01,8¢)
S

((«77‘*, 0'0,60>

(Cps.04,50)

)

10ffer

Marking

‘ Execution State H

Marking

‘ Execution State ‘

Buyer
0,
o

b
Check Stock | €3

Availability

Supplier

)

/‘;Oﬁer

K

K

Send
Daily Offer

1

Uo(eli) = Uo(ei)

O'()(el;) = O’o(e;) =0
Vi, j#1

80 (Offer) = 0

Buyer
<O
<

b

Availability

N

b
Check Stock | €3

Supplier

(@

-~

%Oﬂer

S (I

M seng
Daily Offer

oi(e3) = oi(ef) =1

o1(e) = o1(e]) = 0
Vit 2,j#1
do(Offer) =0

®

S

Buyer

b

Availability

e
Check Stock 3

Supplier
)

/‘;Oﬂev

s

K

Send
Daily Offer

Ug(el{) = Uz(eg) =1

Ug(e?) = O'Q(e?) = 0
Vi#lj#2
do(Offer) =0

b

Q
',

Sa

Buyer

-~

Check Stock
Availability

Q

s

®

Supplier

-~

?Oﬂer

K

Send
Daily Offer

Ug(eg) = 0'3(65) =1

o3(ef) = o3(e5) =0
Vi#3,j#1
00(Offer) =0

)

2

Buyer

..b
Check Stock | 3

o>

Availability

£ Offer

Supplier
~.

s

K

Send
Daily Offer

1

0’4(63) = 0'4(63)

04(6?) = 0'4(6‘;) = 0
Vi, j# 2

do(Offer) =0

b

Buyer
®

Availability

,.b
Check Stock | €3

2 0ffer

s

Supplier

-~

K

Send
Daily Offer

os(el) = o5(ef) = 1

0'5(6117) = 0'5(6?) = O
ViFlj#3
01(Offer) =1

to the following inference:

(start(e], €3), 00, Bo) — (o2, 50)

eS
<start(e‘19, eg) ” Cl/)/s,ﬂ 09, (5()> 4 <02, (50>

eS
<Cll)/s H start(e‘i,eg) ” @{)%700750> —1> <02750>

Figure 9: LTS excerpt of the running example (model in Fig. 2 (B)), with associated
execution states (and graphical representation of the related marking)

(Start)
(Int;)

(Intg)

with og = inc(dec(og, €}),€5).

3.8. Safeness and Soundness Properties
We now provide a formal definition for the correctness properties we
verify on BPMN collaboration models. We use below —* to denote the

reflexive and transitive closure of —.

Safeness refers to the occurrence of no more than one token at the same
time on the same sequence edge of each process along the collaboration
execution.

Definition 2 (Safe collaborations). A collaboration C is safe if and only
if, given o and § such that isInit((C, o,) holds, then for all o' and &' such
that (C,0,0) —=* (0/,¢") we have that Ve € E . o'(e) < 1.

Example 8. The collaboration Cys is safe, because for each collaboration
configuration (Cys, 0, 0;) reached from (Cys, 00, 00) we have that for any edge
e? (resp. €) in the collaboration it holds that o;(e}) < 1 (resp. oi(ef) < 1).
This trivially holds, because the collaboration structure does not include any
AND-split gateway, which is the only construct capable of creating multiple
copies of an incoming token.

Soundness is a more elaborated property (we refer to Sec. 6 for a dis-
cussion about different notions of soundness introduced in the literature for
various workflow notations, and their relationships with the one proposed
here for BPMN collaboration models). Intuitively, the soundness property
requires that from any reachable configuration it is possible to reach a con-
figuration where all message queues are empty, and the marked completing
edges are marked exactly by a single token while all the other edges are
unmarked.

Definition 3 (Soundness). A collaboration C is sound if and only if,

given o and ¢ such that isInit((C, 0,8)) holds, then for all o' and &' such that
(C,0,0) —* (d',8") we have that there exist ¢” and §" such that (C,c’,d") —*(a"”, "),
Veemp € marked(o”,end(C)) . 0" (eemp) = 1, Ve € E\end(C) . 0”(e) = 0,

and ¥Ym e M . §"(m) = 0.

Example 9. The collaboration Cys is unsound, because from the initial con-
figuration it can reach the configuration (Cys, 0;,0;) where the buyer partic-
ipant terminated its execution in the end state labelled by ‘No need of com-
ponents’ (i.e., 0;(e}) = 1 and o;(e}) = 0 for k # 6), the supplier terminated
in its end state (i.e., oi(e;) = 1 and o;(e}) = 0 for h # 4), but the Offer
message sent by the supplier is pending (i.e., §;(Offer) #0).

23

As mentioned in Sec. 1 and Sec. 2, the above definition of soundness
may result to be too restrictive (e.g., in presence of event-based gateways or
unstructured processes). Therefore, we provide a relaxed variant that does
not require message queues to be empty for a proper completion.

Definition 4 (Message-Relaxed Soundness). A collaboration C is message-
relaxed sound if and only if, given o and 6 such that isInit((C,o,d)) holds,
then for all o’ and &' such that (C,0,8) —*(0’,d") we have that there exist

o’ and 0" such that (C,0’,0")y —=*(c",0"), Yeemp € marked(c”end(C)) .
0" (eecmp)=1, and Ve € E\end(C) . o"(e) = 0.

Example 10. The collaboration Cys is message-relared sound, because as
shown in Example 9 the buyer and supplier processes correctly terminate and
the presence of a pending message is not relevant for this property.

4. From Theory to Practice

In this section, we show how we check safeness, soundness and message-
relaxed soundness properties on the LTSs generated by the BPMN oper-
ational semantics given in Sec. 3.2. Then, we formally prove the corre-
spondence between these checks and Def. 2, Def. 3 and Def. 4, respectively.
Finally, we illustrate the S tool implementing the proposed verification
approach.

In the construction of the LTS, each time a new state has to be added we
check if a state representing the same collaboration configuration is already
present; in such a case, we connect the transition edge under construction
to the existing state. In particular, in doing that we consider identical
those collaboration configurations that have the same o and ¢§ ignoring the
completing edges. This is motivated by the fact that for the soundness prop-
erties it is only relevant that the collaboration completes, regardless which
end nodes are marked. This characteristic of the generated LTS is then ex-
ploited (see Def. 9) for putting in relation the soundness of the collaboration
with the existence in the LTS of a unique “final” state (representing a con-
figuration where all tokens are consumed and no other sequence or message
edge is enabled).

We now formally introduce the notion of safeness related to the LTS
induced by the semantics.

Definition 5 (Safe LTSs). An LTS (C,L,—) of a collaboration is safe if
and only if V(C,0,0) € C we have thatVe € E.o(e) < 1.

24

The formal definition of soundness requires the definition of the following
auxiliary functions determining the incoming labels of a state in the LTS,
the presence of an execution trace of the LTS where given labels occur
more than once, and the set of edge labels incoming to the end events of a

. l l
collaboration. We use = to denote —* — —*.

Definition 6 (Incoming Labels). Let (C, L, —) be an LTS and (C,0,9) €
C, incoming(C,o,8) = {l € £ | 3c’,8" (C,o',8) - (C,,5)}.

Definition 7 (Labels Duplication). Let (C,L,—) be an LTS and L C
L a set of labels, predicate isNotDuplicated((C,L,—), L) holds if VI €

L and (C,01,61),(C,09,092),(C,03,03) € C the sequence (C,o1,01) L

(C,09,02) L (C,03,0d3) never holds.

Definition 8 (End Events Incoming Labels). Let C be a collaboration,
then endIn(-) is inductively defined as follows: endIn(C | C2) = endIn(C1)U
endIn(Cs); endIn(end(e;, ecmp)) = {ei}; and endIn(C) = 0 for any C' #
end(e;, €cmp)-

Our notions of soundness on LTSs are defined as follows.

Definition 9 (Sound LTSs). An LTS (C,L,—) of a collaboration C is
sound if and only if I(C,0,d) € C such that:
(i) (C,0,8) £ (i.e., Bl,0",8 such that (C,a,8) - (C,o",8"));
(i1) isNotDuplicated({C, L, —),incoming(C,c,0));
(iii) incoming(C,o,d) = endIn(C);
(iv) ¥V e € E\end(C) . o(e) = 0;
(v)VmeM.d(m)=0.

Definition 10 (Message-Relaxed Sound LTSs). An LTS (C,L,—) of
a collaboration C' is message-relaxed sound if and only if V(C, 0,d) € C such
that (C,0,0)/ we have that:

(i) isNotDuplicated({C, L, —),incoming(C,c,0));

(ii) incoming(C,o,d) = endIn(C);

(i1i) V e € E\end(C) . o(e) = 0.

Now, we show the correspondence of the above definitions with those on
collaborations given in Sec.3.3. All proofs are reported in the Appendix.

25

Theorem 1 (Safeness Correspondence). Let C be a collaboration and
(C,L,—) its LTS, then C is safe if and only if (C,L,—) is safe.

Theorem 2 (Soundness Correspondence). Let C be a collaboration and
(C,L,—) its LTS, then C is sound if and only if (C,L,—) is sound.

Theorem 3 (Message-Relaxed Soundness Correspondence). Let C
be a collaboration and (C, L, —) its LTS, then C is message-relazed sound if
and only if (C,L,—) is message-relaxed sound.

4.1. The 83 Supporting Tool

* Verlfler - Mozilla Firefox

OER R D pros unicam.it - 0% ymomzo® =
de # Soundness: @ O]
Safeness: @ O
oo
o®
0
be
(]
(-
®

Figure 10: S* Modelling Environment Interface

S3 is an open source software that can be redistributed and eventually
modified under the terms of the GPL2 License. The source code as well
as the user guide are publicly available, and they can be retrieved from
http://pros.unicam.it/s3/.

S3 is based on a standard client/server architecture. The S? server
embeds the core of the system and exposes a Java RESTfull service. It takes
as input a BPMN model in the standard format .bpmn, and then returns
the results of the properties checking. The received model is parsed using
the Camunda APIs, and then the corresponding LTS is derived according to
the semantics defined in Sec. 3.2. The property verification is based on the
checks defined in Def. 5, Def. 9 and Def. 10. In case of a property violation,
the service returns the corresponding counterexample.

Designers can use the S? service via the web application we made avail-
able.? It is composed by a client, developed in HTML/Javascript, that

283 web application: http://pros.unicam.it:8080/S3/modeler/

26

embeds the Camunda bpmn.io modeller. Using the graphical interface de-
picted in Fig. 10 the model designer can specify its collaboration using all
the facilities of the Camunda modeller. Successively, clicking on the button
at the top-right corner the verification can be run. The verification results
of safeness and soundness will be summarised by a ‘traffic light’ reporting:
the green (resp. red) color for safeness means that the collaboration model
is safe (resp. unsafe); for soundness, instead, the green color means that the
model is sound, the yellow color corresponds to the warning situation, as the
model is unsound but message-relaxed sound (hence, a manual check by the
designer is required), finally the red color means that the model is unsound
for both notions. To support the designer in solving issues raised by the
verification, in case of a negative outcome an additional button depicting a
lens gives the possibility to show the corresponding counterexample, which
will be displayed directly on the model by colouring the sequence/message
edges involved in the violation (see the red-coloured message edge between
task “Survey submission” and “Fill survey” in Fig. 10). It is also possible to
export the model as a .bpmn file.

Finally, S? can be also executed locally via a Java stand-alone application
we made available.> The application allows the user to load a .bpmn file
to be checked, and hence to verify the considered properties. The graphical
interface provides a text area reporting the verification results, and a button
to visualise in a separate window the generated LTS.

5. Validation

In this section we report the results of the experiments we carried out
in order to validate both the proposed verification framework and the corre-
sponding S? tool. In particular, we shaped our validation activity according
to the following research questions:

RQ1 Are safeness, soundness and message-relaxed soundness correctly han-
dled by model designers, or do they release models violating such prop-
erties?

RQ2 Can S? effectively support designers in delivering models respecting
safeness, soundness and message-relaxed soundness properties?

RQ3 Is S3 perceived as usable and useful by its final users?

RQ4 Are S? performances suitable to make possible its adoption in prac-
tice?

3https://bitbucket.org/proslabteam/s3-validation/src/master/S3. jar

27

The following subsections describe the experiments we performed and the
conclusions we can derive, as well as possible threats to their validity.

5.1. FEwvaluation in the large

In this subsection we present the experiments we performed to provide an
answer to the research question RQ1. The objective is to have some evidence
that the checks we introduce with our approach are needed in practice.

Experiment Set-Up. In order to assess the real value brought by our veri-
fication framework we needed to identify a collection of BPMN collaboration
models independently defined and not under our control. This avoids that
the validation activity could be biased by the objectives of the experiment
itself.

To the best of our knowledge, there is no reference dataset of models that
is commonly used to validate approaches in the context of BPMN modelling
practices. This is, indeed, one of the major challenges nowadays in the BPM
community. We have hence identified for such a purpose the BPM Academic
Initiative repository (http://bpmai.org/, [33, 34])%.

This is a collection of models codified using various process modelling
languages. Focussing on BPMN, the raw dataset consists of 16032 mod-
els, but we restricted to the latest revision of each model having 100% of
connectedness®. A model without this level of connectedness includes dis-
connected fragments, which typically could mean that the model has not
been finalised, yet. Finally, we restricted our study to collaboration models,
for which the introduced properties definitions are meaningful, thus exclud-
ing from the dataset those process models that refer to a single organisation.
As a result the filtering activity gave us a set of 966 collaboration models,
887 of which can be dealt with by our syntax (i.e., more than 91% of the
available collaborations can be analysed by our approach). On this dataset,
we successively performed a preliminary transformation step from .json (the
repository format) to .bpmn (the format we manage) and then we ran S to
check safeness, soundness and message-relaxed soundness properties.

4The repository has been recently dismissed. We have used for our experiments a copy
of the whole dataset previously stored on one of our machines. The used models are
available in the “Collaboration Models” folder at:
https://bitbucket.org/proslabteam/s3-validation/src/master/

®Connectedness evaluates the size of the largest connected sub-graph against the size
of the overall model.

28

Class Mod. ‘ Safe Sound M.Rel. Sound ‘T.Mm T.Max T.Avg. Std.Dewv.

—9 276 |271 (98,19%) 31 (11,23%) 68 (24,64%) | 0,025 9,695 0,459 1,059
10-19 354 |344 (97,18%) 20 (5,65%) 50 (14,12%) | 0,028 4379,046 14,969 234,010

20-29 164 |137 (83,54%) 7 (4,27%) 9 (5,49%) 0,110 35628,678 272,262 2845491
30-39 67 | 61 (91,04%) 4 (5,97%) 11 (16,42%) | 0,224 24682,741 515,556 3066,881
40+ 26 | 24 (92,31%) 0 (0%) 0 (0%) 0,498 20673,422 1910,221 4986,349

Table 1: Fraction of Models Satisfying the Considered Properties, and Verification Time
in Milliseconds

Experiment Results. Table 1 reports the results of our validation on the
models from the BPM Academic Initiative repository. In particular, we clus-
ter the models according to the number of BPMN elements they contain.
In the left part of the table we report the number and percentage of models
in each class satisfying the properties we are interested in. Concerning safe-
ness, it results that most of the models are safe (on the total around 94%),
independently from their size. We can conclude that modelling safe models
is a quite common practice, or in any case it is not difficult to respect the
property. In relation to soundness, and message-relaxed soundness proper-
ties, the situation is rather different. Not surprisingly we notice that the
percentage of correct models decreases as the model size increases. On the
total only 7% of the models resulted to be sound, while 15% are message-
relaxed sound. Therefore, the relaxed form of soundness distinguishes a
relevant number of models, the percentage (more than 8%, corresponding
to 76 models) seems to justify its relevance in practical contexts. At the
same time, it is evident that soundness is not a property easy to satisfy, in
particular when collaborations reach a certain dimension. The availability
of tools for the automatic verification can be considered an added value for
the community, and their usage should be fostered.

The right part of Table 1 provides instead some insights on the complex-
ity of the considered models in relation to the time necessary to verify the
mentioned properties®. As it can be observed, the average in verification
time slightly increases with the dimension of the model. We report only one
value, since the three properties are verified in a single visit of the resulting
LTS model. A rather high variability with respect to the average time can
be observed in relation to the various classes. High values for the standard
deviation are indeed not surprising. The time needed for the verification is
somehow directly related to the behavioural complexity of a model, that is

SExperiments have been carried out on a machine equipped with a i5-6300U CPU @
2.40GHz and 16 Gb of RAM.

29

not strictly correlated to the number of elements in a model. In particular,
verification activities are particularly affected by the presence of notation
elements leading to interleaved execution, such as parallel or pool elements,
that are not always included in models. For example in the class “20-29”
there are some models that require an analysis time higher than that of any
model in the class “30-39”. Nonetheless, it is important to note that in
any case the tool was able to provide an answer in reasonable time, also for
the most complex models in the dataset. More details on the performance
evaluation of the 83 tool will be discussed later in Sec. 5.3.

Summing up, answering to the research question RQ1, we can say that
the usage of an open and widely used repository confirmed that it is not
seldom to find models that violate relevant behavioural properties, also after
their release.

5.2. Involvement of Practitioners

In this subsection we report the results we get from those experiments
that intended to provide possible indications in relation to the research ques-
tions RQ2 and RQ3. Hence, the objectives of the experiments are to estab-
lish if the proposed approach can actually help designers in getting better
models, and if the usage of the supporting tool S? is perceived as useful in
relation to the modelling of BPMN collaborations.

Experiment Set-Up. In setting up the experiment we involved 26 students
enrolled at University of Camerino at the 2nd year of the MSc in Computer
Science (Enterprise Software Systems curriculum). MSc students cannot be
certainly considered experts in process modelling; however, they cannot be
neither considered novice in the discipline: all of them have got a BSc degree
in Computer Science and have taken two semestral courses at master level
about business process modelling. Thus, the students selected for the ex-
periments can be considered knowledgeable with process modelling practices
and quality aspects for BPMN models, even though not really experts. In
addition, as suggested by other studies [21, 40], the involvement of students
for the kind of experiments we needed to run is considered rather effective,
as students are not biased by prior practical knowledge and experience, that
could influence the final results.

To run the modelling experiment, we split the students into two groups
of equal cardinality. The modelling activity asked to solve two different ex-
ercises, which were conceived to show an increasing level of complexity in
BPMN collaboration modelling (see Appendix B for the text of the exer-
cises). The activity had to be finished in two hours, at most. Each member

30

of the first group (referred here as Group A) was asked to solve the modelling
exercise only using the bpmn.io modelling environment, with no automatic
support for quality checking. The members of the second group (referred
here as Group B), instead, performed the same activity having the possi-
bility to activate the S® functionality, which are integrated in bpmn.io, in
order to check the possible successive versions of their models.

At the end of the two hours we asked to the students belonging to Group
B to fill the questionnaire reported in Appendix C, in order to judge the S3
tool in relation to its usability and perceived usefulness. The questionnaire
has been conceived according to the guidelines provided in [9]. For each of
the considered questions, the student could mark just one box, that would
best describe his/her experience with the usage of the S3. To evaluate
the results we got, we successively used the System Usability Scale (SUS),
that as for its description “provides a quick and dirty reliable approach for
measuring usability” [7].

Experiment Results. After the students ended the modelling activity we
checked all the delivered models using S*. Given that two students (one in
Group A and one in Group B) did not complete the second exercise we got
26 models for the first exercise, and 24 for the second one. In Table 2 we
report the results of running S on all the models delivered by the students.”

The data seems to clearly suggest that a modelling activity supported
by 82 can provide better results, in particular in reference to sound related
characterisations. Indeed it is quite evident that students in Group A hardly
got sound models, while this is not the case for students in Group B that
always got models at least message-relaxed sound. Assuming that there was
no relevant differences in the distribution of modelling skills within the two
groups, we can argue that the students in Group B could apply an iterative
process so to revise their models on the base of the verification results and
counterexamples reported by S3. On the other hand, the data tells us that
students do not have much difficulties in deriving safe models, independently
from the usage of a supporting tool.

Summing up, we can conclude that, regardless from the scenario to
model, the students in Group B outperformed the ones in Group A, in
particular in relation to the capability to produce models respecting sound-
ness related properties. This seems to suggest that we can positively answer

"The models developed by the students are available at the following link https://
bitbucket.org/proslabteam/s3-validation/src/master/ in the “Validation with Stu-
dents” folder, where we have also included an Excel file summarising the results we got.

31

to the research question RQ2, because designers without a proper support
do not easily deliver models respecting relevant properties.

‘ Group A ‘ Group B
Scenario # Mod. Safe Sound MR Sound # Mod. Safe Sound MR Sound
Scenario 1 13 11 (85%) 2 (15%) 1 (8%) 13 11 (85%) 8 (62%) 5 (38%)
Scenario 2 12 12 (100%) 0 (0%) 0 (0%) 12 12 (100%) 3 (25%) 9 (75%)

Table 2: Results from the validation

To answer to the research question RQ3, we considered the results of
the questionnaire filled by the students in Group B. Table 3 reports the
answers provided by the students. The strategy used in the questionnaire
alternates questions for which the “positive” answer is somehow inverted. In
particular, for questions 1, 3, 5, 7 and 9 the greater the number the better,
while for questions 2, 4, 6, 8 and 10 the smaller the number the better. This
technique somehow tries to avoid answers provided in a superficial way.
Once all administered questionnaires have been filled, the following formula
has been computed:

M=

(

(5 — 7“681‘72]‘) + Z (7’68,‘72j+1 - 1))
=17 j

1 7=0
N

5 4

S = x 2.5

It provides a way to get an overall score (S) that can be used to globally
assess the experiment results. In the formula, N represents the number of
returned questionnaires, while res; ; is the response provided to the ques-
tionnaire by each participant (i) to each single question (j). The formula
at first reconducts all the answers to the scale 0 — 4, where positive answers
now always correspond to higher values. Then, for each questionnaire the
total sum is computed, getting a number between 0 and 40, and the average
over all the questionnaire is derived. Finally, the number is multiplied by
2.5 to get a final score § in the range 0 — 100. For the experiment we ran,
the calculation of the SUS score gives us the value 70.38. According to the
proponents of the SUS approach, this is somehow a good result. Indeed, in
their experience values for S greater then 68 relate to a perceived usability
somehow better with respect to other used software. Being the involved
users somehow experienced with modelling tools, this suggest that overall
they got a relatively positive experience in using S3.

Going more in detail, in Table 4 we report the distribution of the evalu-
ation over the range 0 — 4 for each question. We can observe that the best
evaluation was obtained by question 2 (“I found S® unnecessarily complex™)

32

that got an average score of 3.6, while the worst evaluation was reported by
question 5 (“I found that the various functions in S were well integrated”)
with an average score of 2. On the positive side, the tool seems easily un-
derstandable in its usage, on the negative side it seems required a better
integration of the tool with the chosen modelling environment (bpmn.io in
our case).

[Q1]Q2[Q3[Q4]Q5[Q6] Q7[Q8][Q9| Q10|

Student 1 2 2 4 2 3 1 4 2 5 3
Student 2 3 1 4 1 2 2 4 2 5 2
Student 3 3 1 5 2 4 3 4 1 5 3
Student 4 3 1 5 2 3 2 5 1 4 3
Student 5 3 1 5 2 3 2 4 3 4 3
Student 6 3 1 4 2 3 2 4 3 4 3
Student 7 3 2 4 3 3 2 3 3 5 4
Student 8 4 2 4 3 3 3 4 3 4 2
Student 9 4 1 3 1 2 3 4 2 4 2
Student 10 4 1 4 1 4 2 4 2 3 2
Student 11 3 1 4 1 3 2 3 3 3 3
Student 12 3 3 4 2 3 4 5 2 4 1
Student 13 2 1 4 2 3 3 5 2 5 2

Table 3: Results from the questionnaires on usability

QI Q2 Q3] Q4 Q5] Q6] Q7] Q8] Q9 [Q1o

= w N = O
S W N o
O W= oo
w O = oo
=N OO
oON O N O
= s = O
w oo N OO
N O OO O
N OO
= ot o = O

Avg || 2.08 | 3.62 | 3.15 | 3.15 2 | 262 | 3.08 | 277 | 3.23 | 246

Table 4: Distribution of scores for each question (over the range 0 — 4)

5.8. Performance validation

In this subsection we present the experiments we performed to provide
an answer to the research question RQ4. To assess the suitability of S3 in
practice, we compare its performances with respect to the performances re-
ported by a tool commonly used with a similar aim, that is the well-known
LoLA® model checker. The experiment has been inspired by the work re-

8http:/ /service-technology.org/lola/

33

ported in [19]. Among the verification tools considered in that work, we have
selected the LoLA model checker, since it is largely used by practitioners and
does not exploit GUI or hosting environments that can make hard the re-
trieval of performance related measures. Anyway, limiting the comparison
to LoLa is not an issue for our validation, since our intention here is not to
have a complete comparison with different tools, but to get indications on
the performance of S? with respect to a widely used verification tool. This
would possibly permit to conclude that performances related aspects should
not be a relevant hurdle for the adoption of 3 by practitioners.

Experiment Set-Up. For this experiment we restricted the comparison
to processes (i.e., single pool models), since the other tool does not consider
the verification of correctness properties at collaboration level. Moreover,
in setting up the experiment with LoLA we could not run the tool as a
batch process, so to feed it with all the BPMN process models included in
the BPMN Academic Initiative repository, checking them in just one run.
Instead we needed to perform some preprocessing on the .bpmn models,
including some manual activities (see below). For this reason, we have re-
stricted the experiment to just 20 process models. The selection of these
models followed this approach: (i) we performed a massive run of 8% on
the BPMN process models of the BPMN Academic Initiative dataset, in
order to identify those models for which S® would have reported the worst
performance values; (ii) from the ordered list we removed those models that
could not be handled by LoLA; (iii) we formed then a first group with 10
models; (iv) the second group, again with 10 models, was instead formed by
including those with the greatest number of elements.

The processes were downloaded from BPMN Academic Initiative, and
then checked in 8% using the Java stand-alone version. To perform the
verification of the same models in LoL A we had to translate at first the .bpmn
file of each model into the .pnml format, using the export functionalities of
the Apromore? platform, successively the .pnml file has been translated into
the .lola format using the PN_SUITE!?. Moreover, before running LoLA, we
had to manually annotate the initial marking of each .lola file, and to add
an edge between the sink place and the source place. Then, the LoLA
model checker was launched using a bash-script measuring the execution
time needed for the verification. The experiments have been executed, like
those illustrated in Sec. 5.1, on a i5-6300U CPU @ 2.40GHz machine with

“https:/ /apromore.org/
https://github.com/tamarit /pn_suite

34

Models LoLA S3

[Avg. St.Dev. Avg. St.Dev.
1390927551 _revl 25,81 4,40 48850,09 1096,39
899487223 _rev3 28,07 24,32 19302,97 722,96

361022685_revl Overflow Overflow | 10850,53 795,54
1792465064 rev20 | Overflow Overflow | 10211,60 413,54

1962116660_rev?2 37,99 9,03 9555,20 555,20
79161580 _rev12 23,41 4,98 6722,67 214,53
194092341 _rev7 43,96 18,04 5224,30 203,75
1291738678 _rev 25,81 4,40 3765,05 225,93
1269449021 _rev7 39,33 45,56 2086,90 241,10
1576721033 _rev9 20,78 8,53 1309,45 128,79

Table 5: Results from the performance validation in ms (models selected on the basis of
the worst performances in S*)

Models Number of LoLA S3

[Elements Awvg. St.Dev Avg. St.Dev.
2025710215 rev4 86 67,40 6,23 11,66 4,94
536365423 rev1l 85 Overflow Overflow 7,84 1,08
1792465064 _rev20 74 Overflow Overflow | 9710,70 396,24
1396260552 _rev10 67 Overflow Overflow 1,61 1,30
1020811925 _revs 64 68,75 77,16 13,38 10,90
94543997 _revl 64 47,49 10,06 3,68 1,41
652975530 _rev17 62 Overflow Overflow 4,75 2,33
1869279615 _rev19 59 55,87 8,66 0,96 0,53
412368141 _rev2 57 44,42 20,33 4,41 1,82
1508335739 _revl 52 37,92 6,22 2,87 1,37

Table 6: Results from the performance validation in ms (models selected on the basis of
their size)

16 Gb of RAM; the source files to possibly replicate the experiments are
available on GitHub.!'! Each model has been verified 10 times, with each
tool, and the average time has been used and reported for the comparison.

Experiment Results.

Table 5 reports the results of our experiments in relation to the worst
performance for S, while Table 6 shows the results of the experiments for
the models with the greatest number of elements.

The models in Table 5 that are somehow difficult to verify for S? ap-
peared to be much simpler to handle by LoLa. We observe that S® suffers
when many activities are executed in parallel, and indeed all models in the
list include parallel behaviours. However, it is also worth mentioning that

1 The models used in this experimentation are available in the “LoLa Comparison Mod-
els” folder at https://bitbucket.org/proslabteam/s3-validation/src/master/.

35

for two of the considered models LoLA, differently from S3, was not able to
conclude the verification due to memory overflow.

From the results reported in Table 6, instead, we can observe that S3
seems to perform faster than LoLA, which in 4 cases was even not able to
complete the analysis. Taking a look to these models in more detail, the
impression is that LoLA could suffer more than S from the presence of
loops.

From the data we got so far, it seems that verification strategies for the
two tools are rather different, and there is not an evident correlation in ob-
served performances. A final information worthy to be reported concerns the
fact that the highest verification time reported by S? on the BPM Academic
Initiative dataset is about 48 seconds. In summary, even if technical hurdles
made difficult to provide a clear definite answer to the research question
RQ4, the performance results seem to suggest that S is able to complete
the verification in reasonable amount of time with respect to LoLA.

5.4. Threats to validity

The evidences we got from the experiments we ran have to be consid-
ered also in light of some threats that could possibly affect the reported
results. We include here a set of factors that could have impacted our ex-
periments. The discussion follows the list of research questions introduced
at the beginning of this section.

RQ1. The percentages reported in Table 1 clearly show that designers have
often released on the BPMN Academic Initiative repository models that
do not satisfy relevant behavioural properties. Nevertheless, the dataset
does not provide much information on the models source and the objectives
of designers. In particular, given a model, it is not possible to know the
experience of its designer, and if the model was developed to represent a
real process (e.g., to possibly intervene on it or to implement a supporting
software) or if, instead, it has been developed in an educational context to
show typical modelling issues. Given the reported low percentages, we could
suppose that some of the models have been developed outside of practical
application context. Clearly, this could have affected the results, and then
our conclusions. However, the really low percentages reported let us think
that in any case there is a fraction of models released by professionals that
do not satisfy important behavioural properties. As already mentioned in
Sec. 5.1, the need of datasets on which to experiment new proposals is one
of the main issues that the BPM community is currently trying to face.

RQ2. The experiments we carried out with “junior” practitioners made
possible to conclude that S? effectively supports designers in getting higher

36

quality models. Also in this case the percentages are quite clear. However,
the two groups were quite small and, even though the students formally are
taking the same curriculum in relation to the business process modelling
related experiences, it could be possible that the group B included the best
students. In such a case, the result would not be directly related to the tool,
but on the abilities of the students. At the same time, the lack of an ample
experience in real modelling contexts could lead to results that are not repre-
sentative of real modelling contexts. Indeed, experienced practitioners could
compensate the lack of a supporting verification tool with their capability
of producing high quality models. To avoid these effects, the experiment
would have involved more experienced practitioners. Nonetheless, it is well
known that this comes with many other problems, not last the need of a
possibly relevant budget.

RQ3. In this case the results are not clearly definitive, since we got a value
slightly greater than 68, that is considered the threshold over which the
feedback can be considered positive. On the one hand, this could be justified
by the fact that S is still a prototype. Even though no bug emerged during
the experiment, the perception of a software still under development could
give an unsatisfactory feeling to the user. On the other hand, it is possible
that the students, even though the questionnaires were anonymous and that
they were explicitly asked to provide reliable answers, avoided to provide
harsh comments, perhaps thinking that we could retrieve their identity, or
for a form of kindness towards their teachers. Anyway, we intend to carry
out further validations with successive versions of the tool.

RQ4. Considerations similar to those made for RQ1 can be applied to
this case. The BPMN Academic Initiative repository has been chosen as
it includes many models (thousands), and it permits to use models defined
by others. However, it is difficult to select subsets of models according
to specific quality dimensions, or defined in relation to concrete working
contexts. Selected models could be not really relevant, and the results for
the checked properties could not be fully representative of the all possible
properties that a designer could be interested in checking. In addition, to
derive the .lola format we had to use two tools in sequence (Apromore and
PN_TOOLS), and it is possible that the implemented translations could have
an impact on the LoLA verification activities. It is worth mentioning that
S3 is still a prototype, which can be subject to many optimisations, while
LoLA is a mature product used since many years by a large community.

In summary, the experiments we have performed gave us useful indica-
tions with respect to the selected research questions. However, further con-

37

firmations will be searched extending the validation experience. In particu-
lar, experiments using models coming from real and heterogeneous contexts,
and feedbacks by senior practitioners could reinforce the initial indications
we got.

6. Related Works

Much effort has been devoted to the formalisation and verification of
business processes [41, 22, 20], but to the best of our knowledge there is
not a research work satisfying all the following requirements: (i) providing a
direct formalisation taking into account message exchange and sub-process
behaviour, as well their impact on collaborations; (ii) providing a relaxed
variant of soundness to distinguish issues related to the process internal
behaviour from those related to message exchange; (iii) providing a user-
friendly tool integrating modelling activity with the verification of safeness
and soundness properties.

BPMN Formalisation. Different semantics have been proposed in the
literature and according to their definitions we can distinguish formalisations
given directly on the BPMN syntax and the others that rely on mappings
into other languages.

Among the direct formalisations, in [56] the authors propose a formalisa-
tion of the BPMN 2.0 execution semantics in terms of graph transformation
rules. The formalisation is documented using visual rules that update a
BPMN model in-place. With respect to our work, the used formalisation
techniques are different, since we provide an operational semantics in terms
of LTS, which allows us to apply verification techniques well-established for
this underlying model, such as model checking. The definition of an opera-
tional semantics gives us the possibility to be tool independent rather than
be constrained to tools specific for graph transformation rules. This is con-
firmed by the same authors that for using their BPMN formalization in the
compliance verification between global and local process models need a fur-
ther transformation [35]. Another direct semantics was defined in [18], where
the authors propose a formal specification of well-formed BPMN processes
in rewriting logic using Maude, with a focus on data-based decision gateways
and data objects semantics. In [8] the authors present a formal framework
relying on rule-based meta language and its application to generic control
structures of business processes. In [32] the authors in order to rigorously
specify the semantics of BPMN, propose a direct formalisation in abstract
state machines. Finally, in [10] the authors gives the semantics reducing

38

the syntax to a subset of BPMN 2.0 elements containing just the inclusive
and exclusive gateways, and the start and stop events. Summing up, all the
cited papers focus on a direct semantics, as well as our approach; however,
none of them is able to reason on collaboration including at the same time
sub-processes, messages and their interplay.

Considering the formalisation given via translations, we can find in the
literature different target languages, such as Petri Nets [15, 31, 52, 5, 6], pro-
cess calculi [58, 59, 4, 48, 51, 49, 50|, EPC [39], ECATNets [26], and YAWL
[60, 12]. All these approaches suffer from issues related to encodings. In
fact, the semantics given by translation is based on the low-level details of
the encoding without consider the actual features and constructs of BPMN.
This may make the verification results inaccurate, since translations usually
rely on assumptions and language abstractions. More in details, considering
the mapping from BPMN to Petri Nets, the one proposed by Dijkman et
al. in [15] is probably the most relevant contribution. It enables the use of
standard tools for process analysis, in order to check absence of deadlock
and proper completion of BPMN models. However, the approach proposed
by Dijkman et al. is based on the version 1.1 of BPMN and, as the authors
stated, it suffers from deficiencies that impact on the proposed formalisa-
tion. Moreover, even if the mapping deals with messages, differently from
our approach it does not properly consider multiple organisation scenarios
making clear who are the participants involved in the exchange of messages,
and it works only under the assumption that sub-processes are safe. In
addition, the notion of safeness differs when it is given directly on BPMN
collaborations, with respect to the notion of safeness for Petri Nets applied
as it is to translations of BPMN collaborations according to the mapping in
[15]. In fact, safeness of a BPMN collaboration only refers to the tokens on
the sequence edges of the involved processes, while in its Petri Nets trans-
lation refers to both message and sequence edges. Indeed, such distinction
is not considered in the translations, because a message is rendered as a
(standard) token in a place. Hence, a safe BPMN collaboration may be
considered unsafe by relying on the Petri Nets notion. Summing up, such
approaches do not deal with all the BPMN specification and its peculiarities.
In principle, we do not envisage major hurdles in extending the translations
from BPMN to Petri Nets available in the literature in order to achieve
results similar to ours. However, we have preferred to develop a direct se-
mantics because extending available translations may result in generation
of convoluted and large Petri Nets, thus undermining the understanding of
the formal meaning of the BPMN execution semantics, and the verification
of BPMN collaborations.

39

Also process calculi have been considered as formalisation languages for
BPMN, typically enabling verification by means of model checkers. In partic-
ular, in [58] a translation into a CSP-like language for a subset of well-formed
BPMN process diagrams including sub-processes and messages is proposed.
However, differently from this paper, the verification they propose is the
consistency checking, performed by using the FDR tool. In [50] the authors
introduce a collection of workflow patterns formalisations based on the 7-
calculus. The formalisations can be used as a foundation for pattern-based
workflow execution, reasoning, and simulation. The common approaches for
the automatic verification of these formalisations are based on model check-
ing [30, 29] with the limitation of checking, differently from our approach,
only reachability properties. Summing up, all the verifications performed
by means of these approaches suffer from expressivity, usability and perfor-
mance issues related to the used logics and model checkers. We overcome
such issues as our verification is ad-hoc, rather than a general purpose veri-
fication framework. This is particular useful on complex properties such as
soundness.

BPMN Correctness Properties. Concerning verification, different prop-
erties have been defined in the context of Petri Nets. The most known one
is the the structural soundness, defined in [57, 55], that guarantees the ab-
sence of deadlock and livelock. Other relaxed notions of soundness is defined
allowing the occurrence of deadlocks and livelocks. The relaxed sound was
proposed in [13], admitting at least one proper execution so considering
deadlocks and livelocks as non-invalidating behaviours. Weak soundness in
[38] disallows deadlocks, but it allows certain parts of the process not to
participate in any process instance (i.e., it admits dead activities). For criti-
cal control flow patterns, where the process model can be neither sound nor
weak sound, lazy soundness has been proposed as a new soundness criterion
by the authors in [51].

The works mentioned above focus mainly on the verification of correct-
ness properties related to the control flow of the business process, with-
out considering communication aspects. None of the available encodings of
BPMN in Petri Nets, or similar formalisms, permit to distinguish sequence
and message edges (as discussed above). Correspondingly analysis activities
based on such encodings are not able to differentiate issues concerning the
control flow from those concerning the message flow.

To clarify this point, we resort to an example. Let us consider the
collaboration model in Fig. 11, which is safe and message-relaxed sound with
respect to our notions of the properties. Using the mapping from BPMN to

40

p7

Figure 12: Petri Net derived from the model in Fig. 11

Petri Nets proposed by Dijkman et al. [15], the resulting Petri Net is the
one shown in Fig. 12. Checking the safeness and soundness properties of
this Petri Net (using, e.g., the well-known tool WoPeD12), it instead results
to be unsafe and unsound. In fact, it is unsafe because more than one token
can mark the place p12, produced by the translation of the message edge,
and it is unsound because when the collaboration completes (places p6 and
pll are marked) another token is still around in the net.

In our case the definition of a direct formalisation for the BPMN notation
permits to provide definitions for relevant properties, such as soundness and
safeness relying on the relevant characteristics of BPMN models. In par-
ticular, according to our view the presence of multiple enqueued messages
should not be considered a sufficient reason for considering the model com-
pletely unsound. The verification of message-relaxed soundness permits to
distinguish such situations.

BPMN Verification Tools. Let us consider the literature about the pro-
posed tools to support the verification of BPMN models. GrGen.NET [24]

2https://woped.dhbw-karlsruhe.de/

41

is a graph rewrite tool enabling the development of a BPMN models. The
authors provide two formalisations, one in YAWL for the execution and one
in Petri Nets, which allow BPMN models to be formally analysed. The au-
thors in [27] propose a verification approach for BPMN models based mainly
on meta-modeling and model transformations. The RECATNets formalism
is used as intermediate language for having a rewriting logic description, to-
gether with LTL formulas, as input for the Maude model checker. BPA tool
[17] is a framework used for structuring and managing process collections.
The authors were able to model and analyse the correctness of a business
process, by transforming it into open nets, translate the correctness criteria
into CTL formulae, and model check those formulae using LoLA. In [23] the
authors propose an approach that takes in input a BPMN file and apply a
transformation in Petri Net modules. The properties verification proposed
(dead tasks, deadlocks and loops) were checked on the generated reachabil-
ity graph. The BPMN2YAWL tool described in [12] takes a BPMN diagram
as input and produces two files: the XMI representation of the model and
the layout information. The XMI file can be successively transformed into
an input file for YAWL that allows to execute workflow systems.

Summing up, the majority of the tools propose BPMN translations and
verification of standard properties, like deadlock and livelock, via model
checking. Instead, S? supports soundness checking natively. In addition,
from the usability perspective, our implementation allows the designer to
model and simultaneously check soundness and safeness properties with the
same tool during the design phase, getting feedbacks in case of errors. Fi-
nally, from the validation point of view, the mentioned tools present simple
examples as proof of concept, without test them in an extensive manner.
S3 instead was extensively validated on models coming from the BPM Aca-
demic Initiative repository.

7. Concluding Remarks and Future Work

In this paper we propose a theory, and a related supporting tool, for
checking safeness and soundness of BPMN collaboration models. We started
defining the formal semantics for a subset of BPMN collaboration elements,
including in particular sub-processes and the elements enabling exchange of
messages.

Our direct semantics, instead, aims at formalising BPMN features as
close as possible to their definition in the standard specification, without
any bias from the use of another formalism. A faithful semantics, of course,

42

ensures a more effective verification of model properties. On top of the de-
fined semantics we formally characterised the notions of safeness and sound-
ness for BPMN models, also including the possibility of considering or not
the impact of pending messages on soundness. This has a practical rele-
vance, as our validation as shown that around 15% of the analysed models
are unsound but message-relaxed sound. The semantics and the property
verification have been implemented in the S tool available as an on-line
service. This has been integrated with the Camunda modeller, thus provid-
ing a fully-integrated modelling and verification environment. The usage of
the tool and its real effectiveness have been checked by means of an open
repository, that permitted to run a validation using 887 models.

In the future, we plan to extend our framework to overcome some current
limitations of the proposed approach. The verification framework abstracts
from data values. This is motivated by the fact that our verification aims at
exhaustively analysing all possible executions of a given model. Anyway, an
extension of our framework including the data perspective would allow to
deal with fine-grained data-aware specifications, in order to identify those
specific issues related to data, as e.g. dead activities, malformed messages,
wrongly delivered messages, etc. We also aim at extending our approach
to a wider set of BPMN elements, such as exceptions, multi-instance tasks
and pools and timed events. This will allow us to have a wider coverage of
the BPMN standard, and will impact both our formal treatment and the
S3 tool. We intend to extend our validation activity, as already discussed
at the end of Sec. 5.4, in order to limit the discussed threats to validity.
Finally, concerning verification, we plan to enable the checking of a wider
set of correctness properties.

43

Appendix A - Proof

We report here the proofs of results in Sec. 4.

THEOREM 1 (SAFENESS CORRESPONDENCE) Let C' be a collaboration
and (C, L, —) its LTS, then C is safe if and only if (C, L, —) is safe.
Proof. We prove below the if and the only if parts of the theorem.

e (if part) In this case we have to show that if (C, £, —) is safe then C'is
safe. The proof proceeds by contradiction. Suppose that C' is unsafe.
By Def. 2, given ¢ and § such that isInit((C, o,d)), there exist o’ and
¢’ such that (C,o,0d) < (¢,6') and Je € E . o'(e) > 1. Hence, by

Def. 5, (C, L, —) is unsafe, which is a contradiction.

e (only if part) In this case we have to show that if C' is safe then
(C, L,—) is safe. The proof proceeds by contradiction. Suppose that
(C, L,—) is unsafe. This means, by Def. 5, that there exists (C, o,) €
C such that 3e € E.o(e) > 1. Hence, by Def. 2, C is unsafe, which
is a contradiction. O

THEOREM 2 (SOUNDNESS CORRESPONDENCE) Let C be a collaboration
and (C, L, —) its LTS, then C is sound if and only if (C,L,—) is sound.
Proof. We prove below the if and the only if parts of the theorem.

e (if part) In this case we have to show that if (C, £, —) is sound then
C' is sound.
By definition, (C, L, —) is sound iff 3{C,c”,§") € C such that: (i)
(C, 0", 8" 7l‘> and (ii) isNot Duplicated((C, L, —), incoming(C, ", §"))
and (iii) incoming(C,d”, ") = endIn(C) and (iv) Ve € E\end(C) . o"(e) =
Oand (v) VmeM. ¢ (m)=0

By contradiction:

— Let suppose that A(C, ¢”, ") in which i, i, #4i, iv, v holds together.
This means that at least one of those conditions is violated. Con-
sequently, we have to consider the following cases.

« =((C,0",8"))
This implies that (C, 0”,5”>L><0’”,6’”> hence either | = e
then ¢”(e) > 0,1 = E then Ve € E . ¢”"(e) > 0, or | =Im
or | =?m then ¢”(m) > 0. In each case, the collaboration is
unsound, which is a contradiction.

44

« —(isNotDuplicated((C, L, —), endIn(C)))
This implies that 3 I € endIn(C),(C,0,d),(C,0’,d") such
that (C, 0, 9) N (C,o',d") L (C,0",6"). Thus, there exist
an end event with [as incoming label that has been reached
more than once. Consequently, Jecp,, € marked(c”,end(C)) . 0" (ecmp) >
1, the collaboration is unsound which is a contradiction.

* —(incoming(C,c”,8") = endIn(C))
This implies that incoming(C,c”,d") # endIn(C). In the
case that 3 I € incoming(C,d”,0"), with | € endIn(C), we
have that the state (¢”,0”) can be reached by consuming
the label [that is not an incoming label of an end event.
Consequently, the state (o”,d”) is either a state of deadlock
or a non-final state, thus the collaboration is unsound, which
is a contradiction. The case that 3 1 € endIn(C), with | ¢
incoming(C,c",§"), is similar.

x =(VeeE\end(C) . o"(e) =0)
This implies that there exists an edge e € E\end(C) . " (e) >
0. Consequently, the collaboration is unsound which is a
contradiction. .

* 2(VmeM.§(m)=0)
This implies that there exists a message m € M . 6”(m) >
0. Consequently, the collaboration is unsound which is a
contradiction.

— Let suppose that there exist (C,¢”,§"”) and (C,¢"” ") in which
i,1i, 14,70, v hold together, with 3(C,a"”,d8") # (C,c",§"). This
means that either o’ # ¢ or §” # §". This contradicts (iv) and
(v), thus the collaboration is unsound which is a contradiction.

o (only if part) In this case we have to show that if C' is sound then
(C,L,—) is sound.

By definition, let (C, o, d) be the collaboration configuration such that
isInit((C, o, 0)) then VYo' and §’ such that (C,o,0) —* (¢’,¢'), I 0" and

8" such that (C, o', 0") =*(c”,0"), (i) V ecmp € marked(c”,end(C)) . 0" (ecmp) =
1, (ii) Ve € E\end(C) . 0" (e) =0 and (i) Vm € M . §”’(m) = 0.
By contradiction:

Let suppose that #(C,o",8") in which i,44,iii hold together. This
means that V(C, 0", ¢") at least one of the following condition is vio-
lated:

45

— Jeemp € marked(o”,end(C)) . 0”(eemp) > 1. This means that
there exists end(l, ecmp) and (C,01,61), (C,02,02),(C,03,63) € C
such that (C, o1, 61) L (C,09,02) N (C,03,63). This violate
the isNotDuplicated((C, L, —), incoming(C,c”,§")) making the
LTS unsound, which is a contradiction.

— Je € E\end(C) . 0”(e) # 0. Hence, there exists an element of
the collaboration with a token in the incoming sequence flow, so

that Ve € E\end(C) . ¢”(e) = 0 is false. Consequently, the LTS
is unsound which is a contradiction.

—3dm € M . §’(m) # 0. Hence, there exists a message of the
collaboration pending, so that ¥V m € M . 6(m) = 0 is false.
Consequently, the LTS is unsound, which is a contradiction.

THEOREM 3 (MESSAGE-RELAXED SOUNDNESS CORRESPONDENCE) Let
C be a collaboration and (C, L,—) its LTS, then C is message-relaxed sound
if and only if (C,L,—) is message-relaxed sound.
Proof. We prove below the if and the only if parts of the theorem.

o (if part) In this case we have to show that if (C,L,—) is message-
relaxed sound then C' is message-relaxed sound.
By definition, (C, £, —) is message-relaxed sound iff V(C,c”,6") € C
such that: (i) (C,c”, ") 7li> and (ii) isNot Duplicated({C, L, —), incoming(C, ", §"))
and
(iii) sncoming(C,d”,0") = endIn(C) and (iv) Ve € E\end(C) . o’ (e) =
0.
By contradiction, let C' be message-relaxed unsound, this means 3(C, o”, §")
where one of the following condition is violated:

- =((C.0",8"))
This implies that (C, o”,é/’)L><o”’,5’/’) hence either | = e then
0"(e) > 0,1l = E then Ve € E . 0"(e) >0, or I =lm or [=?m
then 6”(m) > 0. In each case, the collaboration is message-relazed
unsound, which is a contradiction.

— =(isNotDuplicated((C, L, —), endIn(C)))
This implies that 3 I € endIn(C),(C,0,6),(C,0’,d") such that
(C,0,0) L (C,o',0") L (C,0",0"). Thus, there exists an end

46

event with [as incoming label that has been reached more than
once. Consequently, Jecp, € marked(c”,end(C)) . 0" (ecmp) > 1,
the collaboration is message-relazed unsound, which is a contra-
diction.

— =(incoming(C,o”,0") = endIn(C'))
This implies that incoming(C,c"”,6") # endIn(C). In the case
that 3 1 € incoming(C,d"”,8"), with | & endIn(C'), we have that
the state (¢”,8”) can be reached by consuming the label [that is
not an incoming label of an end event. Consequently, the state
(6”,6") is either a state of deadlock or a non-final state, thus the
collaboration is message-relared unsound which is a contradic-
tion. The case that 31 € endIn(C), with [& incoming(C,c"”, "),
is similar.

— =(VeeE\end(C) . c"(e) =0)
This implies that there exists an edge e € E\end(C) . o”(e) >
0. Consequently, the collaboration is message-relazed unsound
which is a contradiction. .

e (only if part) In this case we have to show that if C' is message-relaxed
sound then (C, £, —) is message-relaxed sound.

By definition, let (C, o, d) be the collaboration configuration such that
isInit({(C, o,0)) then Vo' and ¢ such that (C,o,d) —* (o/,d") there
must be ¢” and §” such that (C, o', ") =*(a”,d"),

(i) ¥ ecmp € marked(c”,end(C)) . 0" (eemp) = 1, (i4) Ve € E\end(C) . 0" (e)
0.

Let suppose that A(C,¢”,6”) in which ¢ and 4 hold together. This
means that V(C, 0", ¢") at least one of the following condition is vio-
lated:

— Jdegmp € marked(o”,end(C)) . 0”(eemp) > 1. This means that
there exists end(l, ecmp) and (C, o1,01), (C, 02,02),(C,03,d3) € C
such that (C, o1, 01) SN (C,09,02) N (C,03,03). This violate
the isNot Duplicated((C, L, —),incoming(C,c",§")) making the
LTS message-relaxed unsound, which is a contradiction.

— Je € E\end(C) . 0”(e) # 0. Hence, there exists an element of
the collaboration with a token in the incoming sequence flow, so
that Ve € E\end(C) . o’ (e) = 0 is false. Consequently, the LTS
is message-relaxed unsound, which is a contradiction.

47

Appendix B - Validation

We report here the exercises assigned to students. Results of the validation
are discussed in Sec. 5.2.

Scenario 1

A company produces and assemblies motorbike components for different
brands. Whenever the company receives an order from the customer, it
analyzes the request and activates the production process. Such a process is
composed of three parallel activities referring to the production of three main
components of the motorbike: the hydraulic system, the electrical circuit,
and the engine. As soon as any of these components is produced, it is
immediately assembled with the rest of the bike. Notice for security reason
only one type of component can be assembled at the same time. When
the assembly is fully completed, the bike is ready for the quality check.
The quality check is performed by an autonomous participant acting as an
external third party. The quality check procedure consists in performing a
quality test and in the preparation of the resulting report. The report is
sent to the company that verifies the result. Then, the company notifies
the order completion to the customer and delivers to him the bike. Before
receiving the bike, the customer can possibly receive and check the order
completion notification.

Scenario 2

Considering the company of the previous scenario, the production is di-
vided into two departments that are geographically located in two different
sheds, one for the assembling and one for the packaging. The two produc-
tion departments do not communicate with each other but interact with
the Quality Office. The Quality Office is devoted to check the quality of
the assembled and packaged products. The collaboration starts with the
Assembly and the Packaging departments that perform their processes in-
dependently. The Assembly department initiates its process by collecting all
the items required for the product, and then moves to the assembly activi-
ties. This phase consists in the assembly of mechanical and electrical items.
The mechanical items are mandatory, while the electrical ones are optional.
Then a serial number is assigned to the component and it is registered in
the IT system. Finally, the product is sent to the Quality Office for check-
ing conformance with the standards. Parallelly, the Packaging department
process starts. The assembled products are covered using one among three
different materials: paper, cardboard or plastic. Completed the packaging, a
label is applied on each pack. Then the packs pass under an X-Ray scanner,

48

that can reveal potential damages. In case of damages the product is sent
to the Quality Office for further inspections, then the process completes.
The Quality Office process starts with the login in the IT system. Then
the Quality Office waits for receiving a support request coming from either
the Assembly department or the Packaging department. Once a request is
received, the Quality Office starts to write the evaluation report and it will
update the product state in the IT system. As last activity, the quality
office will send it back the report to the corresponding department.

49

Appendix C - Questionnaire
We report here the System Usability Scale questionnaire administered to
students. The results of the validation are discussed in Sec. 5.2.
Question 1 - I think that I would like to use S® frequently.
Strongly Strongly

disagree agree
L1 [2[3[4] 5 |

Question 2 - I found S? unnecessarily complex.

Strongly Strongly
disagree agree
Lt [2[3]4] 5 |

Question 3 - I thought S? was easy to use.
g y

Strongly Strongly
disagree agree
L1 [2[3[4] 5 |

Question 4 - I think that I would need assistance to be able to use S3.

Strongly Strongly
disagree agree
L1 [2[3[4] 5 |

Question 5 - I found the various functions in S? were well integrated.

Strongly Strongly
disagree agree

50

Question 6 - I thought there was too much inconsistency in S2.

Strongly Strongly
disagree agree
L1 [2[3[4] 5 |

Question 7 - I would imagine that most people would learn to use S® very
quickly.

Strongly Strongly
disagree agree
1 [2]3]4] 5

Question 8 - I found S? very cumbersome/awkward to use.

Strongly Strongly
disagree agree
L1 [2]3]4] 5 |

Question 9 - I felt very confident using S3.

Strongly Strongly
disagree agree
L1 [2]3[4] 5 |

Question 10 - I needed to learn many things before I could get going with
S3.

Strongly Strongly
disagree agree
L1 [2]3[4] 5 |

o1

References

References

1]

2]

Van der Aalst, W., 1995. A class of petri net for modeling and analyzing
business processes. Computing Science Reports 95, 1-25.

van der Aalst, W., 2000a. Workflow verification: finding control-flow
errors using Petri-Net-Based Techniques, in: BPM. Springer. volume
1806 of LNCS, pp. 161-183.

van der Aalst, W., 2000b. Workflow Verification: Finding Control-Flow
Errors Using Petri-Net-Based Techniques, in: Business Process Man-
agement, Models, Techniques, and Empirical Studies. Springer. volume
1806 of LNCS, pp. 161-183. doi:10.1007/3-540-45594-9_11.

Arbab, F., Kokash, N., Meng, S., 2008. Towards Using Reo for Com-
pliance Aware Business Process Modeling, in: Leveraging Applications

of Formal Methods, Verification and Validation. Springer. number 17
in CCIS, pp. 108-123.

Awad, A., Decker, G., Lohmann, N., 2010. Diagnosing and Repairing
Data Anomalies in Process Models, in: Business Process Management
Workshops. Springer. volume 43 of LNBIP, pp. 5-16.

Awad, A., Decker, G., Weske, M., 2008. Efficient compliance checking
using bpmn-q and temporal logic, in: Business Process Management.
Springer. volume 5240 of LNCS, pp. 326-341.

Bangor, A., Kortum, P.T., Miller, J.T., 2008. An empirical evalua-
tion of the system usability scale. Intl. Journal of Human—Computer
Interaction 24, 574-594.

Borger, E., Thalheim, B., 2008. A method for verifiable and validat-
able business process modeling, in: Advances in Software Engineering.
Springer. volume 5316 of LNCS, pp. 59-115.

Brooke, J., et al., 1996. Sus-a quick and dirty usability scale. Usability
evaluation in industry 189, 4-7.

Christiansen, D.R., Carbone, M., Hildebrandt, T., 2011. Formal Se-
mantics and Implementation of BPMN 2.0 Inclusive Gateways, in: Web
Services and Formal Methods. Springer. volume 6551 of LNCS, pp. 146—
160.

52

[11]

[12]

Corradini, F., Ferrari, A., Fornari, F., Gnesi, S., Polini, A., Re, B.,
Spagnolo, G., 2018. A guidelines framework for understandable BPMN
models. Data Knowl. Eng. 113, 129-154.

Decker, G., Dijkman, R., Dumas, M., Garcia-Banuelos, L., 2008. Trans-
forming BPMN diagrams into YAWL nets, in: International Conference
on Business Process Management. Springer. volume 5240 of LNCS, pp.
386-389.

Dehnert, J., Rittgen, P., 2001. Relaxed soundness of business processes,
in: International Conference on Advanced Information Systems Engi-
neering. Springer. volume 2068 of LNCS, pp. 157-170.

Dehnert, J., Zimmermann, A.; 2005. On the suitability of correctness
criteria for business process models, in: BPM. Springer. volume 3649
of LNCS, pp. 386-391. URL: http://link.springer.com/chapter/
10.1007/11538394_28.

Dijkman, R.M., Dumas, M., Ouyang, C., 2008. Semantics and anal-
ysis of business process models in BPMN. Information and Software
Technology 50, 1281-1294.

Dumas, M., La Rosa, M., Mendling, J., Méaesalu, R., Reijers, H.A.,
Semenenko, N., 2012. Understanding business process models: the
costs and benefits of structuredness, in: Advanced Information Systems
Engineering. Springer. volume 7328 of LNCS, pp. 31-46. URL: http:
//1link.springer.com/chapter/10.1007/978-3-642-31095-9_3.

Eid-Sabbagh, R.H., Hewelt, M., Weske, M., 2013. A tool for business
process architecture analysis, in: International Conference on Service-
Oriented Computing. Springer. volume 8274 of LNCS, pp. 688-691.

El-Saber, N., Boronat, A., 2014. BPMN Formalization and Verification
Using Maude, in: Behaviour Modelling-Foundations and Applications,
ACM. pp. 1-12.

Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N.,
Volzer, H., Wolf, K., 2009. Instantaneous soundness checking of in-

dustrial business process models, in: BPM. Springer. volume 5701 of
LNCS, pp. 278-293.

Fellman, M., Zasada, A., 2016. State-of-the-Art of Business Process
Compliance Approaches: A Survey, in: International Workshop on

93

[21]

[22]

[23]

[29]

Enterprise Modeling and Information Systems Architectures, CEUR-
WS.org. pp. 60-63.

Gemino, A., Wand, Y., 2005. Complexity and clarity in conceptual
modeling: comparison of mandatory and optional properties. Data &
Knowledge Engineering 55, 301-326.

Groefsema, H., Bucur, D., 2013. A survey of formal business process
verification: From soundness to variability, in: Business Modeling and
Soft Design, pp. 198-203.

Huai, W., Liu, X., Sun, H., 2010. Towards trustworthy composite
service through business process model verification, in: Symposia and

Workshops on Ubiquitous, Autonomic and Trusted Computing, IEEE.
pp. 422-427.

Jakumeit, E., Buchwald, S., Kroll, M., 2010. Grgen. net. International
Journal on Software Tools for Technology Transfer 12, 263-271.

K., M., W., M., 2016. Behavioural Models - From Modelling Finite
Automata to Analysing Business Processes. Springer. doi:10.1007/
978-3-319-44960-9.

Kheldoun, A., Barkaoui, K., Ioualalen, M., 2015. Specification and
Verification of Complex Business Processes - A High-Level Petri Net-
Based Approach, in: BPM. Springer. volume 9253 of LNCS, pp. 55 —
71.

Kheldoun, A., Barkaoui, K., Ioualalen, M., 2017. Formal verification of
complex business processes based on high-level petri nets. Information
Sciences 385, 39-54.

Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J., 2013. On struc-
tured workflow modelling, in: Seminal Contributions to Information

Systems Engineering, 25 Years of CAiSE. Springer. volume 1789 of
LNCS, pp. 431-445.

Klai, K., Tata, S., Desel, J., 2009. Symbolic abstraction and deadlock-
freeness verification of inter-enterprise processes, in: International Con-

ference on Business Process Management. Springer. volume 5701 of
LNCS, pp. 294-309.

54

[30]

32]

[35]

Koehler, J., Tirenni, G., Kumaran, S., 2002. From business process
model to consistent implementation: A case for formal verification
methods, in: Enterprise Distributed Object Computing Conference,
IEEE. pp. 96-106.

Koniewski, R., Dzielinski, A., Amborski, K., 2006. Use of Petri Nets and
Business Processes Management Notation in Modelling and Simulation
of Multimodal Logistics Chains, in: European Conference on Modeling
and Simulation, pp. 28-31.

Kossak, F., Illibauer, C., Geist, V., Kubovy, J., Natschldger, C., Zieber-
mayr, T., Kopetzky, T., Freudenthaler, B., Schewe, K.D., 2014. A
Rigorous Semantics for BPMN 2.0 Process Diagrams. Springer Inter-
national Publishing. pp. 29-152.

Kunze, M., Berger, P., Weske, M., 2012. BPM Academic Initiative -
Fostering Empirical Research, in: BPM (Demo Track), pp. 1 — 5.

Kunze, M., Luebbe, A., Weidlich, M., Weske, M., 2011. Towards under-
standing process modeling the case of the BPM academic initiative, in:
Business Process Model and Notation. Springer. volume 95 of LNBIP,
pp. 44-58.

Kwantes, P.M., Van Gorp, P., Kleijn, J., Rensink, A., 2015. Towards
Compliance Verification Between Global and Local Process Models,
in: Graph Transformation. Springer. volume 9151, pp. 221-236. URL:
http://link.springer.com/10.1007/978-3-319-21145-9_14.

Laue, R., Mendling, J., 2008. The impact of structuredness on error
probability of process models, in: Information Systems and e-Business
Technologies. Springer. volume 5 of LNBIP, pp. 585-590.

Lohmann, N., Verbeek, E., Dijkman, R.M., 2009. Petri net transfor-
mations for business processes - A survey. Trans. Petri Nets and Other
Models of Concurrency 2, 46—63.

Martens, A., 2005. Analyzing web service based business processes,
in: International Conference on Fundamental Approaches to Software
Engineering. Springer. volume 3442 of LNCS, pp. 19-33.

Mendling, J., 2007. Detection and prediction of errors in EPC business
process models. Ph.D. thesis. Wirtschaftsuniversitdt Wien Vienna.

95

[40]

[41]

[42]

[47]

[48]

Mendling, J., Reijers, H.A., Recker, J., 2010. Activity labeling in pro-
cess modeling: Empirical insights and recommendations. Information
Systems 35, 467—482.

Morimoto, S., 2008. A Survey of Formal Verification for Business Pro-
cess Modeling, in: Computational Science. Springer. volume 5102 of
LNCS, pp. 514-522.

Muehlen, M., Recker, J., 2008. How Much Language Is Enough? The-
oretical and Practical Use of the Business Process Modeling Notation,
in: CAIiSE. Springer. volume 5074 of LNCS, pp. 465-479.

Murata, T., 1989. Petri nets: Properties, analysis and applications.
IEEE Proceedings 77, 541-580. doi:10.1109/5.24143.

OMG, 2011. Business Process Model and Notation (BPMN V 2.0).

Polyvyanyy, A., Bussler, C., 2013. The structured phase of concur-
rency, in: Seminal Contributions to Information Systems Engineering.
Springer. volume 1789 of LNCS, pp. 257-263.

Polyvyanyy, A., Garcia-Bafiuelos, L., Dumas, M., 2012. Structuring
acyclic process models. Information Systems 37, 518-538. doi:10.1016/
j.1s.2011.10.005.

Polyvyanyy, A., Garcia-Banuelos, L., Fahland, D., Weske, M., 2014.
Maximal Structuring of Acyclic Process Models. The Computer Journal
57, 12-35.

Prandi, D., Quaglia, P., Zannone, N., 2008. Formal Analysis of BPMN
Via a Translation into COWS, in: Coordination Models and Languages.
Springer. volume 5052 of LNCS, pp. 249-263.

Puhlmann, F., 2007. Soundness Verification of Business Processes Spec-
ified in the Pi-Calculus, in: OTM. Springer. volume 4803 of LNCS, pp.
6-23.

Puhlmann, F., Weske, M., 2005. Using the m-calculus for formalizing
workflow patterns, in: International Conference on Business Process
Management, pp. 153-168.

Puhlmann, F., Weske, M., 2006. Investigations on Soundness Regarding
Lazy Activities, in: Business Process Management. Springer. volume
4102 of LNCS, pp. 145-160.

56

[52]

[53]

[54]

[55]

Ramadan, M., Elmongui, H.G., Hassan, R., 2011. BPMN formalisation
using coloured petri nets, in: International Conference on Software
Engineering & Applications.

Rozenberg, G., Engelfriet, J., 1998. Elementary net systems, in: Lec-
tures on Petri Nets I: Basic Models. Springer, pp. 12-121. doi:10.1007/
3-540-65306-6_14.

Schmidt, K., 2000. LoLA: A Low Level Analyser, in: ICATPN.
Springer. volume 1825 of LNCS, pp. 465—474.

Van Der Aalst, W.M., van Hee, K.M., ter Hofstede, A.H., Sidorova,
N., Verbeek, H., Voorhoeve, M., Wynn, M.T., 2011. Soundness of
workflow nets: classification, decidability, and analysis. Formal Aspects
of Computing 23, 333-363.

Van Gorp, P., Dijkman, R., 2013. A visual token-based formalization of
BPMN 2.0 based on in-place transformations. Information and Software
Technology 55, 365-394.

Weske, M., . Business process management: Concepts, languages, ar-
chitectures, second edition. Springer.

Wong, P.Y., Gibbons, J., 2011. Formalisations and applications of
BPMN. Science of Computer Programming 76, 633—-650.

Wong, P.Y.H., Gibbons, J., 2008. A Process Semantics for BPMN, in:
Formal Methods and Software Engineering. Springer. volume 5256 of
LNCS, pp. 355-374.

Ye, J., Song, W., 2010. Transformation of BPMN Diagrams to YAWL
Nets. Journal of Software 5.

o7

