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Abstract. Process mining traditionally assumes centralized event data
collection and analysis. However, modern Industrial Internet of Things
(IIoT) systems increasingly operate over distributed, resource-constrained
edge-cloud infrastructures. This paper proposes a structured approach
for decentralizing process mining by enabling event data to be mined
directly within the IoT system’s edge-cloud continuum. We introduce
ContinuumConductor a layered decision framework that guides when
to perform process mining tasks such as preprocessing, correlation, and
discovery centrally or decentrally. Thus, enabling privacy-preserving,
responsive and resource-efficient process mining. For each step in the
process mining pipeline, we analyze the trade-offs of decentralization
versus centralization across these layers and propose decision criteria. We
demonstrate ContinuumConductor at a real-world use-case of process
optimazition in inland ports. Our contributions lay the foundation for
computing-aware process mining in cyber-physical and IIoT systems.

Keywords: Process Mining - Distibuted Computing - IoT - Edge-Cloud
Continuum.

1 Introduction

The proliferation of sensors and actuators forms the backbone of modern Industrial
Internet of Things (IToT) environments. These systems leverage vast amounts
of sensor data to monitor processes, while actuators perform actions often in
direct response to the insights derived from this data. This complex interaction
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requires the design of robust and efficient computing architectures that can meet
three critical objectives: firstly, responsive analysis ensuring that data analysis is
performed in real-time to allow timely actions; secondly, privacy-preservation,
particularly important in scenarios involving human interaction where sensitive
behavioral data, such as that captured by cameras, must be handled with care
and third resource-efficiency, since transferring and processing large data volume
may exceed the devices capacities.

The edge-cloud continuum [28] offers a promising solution to achieve real-time
responsiveness, enhanced privacy protection and resource-efficiency. By distribut-
ing computational tasks closer to the data source (edge) while leveraging the
scalability of centralized cloud resources, these architectures can mitigate latency,
reduce the exposure of sensitive information and minimize transferred data. In
this setting, process mining stands out as a powerful technique. Traditionally
applied to centralized event logs for retrospective business insights, process mining
in the dynamic, data-rich IToT context requires a full pipeline, from preprocessing
raw sensor data to visualizing processes and extracting actionable insights.

This paper delves into the benefits and challenges of transforming the conven-
tional process mining pipeline into a distributed paradigm across the edge-cloud
continuum. Specifically, this paper contributes by:

1. Presenting a real-world use case that highlights the practical relevance and
requirements of decentralized process mining in an IToT setting.

2. Discussing the key challenges inherent in implementing decentralized process
mining on unstructured IoT sensor data streams.

3. Introducing ContinuumConductor a decision framework for the placement of
computational steps within the process mining pipeline, determining where
computations should be executed within the edge-cloud-continuum.

The remainder of this paper is structured as follows: Section 2 describes
the problem by introducing the use-case of the automation in inland ports,
describing its additional goals for process mining at the edge-cloud-continuum as
well as related work to achieve them. Section 3 demonstrates the process mining
pipeline. Moreover, it proposes techniques how the steps of the process mining
pipeline can be executed within the edge-cloud-continuum. Section 4 presents
ContinuumConductor the decision framework for the placement of those steps
and applies it on the use case. Section 5 concludes the paper.

2 Problem Description

We illustrate the need for decentralized process mining by first outlining a specific

use-case (Section 2.1f), from which then derive general requirements (Section 2.2)).
Section 2.3).

Then, we review related work in the light of these requirements (|

2.1 Use-case: Decentralized Process Mining in Inland Ports

To illustrate the benefits of decentralized process mining, we consider the Inte-
GreatDrones project [29], which aims to modernize data collection and operational
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transparency in inland port terminals. Inland multi-purpose terminals often oper-
ate in highly dynamic environments, characterized by frequent changes in cargo
types, varying throughput, and a limited degree of process standardization. As a
result, systematic monitoring and process optimization are challenging.

In this use case, a sensor ecosystem is deployed across the terminal to cap-
ture fine-grained operational data. The system combines heterogeneous data
sources: I. Fized Cameras: Permanently installed cameras cover predefined areas
of the terminal, capturing video streams that document incoming and outgoing
goods as well as vehicle movements. Due to their stable network connections,
these cameras can stream high-resolution data directly to central edge servers.
2. Vehicle-Mounted Cameras: Mobile terminal vehicles, such as reach stackers,
straddle carriers, and trucks, are equipped with cameras that record their ac-
tivities and immediate surroundings. These data streams provide context on
the movement of cargo and the utilization of terminal equipment but are only
intermittently connected to the terminal’s IT infrastructure via wireless links.
3. Autonomous Drone Cameras: A fleet of drones autonomously patrols the
terminal area, generating aerial video data to monitor operational zones that are
otherwise difficult to cover. Drones can dynamically focus on areas of interest, for
example, to track specific handling operations or perform targeted inspections.
4. Sensor Boxes on Vehicles: Selected vehicles are equipped with sensor boxes
that record GPS position, acceleration, vibration, and the current height above
ground of the spreader beam. These readings enable a precise reconstruction
of vehicle behavior and cargo handling sequences. Data processing in this use
case has to cope with heterogeneous connectivity and massive data volumes.
While some sensors (e.g., fixed cameras) provide continuous data streams over
wired connections, others (e.g., drones) rely on variable wireless connectivity. To
mitigate bandwidth constraints and latency, sensor nodes perform local prepro-
cessing on edge computing resources, which includes data filtering, aggregation,
anonymization, and transformation into structured intermediate representations.
For example, drone video streams are locally analyzed to extract object trajec-
tories and anonymize sensitive information before transmitting results to the
central infrastructure.

The sensor data is consolidated in a middleware platform deployed across the
terminal’s edge—cloud continuum. From this platform, event logs are generated
that describe the lifecycle of each cargo unit, including timestamps for arrival,
intermediate handling steps, storage movements, and final departure. Moreover,
the activities and states of vehicles, such as loading, unloading, idle time, and
maintenance-related events, are captured. Based on these logs, process mining
can improve situational awareness, process compliance, and operational efficiency.

2.2 Goals for Process Mining on the Edge-Cloud-Continuum

From the above application scenario, we derive three additional goals for the
process mining analysis:

G1) Privacy preservation: Sensitive data must be anonymized close to the
source to comply with privacy regulations and to maintain stakeholder trust.
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G2) Real-time responsiveness: Immediate detection of process deviations
(e.g., unauthorized access) requires near-sensor computation.
G3) Resource efficiency: Raw sensor data from high-resolution video and
telemetry streams exceed available network bandwidth if transmitted unprocessed.
These requirements can be fulfilled by employing the edge-cloud continuum
and decentralized process mining techniques. By performing process mining
tasks closer to the data sources with cloud-based aggregation and analytics, the
approach balances latency, data protection, and process insight in a dynamic,
resource-constrained environment. Nevertheless, for each step within the pipeline
it has to be discussed where the task are placed within the edge-cloud continuum.

2.3 Related Work

Privacy preservation. Privacy considerations in process mining received consid-
erable attention in recent years, especially for IIoT applications [24]. To address
these privacy risks, encryption techniques can facilitate confidentiality [27] and a
multitude of data sanitization techniques have been proposed, adopting group-
based privacy notions [13] or differential privacy [10]. These techniques are not
limited to the control-flow of a process, but may be lifted to contextual informa-
tion contained in an event log [14]. Most of the existing techniques for protecting
privacy in process mining have not been designed for distributed environments
that continuously produce event data. However, some notable proposals include
the use of multiparty computation [I0] for simple process mining tasks and
control-flow abstractions of distributed event logs [26].

Real-time responsiveness. Real-time considerations in process mining are
addressed in the field of streaming process mining [7]. Streaming process mining
algorithms perform on continuously generated, potentially infinite event streams
instead of complete and static event logs. These algorithms require bound runtime
and memory usages. Utilizing techniques such as filtering, sampling or windowing
process mining techniques process discovery, conformance checking and process
enhancement have been transferred to a streaming domain. Although initial
approaches [I2l[5] exist to perform streaming process mining tasks in a distributed
manner, the approach to perform them within the computing infrastructure close
to the data source still lacks further research.

introduces a technique for computing partial and overlapping process models as
Petri nets from partial event logs and defines a way to merge them to a Petri net
of the complete event log.

Resource Efficiency and Distributed Mining. In process discovery, van
der Aalst [I] introduced a method for computing and merging partial Petri nets
from partial event logs. Techniques like Map-Reduce [12] parallelize discovery
algorithms across multiple compute nodes to manage large event logs. Similarly,
for conformance checking, the Single-Entry Single-Exit approach breaks down
large models and logs into smaller sub-processes for independent analysis [25],
distributing the workload. While these methods efficiently handle large event logs,
they remain centralized, lacking both scalability and real-time responsiveness.
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Recently, EdgeMiner [5] introduced a distributed, resource-efficient algorithm
that operates directly on resource-constrained sensor nodes with real-time event
data. This demonstrated the feasibility of near real-time process mining, though
it’s currently limited to classic footprint-matrix-based algorithms like the alpha
miner.

3 IIoT Process Mining on the Edge-Cloud Continuum

The use of process mining allows to get insights for efficiently coordinating objects
(drones, vehicles) in the port terminal use-case, in order to, for example, shorten
the loading and unloading process or to predict the readiness or deviation of
objects before breakdown. However, due to the nature of the distributed IoT,
e.g., video data stream used in this use case, several challenges must be addressed
to apply process mining efficiently. In this section, we use the use-case presented
earlier to discuss these challenges as well as the opportunity the edge cloud
continuum brings for enabling goals such as privacy-preservation and real-time
analysis.

3.1 IIoT Process Mining Pipeline

To transform raw unstructured data streams into valuable process insights, the
steps of preprocessing, aggregation, correlation, discovery and insights have to
be performed [20]. Figure [1| shows these steps which we refer to as the process
mining pipeline in the following.

Preprocessing Aggregation Correlation Discovery Insights

’ Raw Data ‘

Fig. 1. Process Mining Pipeline. Raw sensor data is preprocessed to low-level events.
These are aggregated to high-level events and correlated with case/object ids. Further,
process models are discovered and insights are extracted from them.

1. Preprocessing: Usually, IoT data is unstructured and heterogeneous (C1),
and exists at a lower level of abstraction compared to the event data tradition-
ally used as input for process mining. IoT devices (i.e., cameras, drones and
sensor boxes) generate various data formats such as JSON, video, or time-series
sensor readings, which cannot directly be applied by process mining techniques.
Although numerous methods exist to abstract unstructured data into a struc-
tured form such as an event log, these methods are not generalizable and must
be adapted to the specific application purpose [3I]. Transforming video data
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into recognized (low-level) activities computationally complex machine learning,
which may exceed compute capabilities (C4), need to be employed [2I]. Due to
the probabilistic output of such models an uncertainty (C2) is introduced [22].
Moreover, data quality issues [I6] such as noise increase this uncertainty further.
Distribution may be instrumental in reducing uncertainty. For instance, the use of
multiple complementary or redundant sensors may be used to resolve ambiguity
and mitigate concerns about data quality by covering previously unrecorded parts
of the process and ensuring data availability in the presence of sensor failures [20].

2. Aggregation: It is crucial that the aggregation process takes into account
the semantics of events in the form of temporal patterns as well as the context
(e.g., operating mode of the cameras, shift time of the sensor boxes). Without
considering context, the same event can represent different activities (C3). Pro-
cessing distributed IoT data at the edge in terms of storage, pre-processing, and
real-time is also very computationally heavy (C4). Additionally, sensor readings
can be inaccurate, incomplete, delayed, or lost, which can lead to incorrect process
models or misinterpretations (C5) [0].

3. Correlation: The correlation of recognized activities to specific cases or
objects, such as within object-centric process mining [2] frameworks, requires
a global shared notation (C6), especially in distributed environments. At this
stage, the temporal dimension and sequential order of events become paramount
(C5). Distinguishing the precedence of events is fundamental for accurate activity
correlation. This temporal ordering enables the construction of direct-follow
relations within individual cases or objects, a prerequisite for numerous process
discovery algorithms. To address the completeness of available data [19], dynamic
windowing techniques can be used to balance the trade-off between accuracy and
responsiveness [I§].

4. Discovery: The task of transforming an event log towards a process model
is called process discovery. Process discovery algorithms transform underlying
process behavior into abstract formal representations such as Petri nets or pro-
cess trees. The models capture control-flow relations and provide a formal basis
for further analysis. In a decentralized setting [3] multiple actors/organziations
can discover process fragments. If the algorithms require a complete event log
central processing is beneficial while some algorithms such as the Inductive Miner
may work better on smaller, localized event logs (C5). In terms of privacy, the
challenge is to merge local fragments and clarify interfaces (C6) to other actors
and organizations to create a whole view of the complete process.

5. Insights: The final step of the process mining pipeline is extracting in-
sights from the process model. This includes techniques such as visualization,
conformance checking, performance diagnostics (service times, waiting times),
root-cause analysis, simulation (e.g., digital twin), or operations research (e.g.,
resource planning) [4]. Some techniques require computationally complex machine
learning algorithms to be executed on specialized hardware (C4). In a distibuted
setting each actor may have a partial view of the data due to e.g. access rights.
Here, insight extraction must be robust to incomplete data (C5).
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Table 1. Challenges and Goals of IIoT process mining

Challenges Goals

C1) Large volume of unstructured data G1) Privacy preservation
(C2) Uncertainty G2) Real-time responsiveness
C3) Sensitivity to ambiguous context G3) Resource efficiency

C4) Network and computing limitations

C5) Erroneous and incomplete data

C6) Necessity of shared case/object notion

3.2 Edge-Cloud Continuum

Edge Computing is a computing paradigm that brings computing and storage
closer to data sources of sensors or mobile devices [28]. For this, the computing
capabilities of the end devices, IoT gateways, the network infrastructure, or local
micro data centers are utilized. Edge computing promises responsive and efficient
services due to lower network latencies and network utilization. Additionally,
privacy can be improved by not sharing all data immediately at a central place.
In contrast, the cloud provides centralized, scalable, and high-performance com-
puting infrastructure capable of handling large-scale data storage. The edge-cloud
continuum spans a hierarchical tree of computing resources out of edge, cloud,
and fog (in between-edge and cloud) nodes. Each node can either store or compute
locally on-device, on a higher computing tier, or on the same computing tier in
a peer-to-peer manner. The continuum between edge and cloud enables a more
efficient, responsive, and privacy-aware process mining architecture. It supports
real-time analytics at the edge while leveraging the cloud for deeper, long-term
insights, thereby achieving a balance between latency, resource usage, bandwidth
consumption, and data privacy [23].

In terms of process mining, edge nodes can perform initial processing tasks
like data filtering, aggregation, or even lightweight mining. The cloud can perform
more comprehensive analyses, integrate data from multiple edge sources, and
apply advanced algorithms for process discovery and conformance checking when
compared to edge devices.

3.3 Goal-Supporting Techniques

Privacy-Preservation. In order to determine whether centralized processing is
appropriate or if decentralization is required, privacy threat modeling plays a vital
role. Frameworks such as LINDDUN [g] support this process by incorporating
attacker models and introducing the notion of trust zones, i.e., areas where data
processing is considered safe based on trust assumptions. Beyond these zones,
data sharing may require additional safeguards or be avoided altogether.

In addition to threat modeling, privacy design strategies offer guidance for
implementing privacy-preserving processing [I5]. While applicable to both cen-
tralized and decentralized settings, several technical principles, such as separate,
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FOG

EDGE

‘ Raw Data ‘

Fig. 2. Process Mining Pipeline placed on the edge-cloud continuum. The preprocessing
is performed distributedly on the edge nodes. On fog nodes, the data gets abstracted
and correlated to cases. This results are then centrallized to perform discovery and
insight extraction.

minimize, and aggregate, naturally align with decentralized architectures. Process-
ing data closer to its source, as enabled by edge-cloud infrastructures, facilitates
early minimization and aggregation, reducing data exposure and granularity
before transmission. Separation can be achieved by limiting data merging across
trust zones or device boundaries, helping to mitigate linkage risks. The hide prin-
ciple further supports broader privacy goals such as confidentiality and anonymity.
Privacy-enhancing technologies (PETs) like secure multi-party computation [30]
and local differential privacy [II], which often rely on distributed architectures,
achieve these goals by processing sensitive data locally and sharing only obfus-
cated or aggregated outputs. This further underscores the privacy benefits of
decentralized processing.

Real-time and Resource Efficient Analysis. Edge-side real-time data
preprocessing and complex event processing (CEP) [I7] are critical to reduce
data volume and enable instant insights. By performing filtering, aggregation,
and transformation directly at the edge, the amount of data sent to the cloud
is drastically reduced. Next, robust, low-latency data ingestion and stream pro-
cessing frameworks [I2] ensure a swift and reliable event transfer, maintaining
real-time fidelity. Incremental process discovery and online conformance checking
algorithms are also essential, allowing process models to continuously update and
enabling immediate deviation detection. Furthermore, accurate time synchroniza-
tion across the continuum ensures reliable event ordering, which is fundamental
for data integrity. Finally, activity recognition and event abstraction using on-
edge AI/ML [9] improves insight quality. This method generates richer event logs
from sensor data, providing precise and actionable real-time insights with the
resource efficiency of TinyML.
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4 Continuum Conductor

In previous sections, we gathered challenges, goals and techniques associated with
distributing process mining tasks across an Edge-Cloud Continuum. To facilitate
decision-making regarding the optimal placement of pipeline steps for individual
use cases, we introduce the ContinuumConductor.

Framework: The ContinuumConductor is a decision framework designed
to determine whether each step in a process mining pipeline should be executed
centrally or in a distributed manner. Comprising 16 questions that address the
previously identified challenges, the current version of the ContinuumConductor
aligns with each of the five steps of the process mining pipeline. This tool does
not aim to offer a comprehensive list of all potential challenges. Instead, it is
designed to initiate a discourse and provide a foundational framework for exploring
further dimensions. The model operates by posing a series of questions, each
with four possibilities to perform the compute: centralized (critical), centralized
(favorable), decentralized (favorable), decentralized (critical). Table [2 presents
the ContinuumConductor questions. A unique scenario arises when both a
‘eritical centralized’ and a ‘critical decentralized’ evaluation are present within
the assessment of a single pipeline step. This represents a conflict, necessitating
the application of specialized algorithms or hardware adaptations to resolve the
architectural dilemma. To address these conflicts, we present two examples. First,
when raw data is privacy-sensitive but on-device processing is too slow, a better
solution is to deploy more powerful hardware closer to the device. Second, if a
process mining algorithm requires a complete event log, but parts of the model
are privacy-critical, it is necessary to design new algorithms. New algorithms
require the quantification and optimization of the privacy-utility trade-off based
on the specific application’s requirements.

Application to use-case: We demonstrate the ContinuumConductor by
applying it to the InteGreatDrones project. Thereby, we discuss the strategic
placement of computational tasks across the edge-cloud continuum. In the project
context, data is processed across four computing layers: 1) directly at or within
sensors (e.g., smart cameras), 2) at edge devices such as mini-computers or
gateways, 3) within edge clusters formed by GPU-equipped servers, and 4) in a
cloud instance primarily responsible for application and visualization services.
Data sources include inertial, distance, and position (e.g., GPS) sensors, as well
as cameras, the latter generating the largest data volumes and requiring the
most intensive preprocessing. Specialized tasks such as license plate detection
can be executed directly on smart cameras, whereas video streams from cameras
mounted on terminal vehicles must be transferred to edge servers for preprocessing,
as local processing is not feasible (Prel, Pre4). Since these video streams may
contain personal information, anonymization is performed at the edge (Pre2).
Given the large volume of video data and the risk of intermittent connectivity in
moving vehicles, intelligent filtering of relevant images is also necessary (Pre3).
Hence, the decentralized preprocessing in mandatory. During the aggregation
step, data such as the position of the container handler and the camera-based
identification of containers must be combined. Certain events can be extracted
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locally, such as a trailer entering the terminal. However, to detect more complex
events fusion of proximate sensors is required (Agg3). Single sensor outages may
be tolerated (Aggd), hence a distributed protocol for sensor fusion is possible.
The low level-events are not necessarily privacy-critical (Aggl), but still occur
in high-volume for high frame-rate video streams (Agg2). In the correlation
phase, a global case/object ID is ensured, as both trailers and containers possess
unique identifiers, which must be recorded at every relevant process step (Corl).
Although timestamps are generally synchronized across devices, the abundance
of heterogeneous equipment and potential delays in data synchronization can
lead to temporal inconsistencies, highlighting the importance of robust time
synchronization mechanisms (Cor2). Handling out-of-order events is critical:
Each new entry of a cargo unit into the terminal should be recognized as a
distinct case, making the detection and prevention of such events essential (Cor3).
In the discovery step, no privacy-critical data remains, as all sensitive information
is removed beforehand (Dis1). Since process discovery benefits from consistent
and complete event logs (Dis3), and there is no clear advantage to local processing
in this case (Dis2), central execution is appropriate. Insight extraction requires
a set of complex reasoning algorithms capable of handling conflicting data and
determining the most likely outcomes. To achieve this, a comprehensive view of all
data sources is necessary (Insl, Ins2), making centralized processing preferable.

In conclusion ContinuumConductor suggests distributed preprocessing near
the sensors. For abstraction and correlation distributed processing remains possi-

Table 2. ContinuumConductor questions to decide on the placement of every step in
the process mining pipeline within the cloud-edge continuum.

Phase Question Chal-
lenge
Preprocessing | Prel. Are compute resources enough for preprocessing? C1
Raw Data — Pre2. Is raw data privacy-critical? G1
Low-Level Pre3. Does raw data transfer need high bandwidth? C4,G3
Events Pred. Is preprocessing faster on device? C4,G2
Aggregation Aggl. Are low level events still privacy critical? G1
Low Level — Agg2. Are low level events still high-volume? C1
High Level Agg3. Can events be build from local context? C3
Events Agg4. Can sensor/network outages be tolerated? C4,C5
Correlation Corl. Does a global notion of case/object ids exist? C6
High Level Cor2. Is the time synchronized between the nodes? C5
Events — Cor3. Do out of order events violate real-time C5,G2
Event Log objectives?
Discovery Disl. Is the process model privacy-critical? C6,G1
Event Log — Dis2. Does the discovery algorithm benefit from locality? | G2,G3
Process Model | Dis3. Does the process mining algorithm require Ch
consistent and complete event logs?
Insights Insl. Does insight extraction need advanced hardware? C4
Process Model | Ins2. Can insight extraction tolerate partial results? C5,G1
— KPIs
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ble for resource efficient computation benefiting from data proximity. For discovery
and insight extraction still a central approach is recommended to get an overview
on the whole process.

5 Conclusion

This work investigates the challenges and objectives of applying process mining to
distributed, high-volume data streams, a field motivated by the InteGreatDrones
project. We explore techniques within an edge-cloud continuum and a dedicated
process mining pipeline to ensure privacy preservation, real-time insights delivery,
and computational efficiency. From this, the ContinuumConductor framework
has been derived, providing a decision model for centralizing or distributing steps
within the process mining pipeline. This framework serves as a foundational
discussion point for decentralized process mining within computing infrastruc-
tures, necessitating further research into algorithms that balance these identified
requirements. Moreover, the question catalog of ContinuumConductor needs to
be refined by applying it to further scenarios, thereby enhancing its generality
and completeness.
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