Revealing One-to-Many Event Relationships in
Event Knowledge Graphs

Alessio Giacché!, Sara Pettinari?, and Lorenzo Rossi'

! School of Science and Technology, University of Camerino, Italy
alessio.giacche@studenti.unicam.it, lorenzo.rossiQunicam.it
2 Gran Sasso Science Institute, L’Aquila, Ttaly sara.pettinari@gssi.it

Abstract. Object-centric process mining is recognized to overcome the
limitations of traditional process mining by offering approaches for the
analysis of processes with multiple case notions such as collaborations.
Event knowledge graphs are an effective tool for gathering, manipulating,
and visualizing event and entity relations. Current approaches focus on
inferring correlations between events and objects and directly-follows
relationships between events correlated to the same object. However,
object-to-object relations may hide one-to-many relations between events
essential for understanding the actual flow among processes. We propose
an approach to reveal these one-to-many causal relationships in an event
knowledge graph. by defining when two events are causally related and
extending the standard approach of event knowledge graphs construction
to reveal them. We assess the approach using two case studies.

Keywords: Collaborations - Object-Centric Process Mining - Event
Knowledge Graph - One-to-Many Relationships

1 Introduction

Process mining collects well-established techniques for analyzing event logs pro-
duced during the execution of processes [2]. By its nature, process mining tech-
niques target the analysis of event logs from the perspective of a single case,
i.e., an identifier shared by the events that belong to the same process instance.
However, many real-life event logs contain different case notions since the events
and the associated activities are shared by more than one process [1]. For in-
stance, in an order handling process, a single order can trigger as many pick-up
processes as there are items in the order. Therefore, some of the events in the log
could be related to a unique order identifier as a case notion, while others could
also refer to an item identifier. This creates a one-to-many relationship between
orders and items, which must be considered in analyzing the processes.

In recent years, Object-Centric Process Mining (OCPM) has emerged from
traditional process mining to address convergence and divergence issues in real-
life process analysis [1]. OCPM has been proposed to connect processes not
based on the same case notion but to explore and filter the behavior recorded
in the logs considering different classes of objects and their interaction [4]. So
far, most of the work has been done in providing process models capable of

2 A. Giacché et al.

capturing event-to-object and object-to-object interactions, whereas less work
also investigated the representation of event-to-event relationships [5].

In this context, an Event Knowledge Graph (EKG) is a flexible and expres-
sive event data model to capture different aspects of the system behavior [11]. Tt
enables the representation of the correlation between events and objects, and the
relations between objects |18], while inferring the directly-follows relationships of
events correlated with the same object. This approach establishes directly-follows
relationships between events by considering each object individually. However,
when multiple objects are involved, their interrelations can affect the event re-
lationships. These relationships can vary in nature, ranging from one event trig-
gering many others to multiple events impacting a single event.

This paper discusses causal event relationships and presents an approach to
reveal them on EKGs. The approach leverages domain knowledge to identify
the object types impacting event relationships. Using this information, the ap-
proach constructs the EKG which reveals the causal relation between events
correlated to the identified objects. Finally, the nodes and relationships in the
resulting EKG can be aggregated to discover a multi-entity Directly-Follows
Graph (DFG) |12| representing the underlying system.

The rest of the paper is organized as follows. Sec. [2] introduces the main
EKGs’ concepts. Sec. [3] motivates the necessity of revealing causal event rela-
tionships through two case studies and the current state of the art. Sec.] presents
the approach for revealing the causal relationships on EKGs. Sec. [§| discusses and
applies the proposed approach in the two case studies. Finally, Sec. [f] concludes
the paper by discussing the results, and touches upon future directions.

2 Background

An EKG is built on the concepts of events, entities (i.e., objects), and relations,
which are interconnected to represent the analyzed system [12]. It is a labeled
property graph with a limited set of node and relationship labels. In an EKG,
event nodes store at least the activity name and its timestamp, and entities store
at least a property defining its type. Event-to-event relations are defined via the
directly-follows relationship, while, event-to-entity relations are defined via the
correlation relationship. Formally, given the set A of labels, and the set Attr of
property names over a value domain Val, an EKG is defined as follows.

Definition 1 (EKG). An EKG is a graph G = (N, R, A\, #) where N is a set of
nodes, R C N X N is a set of relationships, A\ : NUR — A is a function assigning
a label to nodes and relationships, and # : (N U R) x Attr 4 Val is a partial
function assigning properties (attribute-value pairs) to nodes and relationships.

We adopt the notation n.a as shorthand for #(n,a). Given an EKG, we
distinguish two node sets, N = NFvent J NEnt where NFve™ and NF" are
respectively the set of event and entity nodes. Similarly, we distinguish two sets
of relations, R C R UR¥ where R = {r : \(r) = corr} C NEvent x NEnt
is the set of correlations between events and entities, and RY = {r : A\(r) =

Revealing One-to-Many Event Relationships in EKGs 3

Fig.1: EKG example

df}y C NFvent NEvent ig the set of directly-follows relationships. For the sake
of simplicity, we say that r = (e,a) € R if a € e.A; (e,A) € R to
mean that (e,a’) € R®™, Va' € A with a'.type = A; and 7 = (e;,e;) € RY
with respect to a (we write 1 € RY C R for convenience) if (e;,a), (ej,a) €
R Ae;.time < ej.time A (B e: (e,a) € R™ A e;.time < e.time < ej.time).

Fig. [1| shows an EKG example. Events are represented with rectangles; en-
tities as circles; and correlation and directly-follows relationships as dashed and
solid edges. For convention, the correlations are depicted only between an entity
and the first event in time correlated to it, and directly-follows relationships over
a specific entity are colored uniquely. For example, the relations in Rfﬁ form the
trace of events (es, es, €9, €19). EKGs allow for their manipulation and naviga-
tion through queries, facilitating the extraction of desired insights. Among the
other manipulations, aggregation enables grouping multiple nodes and relations
sharing common properties [11]. This produces a summarized view of event data
therefore resulting essential to construct a multi-entity DFG, that stores in each
directly-follows relationship the corresponding entity type.

3 Motivation

This section presents two case studies exhibiting collaborative patterns [16],
showing the need to represent causal event relationships. Following this, current
research relevant to this topic is reviewed.

3.1 Case Studies

The first collaborative scenario represents an order-handling process. It has been
synthetically generated and keeps track of the ordering procedures in which each
order can be composed of several items. The system receives an order, breaks it
down into individual items, and prepares them for packing and shipping. There-
fore, each order hierarchically involves several sub-processes for each item. An
excerpt of the event log of the order-handling system is depicted in Tab.[77] Here
the log stores as entity type the order identifier, i.e., order, and the item identifier,
i.e., item, composing an order. Constructing an EKG from this log would enable
the visualization of distinct processes for each order and item. Focusing on the
order entity type, inferring the directly-follows relationships only based on or-
der identifier and the time would create a trace like (e1, €2, €3, €4, €5, . .., €15, €16).
This implies that the activities of O1, but correlated to different items, would be

4 A. Giacché et al.

e id|activity time order|item
el receive order 21:32:23{O1 L
e2 start order o1 L
e3 picking item 21:47:34|01 il
ed picking item 21:47:45/01 i2 e id|activity time msg |robot
eb picking item 21:47:49|01 i3 el takeoff 15:33:22| L drone
e6 out-of-stock 21:49:49/01 i3 e2 explore 15:33:25| L drone
e7 item available 21:57:34|01 il e3 weed _found 15:34:45| L drone
(a) [e8 item available 21:57:45[01 i2 (b) [e4 weed _position! 15:34:50|wp__1|drone
9 picking completed|22:01:18| O1 i1 5 weed position? |15:35:06|wp 1|tractor 1
el0 picking completed|22:01:50/O1 i2 e6 weed position? 15:35:07|wp 1[tractor 2
ell item available 13:02:00|01 i3 e7 tractor position!|15:35:31[tp 2 |[tractor 1
el2 picking item 13:05:04|O1 i3 e8 tractor position?[15:35:32[tp__2 [drone
el3 |item available 13:09:28[O1 i3
14 |picking completed|13:14:51|O1 i3
el5 create pack 13:25:31|0O1 L
el6 ship order 13:32:31|O1 L

Fig. 2: Excerpt of order-handling (a) and robotic system (b) event logs

related via a directly-follow relationship, as in the case of ez and e4. However,
since each item follows a unique process, the order process flow should depict
a partial ordering of events. Therefore, the actual order process should start by
initializing the order with (e, es), then it triggers the item flows, for instance for
item 41 it performs (es, e7, eg), and concludes the order shipment with (e;5, e16).
Notably, this scenario also serves as a running example throughout this paper.

The second collaborative scenario is from the robotic domain |7]. The scenario
consists of one drone and two tractors cooperating to identify and remove weed
grass in farmland. The system workflow relies on the direct interaction among
the robots via messages-exchange. Specifically, the drone identifies weed grass
areas and broadcasts their location to the tractors. Tractors share their positions
back, and the drone notifies the nearest one to cut the weed grass. An excerpt
of the event log of the robotic system is depicted in Tab. [77] Here the log stores
as entity types the robot identifier, i.e., robot, and the message identifier, i.e.,
msg, generated during robots’ interaction. Constructing an EKG from this log
would enable the visualization of distinct processes for each robot and each
message flow. Focusing on the msg entity type, inferring the directly-follows
relationships solely based on the message identifier and the time would lead
to a trace like (e4, €5, eq). This implies that the message-sending event of the
drone directly-follows the message-receiving event of tractor 1, which in turn
directly-follows the message-receiving event of tractor 2. However, this sequence
does not accurately reflect the actual system behavior. Since the drone sends a
broadcast message, the trace of the entity wp; should reflect the partial order
among events where the message-sending event of the drone directly-follows both
message-receiving events, i.e., (eq, e5) and (ey, eg).

3.2 State of the Art

To discover the causal relationship between two events, i.e., when one event
occurs as a result of another [10], it is important to consider the concept of par-
tial ordering. This concept implies that when two events are causally unrelated,
their chronological order can be disregarded, and a partial ordering can be used
instead [1]. The partial order concept has been investigated with traditional pro-
cess mining techniques to depict causal relationships between events [15]. With

Revealing One-to-Many Event Relationships in EKGs 5

the advent of OCPM, a partial order of events has been obtained by inferring
directly-follow relationships based on the object shared between two sequential
events [3]|. Thus, for each object, the corresponding trace represents a total or-
der of events |12]|. However, depending on the requirements and characteristics of
different scenarios, these approaches may lead to incorrect and misleading con-
nections. Differently from these approaches and in line with the idea of depicting
one-to-many and many-to-one relationships among events, causal event models
based on object types that can trigger different object types have been inves-
tigated in [20,/21]. The authors introduce and define the Causal Event Graph
(CEG) data structure. This structure, along with its aggregated version, rep-
resents event causalities through many-to-many relationships tied to the cor-
responding objects. However, the CEG data structure only models events and
excludes objects and their relationships.

Instead, considering the characteristics of the case studies, the literature pro-
poses traditional process mining techniques to handle the hierarchical depen-
dency between processes and message interactions. One can refer to approaches
for discovering multiple instance subprocesses [6},22], or for the discovery of
collaborative systems [8,/17], as well as agent system mining approaches [19].
However, these approaches are purpose-specific and not suited for object-centric
event logs. To address this limitation, we propose the use of EKGs to reveal
causal event relationships in terms of causality, and related object types.

4 Approach

This section presents an approach for creating an EKG that reveals the causal
relationship between events related to multiple interrelated objects. Specifically,
we define when two events are in a causal relationship over two entities. Moreover,
we extend EKG creation guidelines presented in [12] to infer the causal relation-
ship and avoid the wrongly inferred directly-follows relationships. Finally, we
applied existing aggregation operations to retrieve causal activity relationships.

4.1 Defining Causal Event Relationship

To reveal causal relationships between events, we start from an EKG with two
entity types in a one-to-many relation, we call trigger the entity with cardinality
1 and target the entity with cardinality N. In a nutshell, two events in an EKG
are in a causal relationship if they are correlated to the same entity of the trigger
type and to different entities of the target type. Moreover, there must not exist
a third event that happens in between the first two events, and that either is
correlated to the same entities of one of them.

Definition 2 (Causal relationship). Let G = (N, R, A\, #) be an EKG, A and
B two entity types in a one-to-many relation, e and e; two events, a and b two
entities respectively of type A and B. We say that r = (e, e;) with A(r) = “causal”
is a causal relation over a,b if the following hold:

6 A. Giacché et al.

(a) Opening pattern (b) Closing pattern

Fig. 3: Causal Event Relationships

— (e,a),(e;,a) € RO A (e;,b) € R ; and

— (e,B’) € R with (b€ B'ANB' #{b}) VB =0; and

— B e i (ej,a),(ej,b) € RO A (etime < ej.time < e;.time V e;.time <
e;.time < e.time).

We call Rg“g7 the set of all causal relationships over an entity a of type A and
the set B’ of entities of type B. This set of causal relationships creates two kinds
of patterns, namely opening and closing patterns. An opening pattern consists
of a node, named opening, with outgoing causal relationships (Fig. ; a closing
pattern consists of a node, named closing with incoming causal relationships
(Fig.[3b)). Following, we provide a formal definition of opening and closing nodes.

Definition 3 (Opening and closing nodes). Let G = (N, R, \,#) be an
EKG, e € NEvent an event node and a and entity node of type A such that
(e,a) € R, B" a set of entities of type B, and R'57 the set of all causal
relationships over a and B’', we call e:

— an opening node if either 3 e;,e; € N¥U' : (e,e;) € REE A (e,e;) € RS
or (3e; € NEvt - (e,e;) € REYS) A (B e, € NE™ - (e, e;) € REY?)

— a closing node if either 3 e;,e; € NPVt : (e, €) € R A (ej,e) € RyY5?
or (3 e; € NFvent . (e, e) € RS N (Fep € NEvert : (e, ep) € R3S

Moreover, opening and closing nodes are identified by property rel i.e.,
e.rel = “opening” and e.rel = “closing” respectively.

4.2 Constructing the EKG

Following, we present the approach for revealing causal relationships in an EKG.
Let G = (N, R, A\, #) be an EKG, a be a trigger entity of A type, and B a target
entity type. The approach consists of applying the following steps for each trigger
entity of type A. First, we combine traces of events correlated to trigger and
target entities. Then, we reveal opening and closing patterns. Finally, we infer
directly-follows relationships.

Revealing One-to-Many Event Relationships in EKGs

Combine Traces. To identify the opening and
closing patterns for a trigger entity a, we need
to retrieve from the graph the set of traces
by looking at events correlated with both a
and the set of target entities. The function in
Algorithm [1| represents the proposed step. It
defines an empty dictionary FE, for containing
the traces; the set E’ of events correlated to a;
and the set B’ of values for the property e.3
(lines 2 to 4). Then, the function cycles the
elements of £/ and B’ to populate the dictio-
nary F, that will match each entity of B’ with

7

Algorithm 1 Combine Traces

10:
11:
12:
13:

1
2
3
4
5:
6
7
8
9

: function CoMBINE(a)

E, « I
E' + {e:(e,a) € R}
B' + {eB:e€ E'}
for e € E' do
for b € B’ do
if e85 = b then
E,[b] + Eqb] U {e}
end if
end for
end for
return E,
end function

the set of events of E’ correlated to that entity (lines 5 to 11).

Algorithm 2 Reveal opening and closing Patterns

1: Input: E,

2. first = head(E,)

3: remaining = E, \ {first}

4: for rel € {“opening”, “closing”} do

5 first’ = FILTER(first, remaining, rel)

6 ec = IDENTIFY(first’, rel)

7 REVEAL(ec, rel)

8: end for

9: function FILTER(tr, remaining, relation)

10: if relation = “opening” then

11: tr’ « {e € tr: e, € remaining s.t. e.time < e,.time}
12: else if relation = “closing” then

13: tr’ < {e € tr : B e, € remaining s.t. e.time > e,.time}
14: end if

15: return tr’

16: end function
17: function IDENTIFY(tr, relation)

18: e < null

19: if relation = “opening” then

20: e.—ectr:he’ €trst. e time> etime
21: else if relation = “closing” then

22: e.—ectr: 39 e’ €tr s.t. e’ time < e.time
23: end if

24: ec.rel = relation

25: return e.

26: end function
27: function REVEAL(e., remaining, relation)
28: r < null

29: if relation = “opening” then

30: for tr € remaining do

31: erectr:Ae €trs.t e time < e.time
32: r <+ (ec,er)

33: end for

34: else if relation = “closing” then

35: for tr € remaining do

36: e, <—ectr: fﬂ e’ €tr s.t. e’ .time > e.time
37: r <+ (er,ec)

38: end for

39: end if

40: R;‘lgf — Rg“gf U{r}

41: end function

8 A. Giacché et al.

Reveal Opening and Closing Patterns. To reveal opening and closing patterns,
we use the set of combined traces E, for the a entity. We consider the relation
variable that indicates whether we are looking for an opening or a closing. We
extract first = head(E,) where function head() returns the trace with the event
occurring for first in all events of E,, and the set remaining = tail(E,) as the
set of other traces except for the first one. The opening and closing pattern
identification follows a similar path composed of three main steps: (7) filter, (i%)
identify, and (iii) reveal. Algorithm [2[depicts the functions to reveal opening
and closing patterns. Starting from the FILTER function, it retrieves events from
the first trace where their timestamps are lower than those in the events of
the remaining traces (if looking for an opening pattern) or higher than those in
remaining events (if looking for a closing pattern) (lines 10 to 14). This function
results in the first’ set of events, used to identify the opening or closing nodes.

The IDENTIFY function retrieves the node e, from first’ as the one with a
higher timestamp (opening) (line 20) or the one with a lower timestamp (closing)
(line 22). Finally, it marks the identified node with the corresponding relation
(line 24). Finally, the REVEAL function uses the identified node e. and the set
remaining to create a causal relationship. For each trace in remaining, it gets
the event with a lower timestamp (opening) (line 31) or the event with a higher
timestamp (closing) (line 36) and creates a causal relationship (lines 32 and 37),
via r such that it stores in the rel property, the causal value. The revealed causal
relation is then added to R;*? to include in the relations of the EKG (line 40).

Infer Directly-Follows Relation-
ship. Once the opening and clos-
ing patterns are identified and the 1 3 ,
. . 2: function INFER(a, B')
causal relfi.tlf)nShIPS revealed, t.he N RY « RY U{RY Ve B}
last step is inferring the remain- 4 eop < e:(e,a) € R Aerel
6
7

Algorithm 3 Infer R

. Input: a, B’

“opening”
“closing”

ing directly-follows relations. Al- j%“f,f_ < r,(,fe’ @) € R Aerel
. . « RY\ {(eop, €ct)}
gorithm [3] describes the final step. 7. end function
For the a entity and each en-
tity of B type, a directly-follows relationship of the respective type is inferred
following the formalization prescribed by [12| (line 3). Additionally, for the a
entity a directly-follows relationship is not inferred between the opening and the
closing node (lines 4 to 6). Notably, for each trigger entity, an opening pattern
generates as many causal relationships as the number of unique occurrences with
the target entity. A closing pattern collects as many causal relationships as the
number of unique occurrences with the target entity.

4.3 Revealing Causal Activity Relations

Let G = (N, R, \,#) be a graph constructed considering causal event relations.
To reveal causal activity relations we performed node and relation aggregation as
prescribed by the current state-of-the-art [11]. The aggregation operation relies
on a generic aggregation function Agg(class, G) = G€ to produce a multi-entity

Revealing One-to-Many Event Relationships in EKGs 9

(a) Without causal relations

order_id: picking item m item available ﬂi::] picking completed)‘““K‘
X Hem_id:
receive ordef]-“"":“‘—*—b[start order }“ﬂ.‘:’dv‘—b[picking item [ﬁ:ﬁj item available m picking completed [order-id:
ordet e+ picking item]ﬂ_::::] item available [ﬁ:::::] picking completed [ord

(b) With causal relations

Fig. 4: EKGs excerpt of the order-handling case study

DFG, following the node aggregation property class to create Class nodes. Usu-
ally, the aggregation property refers to the events activity name, but it can also
be a combination of properties, such as aggregating event nodes with the same
activity and order. Moreover, the event-to-event relationships are aggregated to
derive class-to-class relationships. The type of the class-to-class relationship is
set based on the event-to-event relationship type, and the node causal rel in-
formation, i.e., opening or closing, is kept. Additionally, the occurrences of each
observed event pair are stored as a relationship property count. Therefore, af-
ter EKG aggregation, the resulting multi-entity DFG shows class nodes and the
relations among them, keeping track of the causal activity relations.

5 Proof of Concept

In this section, we show the proposed approach compared to the standard EKG
creation of [12]|. The approach has been applied to the case studies presented in
Sec. by implementing it as a collection of queriesE| in the Cypher language |13,
enriched with the trigger and target information selected by the domain expert.
Order-handling. This case study is characterized by a hierarchical behavior
where each order is split into several item lines composing it. Thus, an event
produced by an order triggers multiple flows for item preparation. Therefore,
the approach has been assessed considering the order entity type as the trigger
and the item as the target entity type. Fig. [shows an excerpt of the EKGs
generated without considering causal relationships (Fig. and with causal re-
lationships (Fig. . As illustrated in Fig. the flow of an order entity based
on temporal order incorrectly links different picking item activities, even if they
belong to different items. Additionally, it links an item awvailable activity to a
picking completed activity across different items, as shown by looking both at
the order and the item flow. Differently, Fig. [b] reveals the causal relationships
between an order and the items composing it. It shows that the start order activ-
ity splits its flow into three item lines, each of which independently executes its

3 https://bitbucket.org/proslabteam/soup/wiki/CausalRelationships

https://bitbucket.org/proslabteam/soup/wiki/CausalRelationships

10 A. Giacché et al.

j»m”—'[cmate pack I»Ma—'[shlp order J

(a) Without causal relations

itom: 51—

receive orderw‘—’{ start order I-“““‘-P{ picking item jmm‘“ L:{ om—of-mm picking]-ﬁ“'-“-b' create pack)-‘“"“4‘—'[ship order‘

———order 14—
——item: 14—

(b) With causal relations

Fig. 5: Multi-entity DFG of the order-handling case study

process. After a picking completed items’ flows collide into the order create pack
activity. Performing the aggregation operation for the activity property results
in Fig. 5] Specifically, Fig. [pal shows the aggregation of the EKG without consid-
ering the causal relationships between events correlated to orders and items. As
a result, the order flow only reflects the sequence of activities performed on the
orders over time. In contrast, Fig. [fb] depicts the multi-entity DFG, which incor-
porates causal relationships. This view captures the entire process: 18 orders are
received and started, generating 51 items. Of these, 14 were initially out-of-stock
but were later prepared to assemble an order pack and ship the order.

Robotic System. This case study involves direct communication among robots.
In a collaborative system with broadcast communication, a single event that
generates a message can trigger multiple message-catching events by different
participants. Therefore, the msg entity type has been identified as the trigger
entity, and the robot entity type has been identified as the target entity affected
by events correlated with a message. Fig. [6] shows an excerpt of the EKG con-
structed using the current state-of-the-art method (Fig. @ and the proposed
approach (Fig. . This excerpt focuses on the interaction between events from
the message and robot perspectives. In Fig. [6a] the msg flow is constructed by
following the temporal order of events correlated to the same message, leading
to a one-to-one relationship between events, where two message-receive events,
belonging to different robots, are connected. In contrast, Fig. [6D] splits the mes-
sage flow, creating a one-to-many relationship between a message-sending event
and two message-receiving events. The structure of the EKG influences its ag-
gregated version, which is used for system analysis. In this case study, events are
aggregated following the activity name and the robot identifier to retrieve the
collaboration between robots. However, for the sake of presentation, the result
of EKG aggregation is in the online documentation.

Summing up, the generated EKGs demonstrate the potential of the proposed
approach through two case studies with different characteristics but exhibiting
collaboration patterns. Specifically, the comparison between the EKGs generated
with causal relations and those generated with existing approaches highlights the

Revealing One-to-Many Event Relationships in EKGs 11

— robot: 1
/ e
// robot: 1
~+{ weed._position! M“ > weed_positiont| //"VV
s . »{ weed_positiont | b1 Meed_posttiont | roboti 1
(a) Without causal relations (b) With causal relations

Fig. 6: EKG excerpt of the robotic case study

necessity of considering not only one-to-one event relations but also one-to-many
relations between events.

6 Concluding Remarks

We presented an approach for revealing causal relationships between events cor-
related to objects in one-to-many relations. The approach has been assessed
on two case studies, showing its effectiveness in revealing causal relationships
over an EKG.The approach highlights the limitation of constructing event-to-
event relations solely based on the shared entity and the temporal occurrence,
emphasizing the necessity of representing the partial order of events from an
object-centric perspective. Although it has been applied only to pairs of entity
types, the approach can be extended to multiple entity pairs. For instance, an
order can be in a one-to-many relation with items in a many-to-one relation with
packages, which could be related in a many-to-one fashion to an order.

With this work, we aim to focus on the importance of causal relationships
between events when dealing with object-centric event logs in which objects are
related among them. We acknowledge that the proposed approach may be lim-
ited by the need for domain knowledge to identify which objects are causally
related and to determine which entities are the triggers and which are the tar-
gets. Nevertheless, domain knowledge is crucial for guiding process mining anal-
ysis |9], especially in OCPM, where multiple processes are interrelated [14]. In
future work, we intend to deepen the study of causal relationships by including
additional case studies where more entities are causally related to each other.

Acknowledgments. This work has been funded by the European Union - NextGen-
erationEU under the Italian Ministry of University and Research (MUR) National
Innovation Ecosystem grant ECS00000041 - VITALITY - CUP J13C22000430001

References

1. van der Aalst, W.M.P.: Object-Centric Process Mining: Dealing with Divergence
and Convergence in Event Data. In: Software Engineering and Formal Methods,
LNCS, vol. 11724, pp. 3-25. Springer (2019)

2. van der Aalst, W.M.P., Carmona, J.: Process Mining Handbook. Springer (2022)

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. Giacché et al.

Berti, A., van der Aalst, W.M.P.: Extracting multiple viewpoint models from rela-
tional databases. In: Data-Driven Process Discovery and Analysis. LNBIP, vol. 379,
pp. 24-51. Springer (2019)

Berti, A., van der Aalst, W.M.P.: OC-PM: analyzing object-centric event logs and
process models. International Journal on Software Tools for Technology Transfer
25(1), 1-17 (2023)

Berti, A., Montali, M., van der Aalst, W.M.P.: Advancements and chal-
lenges in object-centric process mining: A systematic literature review. CoRR
abs/2311.08795 (2023)

Conforti, R., Dumas, M., Garcia-Banuelos, L., Rosa, M.L.: BPMN miner: Auto-
mated discovery of BPMN process models with hierarchical structure. Information
Systems 56, 284-303 (2016)

Corradini, F., Pettinari, S., Re, B., Rossi, L., Tiezzi, F.: A methodology for the
analysis of robotic systems via process mining. In: Enterprise Design, Operations,
and Computing. LNCS, vol. 14367, pp. 117-133. Springer (2023)

Corradini, F., Pettinari, S., Re, B., Rossi, L., Tiezzi, F.: A technique for discovering
BPMN collaboration diagrams. Software and Systems Modeling pp. 1-21 (2024)
Dixit, P.M., Buijs, J.C.A.M., van der Aalst, W.M.P., Hompes, B.F.A., Buurman,
J.: Using domain knowledge to enhance process mining results. In: Data-Driven
Process Discovery and Analysis. pp. 76-104. Springer (2017)

van Dongen, B.F., Van der Aalst, W.M.: Multi-phase process mining: Aggregating
instance graphs into epcs and petri nets. In: PNCWB workshop. pp. 35-58 (2005)
Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. Journal
on Data Semantics 10(1-2), 109-141 (2021)

Fahland, D.: Process mining over multiple behavioral dimensions with event knowl-
edge graphs. In: Process Mining Handbook, vol. 448, pp. 274-319. Springer (2022)
Francis, N., et al.: Cypher: An Evolving Query Language for Property Graphs. In:
Management of Data, pp. 1433-1445. ACM (2018)

Goossens, A., De Smedt, J., Vanthienen, J., van der Aalst, W.M.P.: Enhancing
data-awareness of object-centric event logs. In: Process Mining Workshops. pp.
18-30. Springer (2023)

Leemans, S.J.J., van Zelst, S.J., Lu, X.: Partial-order-based process mining: a sur-
vey and outlook. Knowledge and Information Systems 65(1), 1-29 (2023)
Lonchamp, J.: Process model patterns for collaborative work. In: World Computer
Congress-Telecooperation’98. p. 12 (1998)

Pena, L., Andrade, D., Delgado, A., Calegari, D.: An approach for discovering inter-
organizational collaborative business processes in BPMN 2.0. In: Process Mining
Workshops. LNBIP, vol. 503, pp. 487-498. Springer (2023)

Swevels, A., Fahland, D., Montali, M.: Implementing Object-Centric Event Data
Models in Event Knowledge Graphs. In: Process Mining Workshops, LNBIP,
vol. 513, pp. 431-443. Springer (2024)

Tour, A., Polyvyanyy, A., Kalenkova, A.A., Senderovich, A.: Agent miner: An
algorithm for discovering agent systems from event data. In: Business Process
Management. LNCS, vol. 14159, pp. 284-302. Springer (2023)

Waibel, P., Novak, C., Bala, S., Revoredo, K., Mendling, J.: Analysis of business
process batching using causal event models. In: Process Mining Workshops. LNBIP,
vol. 406, pp. 17-29. Springer (2020)

Waibel, P., Pfahlsberger, L., Revoredo, K., Mendling, J.: Causal process mining
from relational databases with domain knowledge. arXiv:2202.08314 (2022)
Weber, 1., Farshchi, M., Mendling, J., Schneider, J.: Mining processes with multi-
instantiation. In: Symposium on Applied Computing. pp. 1231-1237. ACM (2015)

	Revealing One-to-Many Event Relationships in Event Knowledge Graphs

