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Abstract. Process mining applications are no longer limited to tradi-
tional enterprise systems, but may involve data sensing at distributed
event sources. However, when data is collected close to process stake-
holders and processed immediately for online process control, privacy
considerations become particularly important. For such scenarios, we ar-
gue that filtering of event data directly at the sources is a viable means
to achieve certain privacy guarantees without drastically compromising
the utility of the data. Specifically, we propose to leverage z-anonymity
for distributed data filtering. It discards behavioral information that,
due to it being infrequent, poses a high risk for re-identification attacks,
but that is likely to be neglected as noise in downstream analysis tasks
anyway. We explore the resulting interplay of data utility and privacy for
different notions of behavioral information. Our experiments with several
established event logs indicate that the non-linear dependencies between
privacy and utility open up a space for effective data filtering.
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1 Introduction

During the past decade, process mining has been established as a means for the
descriptive, predictive, and even prescriptive analysis of process-oriented infor-
mation systems [1]. Recently, the adoption of process mining expanded beyond
traditional enterprise systems, significantly extending its scope, in terms of the
data used and the analysis performed [12]. Instead of exploiting a single centrally
maintained event log for one-off retrospective analysis of a process, contempo-
rary applications rely on data sensing close to process stakeholders and strive
for a continuous and immediate assessment of a process’ behavior [4].

Although event data enables valuable conclusions on the underlying process,
it also carries privacy risks. That is, individuals may be re-identified based on
their behavioral characteristics, e.g., through linkage with auxiliary data that
is possessed by an adversary [17, 24]. To mitigate the respective risks, tech-
niques for privacy-aware process mining received much attention recently [16,18].
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Specifically, it has been shown how group-based privacy guarantees, such as k-
anonymity and its derivatives, as well as differential privacy can be achieved for
process-related event data [8, 9, 16, 19]. Yet, these techniques typically induce
a trade-off: Stronger privacy guarantees come with lower data utility, i.e., the
process mining results become less accurate or more uncertain.

While the privacy-utility trade-off is widely acknowledged [3], we note that
common process mining applications include opportunities to manage this trade-
off effectively. Process-related event data often contains outliers and infrequent
behavior. Regardless of whether such behavior is genuine or stems from data
quality issues, it is typically removed as part of data pre-processing [14, 21–
23]. The reason being that many analysis techniques adopt a global, aggregated
view on the process behavior, i.e., by discovering the behavioral characteristics
that hold true for the vast majority of process executions. At the same time,
suppression of events is also a common technique used to increase the privacy
of the data [9]. Therefore, filtering of event data to achieve a privacy guarantee
does not necessarily compromise the utility of the data for certain analysis tasks.
Once the event data is captured in a distributed environment, the suppression of
rare behavior is particularly valuable from a privacy point of view: If event data
is filtered at the sources, i.e., directly at the edge of a distributed infrastructure,
the respective behavior is not visible beyond the source. Thereby, the privacy
strategies of minimization and separation are implemented by design [11].

In this paper, we build upon the aforementioned idea and present an approach
to filter event data directly at the sources. Specifically, we propose to leverage z-
anonymity [13], which discards rare behavioral information, suppressing behavior
until at least z − 1 other individuals have shown it in the same timeframe.
Furthermore, we introduce an adaptation, referred to as explicit z-anonymity,
which publishes all behavior performed by at least z individuals in a specified
timeframe. As such, instead of suppressing the z − 1 initial occurrences, explicit
z-anonymity provides an explicit anonymity set. Either way, data that poses
a high risk for re-identification attacks [24] is not released by the data source.
Arguably, as discussed above, such data may be neglected in certain downstream
analysis tasks in any case, so that an improvement of the analysis privacy may
potentially be achieved without a drastic reduction of the data utility.

Against this background, we explore the privacy-utility trade-off achieved by
our approach in a series of experiments. Using established event logs, such as
Sepsis [15] and BPIC’12 [7], we assess the information loss induced by (explicit)
z-anonymity on the level of individual traces, as well as for the event data as a
whole. Moreover, we also assess the implications for process model discovery in
terms of common evaluation dimensions. In general, our results demonstrate the
feasibility and highlight the potential for effectively managing the privacy-utility
trade-off due to the non-linear relations between privacy and utility measures.

In the remainder, Section 2 introduces our approach to distributed data filter-
ing. Section 3 presents experimental results on the effectiveness of our approach.
Section 4 reviews related work, before we conclude the paper in Section 5.
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Fig. 2: Filtering with z-anonymity.

2 Filtering Event Data at Sources

In this section, we first give an overview of our approach to data filtering at the
sources, before we turn to a formal definition of the respective privacy notions.
In traditional process mining applications, data is assumed to be available as
an event log at a central location [1]. This assumption fails to acknowledge that
data is often collected in a distributed environment over time, with the desire to
analyze it continuously. Taking into account that rare behavior of the process is
often removed as part of data pre-processing, we consider a setting as illustrated
in Figure 1: Data is continuously generated by different sources (S1 to S4),
resulting in streams of events that signal activity executions for specific cases
(activities are encoded by the shape type, while colors signify distinct cases).
The data is then filtered locally, directly at the event sources, to not only clean
the data from rare, supposedly noisy behavior, but to also safeguard privacy.

Specifically, we propose to apply z-anonymity [13] at the sources to filter the
event streams. z-anonymity ensures that an event is only published if the same
behavior was observed for at least z − 1 other cases within a time frame ∆t.

Figure 2 illustrates z-anonymous filtering for one source, when considering
the executions of single activities as the relevant notion of behavior. Again, shape
types and colors denote activities and cases, respectively, while the numbers
indicate how often an activity was observed in a case. Consider the parameters
z = 3 and ∆t = 4. At time point T1, the square activity is performed in the
yellow case, followed by the green case at T2, and, again, by the yellow case at
T3. Yet, since the yellow case has already been counted within the time frame,
this occurrence does not increase the overall count. At T4, a third case (blue)
performs another activity, followed by the square activity at T5. As z = 3 cases
include the square activity within the specified time frame ∆t, the blue square is
published. At T6, the event of the orange case results again in z cases, including
the square activity within the time frame, so that the orange square is published.

We can observe that z-anonymity enables the publication of the information
about the blue and the orange square activity, as z users have performed the
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activity within the time frame ∆t. However, the same statement also holds for
the information about the executions of the square activity for the green and
the yellow cases. Hence, we propose the concept of explicit z-anonymity, which
publishes all information about behavior that has been performed at least z times
in the time frame ∆t. In our example, explicit z-anonymity would also publish
the green and the yellow square, thereby making the anonymity set explicit.

Definition of Privacy Guarantees

We continue with a formal definition of (explicit) z-anonymity on event streams.
Our model is based on sets of activities A, case IDs C, timestamps T , and
payload data elements D. An event e is defined as a tuple consisting of an
activity, a case ID, a timestamp, and a data element, i.e., e = (a, c, t, d) ∈ E =
(A×C × T ×D). For the sake of simplicity (and without loss of generality), we
restrict the presentation to a single data element. We use e(X) to reference the
attributes of event e, whereby X ∈ {A,C, T,D}.

Each data source in our setting generates a stream of events, which we model
as a set of events S ∈ 2E . We assume that the events in a stream can be totally
ordered by their timestamps. In our model, any source can generate any type of
event; we do not impose restrictions that associate specific events, such as those
of a particular activity, with specific sources.

Moreover, we consider different notions of behavior that may be observed in
an event stream in the context of a particular case. We illustrate this definition
with common behavioral features in process mining. Let E be a set of events.
We model these behavioral features as Boolean predicates β(E) that evaluate
to true if the events in E show the respective behavior. The restriction on the
set of admissible elements is used when applying the Boolean predicates in the
z-anonymity definition. In this setting, E denotes a subset of events that satisfy
this predicate and the z-anonymity properties, and hence is released.
– Occurrences of activities: If relevant behavior is induced by activity occur-

rences, β refers to the presence of an event signaling the execution of a specific
activity a ∈ A:

βa(E) ≡ ∃e
(
E = {e} ∧ e(A) = a

)
.

– Conditioned occurrences of activities: The relevant behavior may be induced
by activity occurrences that show certain payload data. For instance, only
occurrences of an activity that took very long or that have been conducted
by a specific resource may be privacy-sensitive. For a selected activity a ∈ A
and data element d ∈ D, the predicate is given as:

βa,d(E) ≡ ∃e
(
E = {e} ∧ e(A) = a ∧ e(D) = d

)
.

– Sequences of occurrences of activities: Relevant behavior may also include
occurrences of activities that follow each other directly (with a pair of such
occurrences representing the well-known directly-follows relation). For a se-
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quence ⟨a1, a2, . . . , an⟩ with ai ∈ A, we define the respective predicate as:

β⟨a1,...,an⟩(E) ≡ ∃e1, . . . , en
(
E = {e1, . . . , en} ∧

n∧
i=1

ei(A) = ai

∧ e1(T ) < · · · < en(T )
)
.

To define z-anonymity, we use auxiliary predicates on event sets E,E′ ∈ 2E :
B(E,E′) asserts that E and E′ exhibit the same behavior with respect to a
chosen predicate β (possibly a conjunction of predicates capturing different be-
havioral features); C(E,E′) asserts that they belong to distinct cases; T (E,E′)
asserts that the most recent events of E and E′ lie in the same time window of
length ∆t; and F(E,E′) asserts that the most recent event in E is more recent
than the most recent event in E′.

B(E,E′) ≡ β(E) = β(E′)

C(E,E′) ≡ CE ∩ CE′ = ∅ ∧ |CE | = |CE′ | = 1

with CE =
⋃
e∈E

{e(C)}, CE′ =
⋃

e∈E′

{e(C)}

T (E,E′) ≡ max
e∈E

e(T )− max
e′∈E′

e′(T ) ≤ ∆t

F(E,E′) ≡ max
e∈E

e(T ) > max
e′∈E′

e′(T )

Next, we formalize z-anonymity and explicit z-anonymity over an event
stream S using the above predicates. Standard z-anonymity publishes an event
e ∈ S only if at least z − 1 other events feature the same relevant behavior
as e, each belongs to a different case from one another and all belong to cases
different from e’s case, and all occurred within the time window ∆t preceding
e. If the behavioral predicate ranges over multiple events (e.g., β⟨a1,...,an⟩), then
once the latest event in the set E = {e1, . . . , en} occurs and the above conditions
are satisfied with respect to that event, the entire set E is released (not just the
triggering event). Based on these conditions, z-anonymity is formally defined as:

zanon(z, S) =


e ∈ S

∣∣∣∣∣∣∣∣∣∣∣∣

∃X ⊆ 2S
(
|X| = z

∧ ∀E,E′ ∈ X (E ̸= E′ ⇒ C(E,E′))

∧ ∃E ∈ X
[
e ∈ E ∧ ∀E′ ∈ X \ {E} (B(E,E′)

∧ T (E,E′) ∧ F(E,E′))
])


Explicit z-anonymity extends the above notion: Whenever z distinct cases

exhibit the same specified behavior within a given time window, we publish all
events involved in that behavior from every case that contributed to reaching
the z threshold, rather than only disclosing events belonging to cases at or above
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that threshold. Formally, it is captured as:

ezanon(z, S) =


e ∈ S

∣∣∣∣∣∣∣∣∣∣∣∣

∃X ⊆ 2S
(
|X| = z ∧ ∃E (E ∈ X ∧ e ∈ E)

∧ ∀E,E′ ∈ X (E ̸= E′ ⇒ C(E,E′))

∧ ∃E ∈ X
[
∀E′ ∈ X \ {E} (B(E,E′)

∧ T (E,E′) ∧ F(E,E′))
])


Applying (explicit) z-anonymity at data sources realizes two fundamental

design strategies for privacy notions [11]: minimization and separation. Through
distributed filtering, the data propagation to the entity that is eventually re-
sponsible for process analysis is minimized. At the same time, outlying behavior
remains confined to the location where it is recorded, which induces a separation
of the respective sensitive data.

3 Empirical Evaluation

This section describes our experimental methodology and reports the results.
We begin by outlining the evaluation setup, including datasets, anonymization
configurations, and measured metrics. Then we present the outcomes of applying
our approach, followed by a discussion of their implications. Our implementation
and the used event data is available on GitHub.3

3.1 Setup

From Event Logs to Distributed Data Streams: For our evaluation, we use several
real-world event logs that contain events with attributes that can be leveraged to
simulate a distributed data streaming environment. In the Sepsis event log [15],
we use the XES attribute org:group, defined in the XES standard as the organi-
zational group to which the resource triggering the event belongs, to represent a
partitioned source in the stream. In the other evaluated logs (the Environmental
Permit log [5], the BPIC 2012 O log [7], and the BPIC 2020 Prepaid Travel Costs
log [6]), we rely on the org:resource attribute, which specifies the particular
resource, actor or system component, that generated the event. By treating each
distinct group or resource as an originating stream, we model the event logs as
a collection of distributed, concurrent data streams.

Applying z-anonymous Filtering: Given the individual streams induced by groups
or resources from an event log, we apply the two variants of z-anonymity, zanon
and ezanon, to each stream independently.

For each stream S, we apply the z-anonymity variant for the behavior predi-
cate. We focus on behavioral predicates defined over sequences of activity occur-
rences, considering sequence lengths of 1, 2, and 3. The choice of time windows
3 https://github.com/henrikkirchmann/z_anonymity_pm.git
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is a challenging task that depends on the used log and the privacy and utility
goals. The granularity of the recorded activities, as well as the concurrency of
the cases, affects the number of event sequences that occur for distinct users
and, therefore, the choice of a suitable time window. For example, a factory
line that records a high number of identical activity sequences may be able to
choose a small time window. While a hospital where activities are recorded by
hand and thereby less often, and similar sequences are less likely, might require
a larger time window. The choice of the time windows also affects the provided
privacy, as the provided anonymity set depends on both the time window and
the z value. In this paper, we focus on the effect of the z-values. Thereby, we
fixed the time windows for all experiments to 72 hours and leave the choice of a
suitable time window in relation to z as future work. For both variants, we sweep
the anonymity parameter z from 1 to 30 to study how increasing the required
group size affects privacy and utility. As an upper bound for comparison, we
include a centralized, offline baseline filter on the same predicates. This baseline
is an instantiation of ezanon with S set to the complete event log and the time
window covering the entire log, thus omitting source partitioning and temporal
restriction. It serves as a reference for the theoretically best trade-off between
privacy and utility.

Evaluating Anonymized Data Streams: After each distributed stream induced
from an event log L has been filtered, we reassemble the published events (pre-
serving their original ordering within traces) into a new anonymized event log L′.
Our goal is to quantify how much information and utility was lost through filter-
ing, and how this trade-off impacts privacy. To this end we define the following
utility metrics.

Ratio of Remaining Events and Traces. Let |t| the number of events in a trace,
and |L| and |L′| denote the number of traces in the original and anonymized
logs, respectively. We define the ratio of remaining events (RRE) and the ratio
of remaining traces (RRT) as

RRE =

∑
t′∈L′ |t′|∑
t∈L |t|

, RRT =
|L′|
|L|

.

Preservation of Directly-Follows Relations. To assess how much of the abstract
behavior of the original process is retained, we consider the set of directly-follows
relations, which is defined as:

DF(L) = {(a, b) | ∃ trace t ∈ L with activity a immediately preceding b in t}.

Then, the ratio of remaining directly-follows relations is

RDF =

{
|DF(L)∩DF(L′)|

|DF(L)| if DF(L) ̸= ∅,
undefined otherwise.
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Fitness. To measure how much new or deviating behavior is introduced by
filtering, we compute the fitness of the anonymized log L′ against a process model
M discovered from the original log L using the inductive miner. We use PM4Py’s
token based replay [2] to evaluate the fitness score. higher values indicate that
the anonymized behavior is well explained by the original process structure,
whereas lower values suggest the introduction of behavior not captured in L.

Re-identification Protection (A∗ Projection). We measure identifiability by fol-
lowing the A∗ projection in [25] checking how many traces are uniquely distin-
guishable when observing a small partial pattern of activities together with their
day-granular timestamps. For each trace t, we sample

k =

⌈
0.1 ·max

t′∈L
|t′|

⌉
activity-timestamp pairs (with timestamps truncated to day granularity) and
form the multiset pattern S(t). Trace t is unique if no other trace t′ ̸= t has
full activity and day-level timestamp multisets that jointly contain S(t) (i.e.,
S(t) is not a multiset subset of any other trace). The risk is the fraction of
such unique traces. To measure the provided protection, we calculate the com-
plementary probability. Consequently, higher values indicate stronger protection
against potential re-identification.

ProtectionA∗ = 1− 1

|L|
∑
t∈L

1[∄ t′ ̸= t : S(t) ⊆multiset S(t
′)] .

3.2 Results and Discussion

We illustrated the results of our simulation in Figure 3. We initially focus on
the ngram size one (first column), wherein sensitive behavior is defined as single
activities. We can observe that as the value of z increases, both the number
of events (first row) and remaining traces (second row) decrease; however, the
degree of this reduction varies between the event logs. For instance, filtering
the BPIC20 PTC log (red solid line) with z = 5, we observe a loss of nearly
20 percent of the events while retaining 95 percent of the traces. Furthermore,
a value of z = 10 filters out 40 percent of the cases, yet it still retains nearly
90 percent of the traces. In contrast, the environmental permit log (blue solid
line) exhibits a more substantial information loss, with 80 percent of the events
filtered out at z = 5 and nearly 90 percent at z = 10. Consequently, the BPIC20
PTC log also retains more directly follows relations (row three) and a higher
fitness score (row four). Furthermore, examining the re-identification protection
(row five), indicates that higher z values also provide a stronger re-identification
protection. The environmental permit log, which has the highest information
loss by the considered metrics, is the one providing the best re-identification
protection. The sharp declines observed in the Sepsis and environmental permit
logs can be attributed to the minimal amount of retained data.
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When behavior is defined using 2-grams (second column) or 3-grams (third
column), we encounter significantly more information loss. This aligns with our
intuition, as these finer-grained behavioral definitions raise the difficulty of satis-
fying the anonymity quota, resulting in a larger portion of data being discarded.
Nevertheless, even for more challenging logs such as Sepsis (orange line), with
2-grams (second column) and z = 5, approximately half of the event information
remains, indicating that general analysis insights (e.g., the primary control flow)
can still be recovered despite the information loss. In general, we can observe a
similar trend to the 1-grams. A higher z-value is correlated with a higher informa-
tion loss and a higher re-identification protection. We can also observe a similar
trend for the event logs. Also for 2- and 3-grams, the BPIC 2020 PTC log (red
solid line) loses less information but offers less re-identification protection than
the environmental permit log (blue solid line). When examining the preserva-
tion of the directly-follows relation, we find that filtering of 2-grams and 3-grams
has a substantial impact. When comparing z-anonymity (solid lines) to explicit
z-anonymity (dashed lines), we can observe that z-anonymity has a higher infor-
mation loss across all four considered metrics, but is, in return, able to provide
a better re-identification protection. The largest difference is in the ratio of re-
maining events, which is expected: z-anonymity suppresses more events than
explicit z-anonymity. Note, however, that our re-identification protection metric
understates the effect of non-explicit anonymization, since it does not account
for deleted events; this can lead to more unique traces in the anonymized log
than the metric suggests. Finally, analyzing the interplay between information
loss and re-identification risk, we find that the BPIC 12 O log (to a lesser degree
in the Sepsis log) demonstrates the ability to strengthen the privacy guarantee
without degrading utility, which suggests a favorable privacy-utility trade-off.

4 Related Work

Privacy-aware process mining received much attention recently. As mentioned,
the respective techniques adopt different notions of privacy, including group-
based privacy guarantees [9,19], such as k-anonymity, t-closeness, and l-diversity,
and differential privacy [8,16]. By adopting and adapting z-anonymity, our work
belongs to the first group of techniques, as it has been shown that z-anonymity
can provide k-anonymity with a desired probability [13]. However, unlike the
existing techniques that focus on the sanitization of event data that is available
at a single location, our work shows how to leverage the distribution of event
sources as encountered in scenarios involving data sensing. Group-based privacy
guarantees may be achieved through different types of data transformations,
i.e., data suppression, data aggregation, or data generalization. While our ap-
proach suppresses event data, existing ideas on aggregation of process-related
data (e.g., by merging traces [9]) or its generalization (e.g., by generalizing ac-
tivities [10]) may also be incorporated in our distributed setting. Finally, as we
target immediate processing of streaming data, we note that privacy risks in-
duced by continuous data release have largely been ignored in process mining.
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A notable exception has been the definition of correspondence attacks based
on a comparison of releases [20]. However, similar risks have been studied in
event stream processing. For instance, it has been shown how the suppression
of events in a stream prevents the evaluation of sensitive patterns [26]. We see
such pattern-specific techniques as a promising extension of our work, in cases
where knowledge on sensitive behavioral patterns is available.

5 Conclusion

In this paper, we presented an approach for distributed filtering of event data di-
rectly at event sources as a foundation for privacy-aware process mining. Specif-
ically, we showed how (explicit) z-anonymity can be achieved for notions of
behavior that are commonly encountered in process analysis. We further argued
that filtering of rare behavior at event sources provides an opportunity to effec-
tively manage the privacy-utility trade-off, as the behavior filtered for reasons of
privacy is likely to be neglected as noise in downstream analysis tasks. Indeed, our
experimental results with several established event logs illustrate how a certain
level of privacy may be reached, for some datasets and configurations, without
incurring a large information loss. Our results open up various directions for
future work. First, the observed differences in the results obtained for different
datasets raise the question of how to predict the resulting utility when increas-
ing the strength of a privacy guarantee. Furthermore, the effect of z-anonymity
on utility dimensions of precision, generality, and simplicity seems promising. In
addition, the effect of the temporal dimension, i.e., the time window adopted in
z-anonymity, requires further exploration. Finally, we aim at further support for
achieving Pareto optimality for privacy and utility in a specific setting.

Acknowledgments. This work has been funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – FOR 5495.
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