
On the interplay between BPMN collaborations
and the physical environment

Flavio Corradini1, Jessica Piccioni1, Barbara Re1,
Lorenzo Rossi1, and Francesco Tiezzi2

1 University of Camerino, Computer Science Division, Camerino, Italy
{name.surname}@unicam.it

2 Dipartimento di Statistica, Informatica, Applicazioni, University of Florence, Italy
francesco.tiezzi@unifi.it

Abstract. Nowadays, business scenarios are permeated and influenced by in-
formation from the surrounding physical environment that influences decision-
making and vice-versa. This is especially evident in the presence of participants
able to move in and interact with the physical environment. In this regard, BPMN
is a widely accepted standard for representing multi-party business processes in
terms of collaboration diagrams, offering an expressive and understandable no-
tation. However, BPMN, as well as its extensions, overlook the support to the
physical environment. In this paper, we describe the interplay between BPMN
collaborations and the physical environment. Specifically, we bridge the BPMN
meta-model with environmental concepts, defining environmental BPMN collab-
oration models. To facilitate a deeper understanding of the dynamics of these
models, we provide a formal account of their semantics. We illustrate our find-
ings through a fire-extinguishing collaborative scenario.

Keywords: BPMN · Physical environment · Meta-model · Formal semantics.

1 Introduction

Modern organizations continually seek efficient and effective ways to model, analyze,
and optimize their business processes. In this regard, the Business Process Model and
Notation (BPMN) [11] has gained widespread adoption as a standard to model in an
intuitive and expressive way business processes. In particular, the so-called BPMN col-
laboration diagrams specify how different participants (e.g., humans, software systems,
robots) behave, exchange information, and work together in the same environment to
reach a common objective. This enhances clarity and transparency and enables the iden-
tification and management of inefficiencies or bottlenecks [7].

In modeling business processes it is crucial to consider the context where partic-
ipants can operate [2]. According to [14], a context is defined as “the minimum of
variables containing all relevant information that impact the design and execution of a
business process”. In this work, we concentrate on the environmental context, which
includes all information beyond the process control flow influencing the process [15].
In particular, we focus on the physical part of the environmental context, which is re-
lated to (i) the space where a process participant acts and moves, and (ii) the domain



2 Corradini F. et al.

attributes that characterize it. For the sake of presentation, from now on we use the
term environment to mean the union of space and attributes. Awareness of the environ-
ment plays an important role in determining the outcome of a business process [13].
Process participants are often part of the environment [12,16]: they can hold a position,
move, react to a particular situation, or even make environmental changes. Therefore,
activities, decisions, and events can depend on specific conditions of the environment
and influence it. More precisely, the status of the environment can (i) constrain the ex-
ecution of an activity, e.g., a machinery starts only if the item to work on is in place;
(ii) drive decision points, e.g., if a charge station is occupied, an autonomous forklift in
a warehouse decides to wait in a safety zone; (iii) trigger events, e.g., an alarm triggers
the termination of an activity or the process. At the same time, a process activity can
influence the status of the environment by (iv) involving the movement of a participant
in the space, e.g., a truck that reaches the loading area; (v) changing the environment,
e.g., a human that closes a door or moves a box in the middle of a passage.

Therefore, the need to link business processes with the physical environment has
become prominent since the literature still neglects to fully support the interplay be-
tween BPMN and the physical environment. Existing works dealing with the concept
of the environment within BPMN [12,16,9] have drawbacks that highlight the need for
a more comprehensive and integrated approach to model this interplay. Indeed, they of-
ten propose extensions to the BPMN graphical notation, and none of them give a formal
approach to explicitly represent the environment and how BPMN elements relate to it.

To fill this gap, in this paper, we present an approach to bridge BPMN collaborations
and the physical environment. Reasoning on multiple participants amplifies the interac-
tion with the environment, while communication enables the sharing of environmental
information. More in detail, the contributions of our work are as follows:

– we discuss environmental aspects relevant to the modeling and execution of busi-
ness processes;

– we exploit place graphs enriched with place attributes to describe the physical
environment and inject these concepts into the BPMN meta-model

– we define environmental BPMN collaborations without modifying and/or introduc-
ing new elements in the BPMN standard;

– we describe this interplay through a formal operational semantics.
We facilitate the understanding of the above concepts by resorting to a fire-
extinguishing collaborative scenario.

The rest of this paper is organized as follows. Section 2 shows the interplay of
BPMN collaborations and the environment. Section 3 introduces the formal semantics
of environmental BPMN collaborations. Section 4 illustrates our formalization at work
through the running example. Section 5 introduces related work, and Section 6 con-
cludes the paper by discussing the approach.

2 Bridging BPMN and environment

In this section, we present our approach to link the BPMN meta-model to the physical
environment. We also introduce a collaborative scenario to give a concrete vision of the
problem; we use this scenario throughout the paper as a running example.



Corradini F. et al. 3

Fig. 1: Floor plan and place graph of the dormitory

Running example. The running example concerns a fire-extinguishing collaboration
in a student dormitory. The collaboration is performed by a fire control system and a
fire-fighting autonomous robot. The fire control system is in charge of detecting fire
in dormitory rooms through fire sensors and informing the extinguisher robot that will
reach the fire to extinguish it. The dormitory, inhabited by students, comprises a kitchen,
an entrance, three bedrooms, two bathrooms, and a living room connected by a corridor.
Each room has a door and a fire sensor. The collaboration starts when the fire control
system detects the presence of fire in one of the dormitory rooms. In this case, the
fire control system notifies the fire position to the fire-fighting robot and then activates
the alarm. As soon as the robot receives the notification, it moves toward the fire and,
after extinguishing it, sends feedback to the control system, which turns off the alarm.
Notably, apart from the fire control system and the fire-fighting robot, some students in
the dormitory perform their daily routines interacting with the environment.

Model the environment. To consider the environment in the modeling and execution
of a business model, we need a way to represent it. Over the years, several models have
been proposed to represent the physical environment [1]. In particular, two main classes
of environmental models are defined: geometric models and symbolic models. The for-
mer mainly comprise cell-based and boundary-based geometrical representations. The
latter uses topological-based structures or graphs, where it is possible to define an ad-
hoc level of abstraction by capturing the connectivity and reachability between two
locations in the space. Since our target is to link the environment to the BPMN no-
tation, we chose place graphs as they can abstract the space topology at will, like also
BPMN does [4,10]. Indeed, place graphs are a particular kind of symbolic model, where
places symbolize a predefined area, like buildings and rooms, and the edges between
two places represent connections that make it possible to move between them [1,8].
Thus, they provide a direct way to represent movements between places and planning



4 Corradini F. et al.

Place

-placeAttributes:List

Edges

+sourcePlace

+outgoing

1

*

+ targetPlace

+incoming

1

*

Participant

-name:String

Process

-processType:ProcessType
-isClosed:Boolean
-isExecutable:Boolean

Activity

-isForCompensation:Boolean
-startQuantity:Int
-completionQuantity:Int

Task

FlowElementsContainer

FlowNode FlowElement

-name:String

DataObject

SequenceFlow

-isImmediate:Boolean

Expression FormalExpression

-language:String
-body:Element

+targetRef
+incoming

1

*

+sourceRef

+outgoing

1

*

0..1

0..1

+conditionExpression

+flowElements

1

+container

*

*

1

+position

+processRef
0..1

*

1 0..1

+activity +default

+destination

*

0..1

1

+assignments

0..*

1 +guard 0..1

Fig. 2: BPMN meta-model extended with the environment

routes to destinations. Moreover, place graphs can be enriched with attributes related to
places (e.g., the illumination status) and edges (e.g., the distance).

Referring to the running example, Figure 1 depicts the place graph of the dormitory
on top of its floor plan. To cover the entire dormitory, we spread the places on the
floor plan homogeneously, i.e., adjacent places are equidistant and connected through
edges, except for places divided by a wall or a closed door. Besides the representation
of the space, we include in the place graph the attributes necessary to handle the fire-
extinguishing collaboration. In particular, we include in each place attributes indicating
the presence of fire and the status of the alarm.

Extending the BPMN meta-model. To interconnect BPMN collaborations with place
graphs, we extend the BPMN meta-model using its extensibility mechanism [17] as
described in Figure 2.

We introduce two new classes, called Place and Edge, which respectively corre-
spond to places and edges of the place graph. Places refer to edges (and vice-versa)
through two attributes sourcePlace and targetPlace. Therefore, each place can be linked
to many source/target places, permitting the representation of the entire place graph.
Each place also has a list of attributes, which refers to physical environment character-
istics. The connection between the environment and collaboration participants happens
through the attribute position that links Participant and Place classes to indicate the
current position of participants. Moreover, the Task class is linked to the Place class
via the attribute destination that indicates the eventual target destination of an activity
involving a movement in the space. Finally, we introduce the guard and assignment
attributes to constrain the execution of a task to an environmental status and to modify
the environment topology or its attributes.

To give a concrete view of the link between a BPMN collaboration and the envi-
ronment, we provide in Figure 3 the collaboration diagram representing the behavior
of the running example connected to the environmental model in Figure 1. The collab-
oration comprises a pool encapsulating the behavior of the fire control system and a
pool referring to the fire-fighting robot. In addition, we include a pool that represents



Corradini F. et al. 5

F
ire

-f
ig

ht
er

Move to base
station

Move to fire
position

Estinguish fire

S
tu

de
nt

Move to kitchen Cook Move to corridor Close door
Move to

bathroom

F
ire

 c
on

tr
ol

 s
ys

te
m

Check fire
position

Activate alarm

Deactivate
Alarm

Ask human
intevention

f18

Finish fire
extinguish

f19

Receive fire
presence

stop robot

Base

f11

Notify fire
estinguished

f17

is fire present?

f12

Send help request

f22

Fire

f13

yes

f14

no

f15 f16

place
unreachable f21

place
unreachable f20

Start daily
 routine

f23 f24 f25

close door?

f26 f27

yes

no         f29

f28 f30

End daily
 routine

f31

Fire detected

f1

Fire Position

Notify fire
presence

f2 f3 f4

Receive help
request

f8

End fire
control

Fire handled

f7

f9 f10

Receive fire
estinguished ack

f5 f6

Fire notice Alarm handled Fire fighter
blocked

Fig. 3: Fire-extinguishing collaboration model

the behavior of a student in the dormitory. The student is not a direct participant in the
collaboration, but it shares the same space and can modify the environment (i.e., ac-
tivating the alarm, closing/opening doors) having consequences in the outcome of the
collaboration. The fire-extinguishing collaboration process starts when the fire control
system detects a fire via the conditional start event Fire detected. This element reacts to
environmental changes; more precisely, it triggers a process instance when its condition
is evaluated as true. The expression predicates on the state of the fire sensors; in case
a sensor reveals the fire, the condition becomes true. Therefore, the fire control system
checks the position of the fire and notifies the fire-fighting robot using the message fire
notice. Then, it activates the alarm through an assignment on the environmental attribute
representing the status of the alarm. When the robot receives the notification with the
message start event, it performs Move to fire position. This activity involves the move-
ment of the process participant in the physical space. In particular, the robot will try to
reach the destination (corresponding to the fire position) from its current location. If the
robot manages to reach the destination, it extinguishes the fire if present, changes the
status of the environment, and sends feedback to the fire control system, which turns
off the alarm and ends its process. Then, the robot returns to the base station and stops.
Regarding the Move to fire position and the Move to base station activities, if the robot
cannot reach a destination, the conditional boundary events place unreachable trigger
exceptional behaviours. The unreachability could be caused by the absence of a path
from the source location to the destination. The boundary event attached to the Move
to fire position activity leads the robot to notify its blocked condition to the fire con-
trol systems and return to the base station. The boundary associated with Move to base
station, instead, stops the process.



6 Corradini F. et al.

3 Formal account of environmental BPMN collaborations

In this section, we formalize the semantics of BPMN collaborations including the en-
vironment, namely environmental BPMN collaboration models. To keep the formal-
ization manageable and understandable, we focus on elements that are strictly needed
to define meaningful collaborations, the environment where the collaboration happens,
and the relations between them.

3.1 Textual notation of environmental BPMN collaborations

The formalization resorts to a textual representation, defined in Figure 4, of BPMN
models and of the environment. This is not a notation alternative to BPMN, but just a
Backus-Naur Form (BNF) syntax of collaboration models (similar to the formalization
proposed in [3]). Hence, the textual notation does not go beyond the expressiveness of
the BPMN notation as given by the extended meta-model in Figure 2. The correspon-
dence between the graphical notation of BPMN and the textual representation used here
is straightforward, as highlighted by the description associated to each syntactical term
in Figure 4; for a more detailed account of the correspondence, the interested reader can
refer to Appendix A. It is worth noticing that the BPMN standard deliberately leaves
underspecified the expression language, whose instantiation is left to the designer to
deal with specific concrete uses of the notation (common choices are the languages
XPath and FEEL). In our formalization, we do not specify the expression language as
well; however, we assume that expressions contain, at least, values, data objects and
environmental attributes, and operations on the place graph.

The motivation for using here a textual representation rather than the usual graphical
notation is that the former is more manageable for writing operational semantic rules
than the latter. In addition, the graphical notation makes explicit those technical details
of collaboration models that are not part of the graphical representation, but are part
of the low-level XML characterization of the model. This information is needed to
properly define the execution semantics of the models.

Figure 4 reports the BNF syntax defining the textual notation describing the struc-
ture of environmental BPMN collaboration models. Specifically, the upper part of the
table reports the grammar productions defining the syntax of collaboration models, the
middle part defines place graphs, and the bottom part reports the notation for the generic
elements of the syntactic categories. Notably, even if this syntax would allow to write
collaboration models that cannot be expressed in BPMN, here are considered only those
terms of the syntax that can be derived from BPMN models. Intuitively, a collabora-
tion is rendered in the presented syntax as a collection of single-instance pools, each
one specifying a process, coupled with an environmental model in the form of a place
graph. Formally, a collaboration C is a composition by means of the operator ∥, of
pool elements pool(p,P) uniquely identified by a pool name p and enveloping process
structures of the form P. Similarly, a process P is a composition of process elements
(denoted by the sans serif font) by means of the operator |. A place graph S is a tuple
(Pl ,E) where Pl is the set of places of interest for the collaboration and E is the set of
edges linking couples of places. The union of the terms C and S composes the structure
of an environmental BPMN collaboration model.



Corradini F. et al. 7

C ::= (Collaboration Structures)

pool(p,P) | C ∥ C (pool, pool composition)

P ::= (Process Structures)

start(f, f ′) | end(f) (start event, end event)

| startRcv(m :do.a, f) (message receiving event)

| startCond(exp, f) (conditional start event)

| endSnd(f,m :exp) (message sending end event)

| interRcv(f,m :do.a, f ′) (msg receiving intermediate event)

| interSnd(f,m :exp, f ′) (msg sending intermediate event)

| interCondCatch(f,exp, f ′) (conditional catching interm. event)

| andSplit(f,F) | andJoin(F, f) (AND split/join gateway)

| xorSplit(f,(exp1, f1), . . . ,(expn, fn)) (XOR split gateway)

| xorJoin(F, f) (XOR join gateway)

| eventBased(f,(m1 :do.a1, f1), . . . ,(mh :do.ah, fh), (event-based gateway)
(exp1, fh+1), . . . ,(expn, fh+n))

| task(f,t,exp,AA,AS,D,B, f ′) | P |P (task, process composition)

AA ::= (Attribute Assignments)

do.a := exp (data object attribute assignment)

| pl.a := exp (place attribute assignment)

| ε | AA,AA (empty, assignments list)

AS ::= (Spatial Graph Actions)

connect(e) | disconnect(e) (connect, disconnect)

| ε | AS,AS (empty, actions list)

D ::= (Destinations)

nil | pl | do.a (empty, place, data object attribute)

B ::= (Boundary Events)

boundCond(exp, f) (conditional boundary event)

| boundRcv(m :do.a, f) (message receiving boundary event)

| nil | B,B (empty, boundary events list)

S ::= (Pl ,E) with E ⊆ Pl ×Pl (Place Graphs)

(Notation)

Pool name: p Data object name: do

Sequence flow: f Data object attribute: do.a

Sequence flow set: F Place name: pl

Message flow: m Place attribute: pl.a

Expression: exp Place set: Pl

Value: v Edge name: e

Task name: t Edge set: E

Fig. 4: BNF syntax of environmental BPMN collaboration models.



8 Corradini F. et al.

Cd = pool(p f cs,Pf cs) | pool(p f ,Pf ) | pool(ps,Ps)

Pf cs = startCond(exp1, f1) | task(f1,Check fire position,true,Fire position.pos := plj,ε,nil,nil, f2) |
interSnd(f2,Fire notice :Fireposition.pos, f3) | task(f3,Activate alarm,true,AA1,ε,nil,nil, f4) |
eventBased(f4,(Fire fighter blocked :true, f9),(Alarm handled :true, f6)) |
task(f6,Deactivate alarm,true,AA2,ε,nil,nil, f7) |
task(f9,Ask human intervention,true,ε,ε,nil,nil, f10) | end(f7) | end(f10)
exp1 =

∨44
1 plj.fire AA1 = ∀ 1≤ j≤44 . plj.alarm := true

AA2 = ∀ 1≤ j≤44 . plj.alarm := false

Pf = startRcv(Fire notice :Fire.pos, f11) |
task(f11,Move to fire position,true,ε,ε,Fire.pos,boundCond(exp4, f21), f12) |
xorSplit(f12,(Fire.pos.fire= true, f13),(Fire.pos.fire= false, f14)) |
task(f13,Estinguish fire,true,Fire.pos.fire := false,ε,nil,nil, f15) |
xorJoin((f14, f15), f16) | interSnd(f16,Alarm handled :true, f17) |
interSnd(f21,Fire fighter blocked :true, f22) | xorJoin((f17, f22), f18) |
task(f18,Move to base station,true,ε,ε,Base.pos,boundCond(exp4, f20), ff19) | end(f19) | end(f20)
exp4 = next(S,σp,p,D) = /0

Ps = start(f ′23, f23) | task(f23,Move to kitchen,true,ε,ε,pl4,nil, f24) |
task(f24,Cook,true,pl4.fire := true,ε,nil,nil, f25) | task(f25,Move to corridor,true,ε,ε,pl17,nil, f26) |
xorSplit(f26,(true, f27),(true, f29)) | task(f27,Close door,true,ε,AS1,nil,nil, f28) |
xorJoin((f28, f29), f30) | task(f30,Move to bathroom,true,ε,ε,pl15,nil, f31) | end(f31)
AS1 = disconnect((pl17,pl3)),disconnect((pl3,pl7))

Sd = (Pl d ,Ed) Pl d = {pl j | 1≤ j ≤44} Ed = {(pl1,pl2),(pl1,pl3),(pl1,pl4),(pl2,pl1),(pl2,pl3),(pl2,pl4), . . .}

Fig. 5: Textual representation of the running example.

In Figure 5, we provide the textual representation of the environmental BPMN col-
laboration model of the running example. This exemplifies the correspondence between
the BPMN graphical notation and the proposed BNF syntax. Moreover, we exploit the
textual representation of the example Sec. 4 for discussing the semantics of the run-
ning scenario. In the textual representation, there is some information e.g., payload of
message events, assignments, guard conditions, and locations that is not reported in
the graphical notation but is reported in the textual representation since it is needed
to properly define the execution semantics of the environmental BPMN collaborations.
Moreover, each sequence flow in the graphical notation is split into two parts: the part
outgoing from the source element and the part incoming into the target element. The
two parts are correlated by a unique sequence flow name. We do not provide a direct
syntactic representation of data objects and place attributes, the evolution of their state
during the model execution is a semantic concern described later in this section.

We assume a generic record structure for data objects and place attributes: data
objects and places are just a list of attributes characterized by a name and the corre-
sponding value. Specifically, the attribute name of the data object do (resp. place pl)
is accessed via the notation do.a (resp. pl.a). Since we explicitly consider data and
place attributes, tasks, XOR split gateways, conditional events, and messages can use
them. Tasks can express guard conditions that predicate these attributes via conditional
expressions. They also express a list of attribute assignments AA that assign values
(resulting from the evaluation of expressions) to data object or place attributes, e.g.,
do.a := v; and a list of spatial assignment AS that modify the space topology by remov-
ing or adding a connection between two places, e.g., disconnect(e). Finally, tasks may
involve a movement in the place graph; in this case, the destination D identifies one
of the places in the place graph. XOR split gateways specify conditions in their outgo-
ing edge to decide which sequence flow to activate. This is formally rendered mapping
sequence flows to conditional expressions, e.g., (exp, f). Notably, we assume that the
set of expressions includes the distinguished expression default referring to the default



Corradini F. et al. 9

sequence flow. Conditional events are characterized by conditional expressions in the
form exp, which are evaluated to trigger the event. Finally, message events describe
point-to-point communications that may carry data. Throwing message events are char-
acterized by the pair m : exp, where m is the (unique) message name and exp is an
expression representing the payload. Catching message events are characterized by the
pair m : do.a where do.a denotes the data object attribute to which to assign the eval-
uated expression. To express communication without passing information we assume
both throwing and catching events specify in the expression the value true.

3.2 Semantics of environmental BPMN collaborations

So far, the syntax represents the mere structure of processes, collaborations, and the
environement. To describe the semantics, the structural information is enriched with a
notion of execution state, given by the marking of sequence flows with tokens [11, p.
27], the value of data object and place attributes, the status of tasks, the position of the
participants in the place graph, and payloads stored in the message queues.

These stateful descriptions are called process configurations and collaboration con-
figurations. A process configuration (reps. collaboration configuration) has the form
⟨P,S,σ f ,σa,σt ,σp,σm⟩ (resp. ⟨C,S,σ f ,σa,σt ,σp,σm⟩) where P is a process structure
(resp. C is a collaboration structure); S is the place graph; σ f : F→N is a sequence flow
state function (where F is the set of sequence flows and N is the set of natural numbers)
specifying for each sequence flow the current number of tokens marking it; σa : A→V
is a data and place state function (where A is the set of data and place attributes and V
is the set of values) assigning values (possibly null) to data object and place attributes;
σt : T → N is a task state function (where T is the set of task names) used to keep
track of the number of active task instances; the status of a task depends on its evo-
lution from inactive to active state, where the inactive status formally corresponds to
having zero active instances; σp : P→ Pl is the place state function (where P is the set
of pool names and Pl is the set of places) mapping each collaboration participant to a
place; σm : M→ 2V

n
is a message state function (where M is the set of message flows)

that assigns to each message flow name m an ordered multiset of values (i.e., a queue)
representing the messages received along m.

With σ0
f (resp. σ0

a , σ0
t , σ0

p , and σ0
m) is denoted the sequence flow (resp. data and

place attributes, task, place, and messages queue) state where all sequence flows are
unmarked (resp. all data and place attributes are set to null, all tasks are inactive, places
are empty, and messages queues are empty). Formally, σ0

f (f) = 0 ∀f ∈ F, σ0
a (do.a) =

null ∀ do.a∈A ∧ σ0
a (pl.a) = null ∀ pl.a∈A, σ0

t (t) = 0 ∀ t∈T, σ0
p(pl) = null ∀ pl∈Pl ,

σ0
m(m) = /0 ∀ m ∈M. The state obtained by updating in σ f the number of tokens of the

sequence flow f to n, written as σ f · [f 7→ n], is defined as follows: (σ f · [f 7→ n])(f ′)
returns n if f ′ = f, otherwise it returns σ f (f

′). The updates of states σa, σt , σp, and σm
are defined similarly.

The operational semantic is defined employing labeled transition systems (LTSs).
The LTS of the process behavior is a triple ⟨P,L ,→⟩ where: P is a set of processes
configurations; L , ranged over by l, is a set of labels; and →⊆P×L ×P is a transi-
tion relation. As simplification, ⟨P,S,σ f ,σa,σt ,σp,σm⟩ l−→ ⟨P,S,σ ′

f ,σ
′
a,σ

′
t ,σ

′
p,σ

′
m⟩ in-



10 Corradini F. et al.

Functions inc(σ f , f) = σ f · [f 7→ σ f (f)+ 1], resp. dec(σ f , f) = σ f · [f 7→ σ f (f)− 1], increments/decrements by one
the number of tokens marking the sequence flow f in the state σ f . They extend in a natural way the sets F of
sequence flows. Specifically, they are inductively defined as follows: inc(σ f , /0) = dec(σ f , /0) = σ f , inc(σ f ,{f}∪
F) = inc(inc(σ f , f),F), resp. dec(σ f ,{f}∪F) = dec(dec(σ f , f),F).
Functions inc(σt ,t), respectively dec(σt ,t), activate/deactivate the task t in the state σt . Their definitions are similar
to the ones of functions inc(σ f , f) and dec(σ f , f).
Relation eval(exp,σa,v) states that v is one of the possible values resulting from the evaluation of the expression
exp on the data and place state σa; this is a relation, because an expression may contain non-deterministic operators,
and is not explicitly defined, since the syntax of expressions is deliberately not specified.
Function upd(σa,AA) performs the attribute assignments AA in the state σa. It is inductively defined
as follows: upd(σa,ε) = σa; upd(σa,do.a := v) = σa · [do.a 7→ v]; upd(σa,pl.a := exp) = σa · [pl.a 7→ v];
upd(σa,(AA1,AA2)) = σ ′′

a with σ ′′
a = upd(σ ′

a,AA2) and σ ′
a = upd(σa,AA1).

Function mod(S,AS) performs the spatial assignments AS in the place graph S. It is inductively defined as follows:
upd(S,ε) = S; upd(S,connect(e)) = S · [e 7→ E +{e}]; upd(S,disconnect(e)) = S · [e 7→ E −{e}]
Function next(S,σp,p,D) returns the set of places that are next in the shortest paths in S = (Pl ,E) from the current
place of the process σp(p) to the destination σa(D) (with abuse of notation, here we assume that σa(pl) = pl for
any pl). It is inductively defined as follows: next(S,σp,p,D) = /0 if D = nil, or it does not exist a path from σp(p) to
σa(D), or σp(p) = σa(D); next(S,σp,p,D) = {pl | pl belongs to a path from σp(p) to σa(D) and (σp(p),pl) ∈ E}.
Function move(σp,p,pl)=σp · [p 7→pl] assigns to the process p the place pl in the state σp.
Relation whichActive(B,σa,σm, fb) states that fb is the sequence flow of one of the possible active boundary
event in B. It is inductively defined as follows: whichActive(nil,σa,σm,nil); whichActive(sigBound(m :do.a, fb) |
B,σa,σm, fb) ⇐⇒ σm(m) ̸= /0; whichActive(boundCond(exp, fb) | B,σa,σm, fb) ⇐⇒ eval(exp,σa, true).
Function set(σp,p,pl)=σp · [p 7→pl] sets the position of process p to the location pl.
Function add(σm,m,v) = σm · [m 7→ σm(m)+{v}] adds the value v for the message flow m in the state σm.
Function rm(σm,m) = σm · [m 7→ σm(m)−{v}] removes the message m from the state σm.

Fig. 6: Auxiliary functions and relations

dicates that (⟨P,S,σ f ,σa,σt ,σp,σm⟩, l, ⟨P,S,σ ′
f ,σ

′
a,σ

′
t ,σ

′
p,σ

′
m⟩) ∈→, and says that ‘the

process in the configuration ⟨P,S,σ f ,σa,σt ,σp,σm⟩ can do a transition labelled by l and
evolve to the process configuration ⟨P,S,σ ′

f ,σ
′
a,σ

′
t ,σ

′
p,σ

′
m⟩. The LTS describing the be-

havior of environmental BPMN collaborations is a triple ⟨C ,L ,→⟩ where: C is a set
of collaboration configurations, and →⊆ C ×L ×C is a transition relation. The labels
used by the transition relations → are generated by l ::= ✓ | τ , where ✓ denotes the
passing of a unit of time (due, e.g., to movements in the place graph), and τ denotes a
silent transition (due, e.g., token flow in the processes).

To improve the readability, the following simplifications reduce the nota-
tion of operational rules. Specifically, unnecessary information is omitted: (i) the
states σ f , σa, σt , σp, and σm (when not used) from the source configuration
of transitions; (ii) the collaboration, the place graph, and the states not af-
fected by transitions, from the target configuration. Thus, for example, a transition
⟨P,S,σ f ,σa,σt ,σp,σm⟩ l−→⟨P,S,σ ′

f ,σ
′
a,σ

′
t ,σ

′
p,σ

′
m⟩ will be written as P l−→⟨σ ′

f ⟩ when it
simply affects the sequence flow state function. The same simplification holds for a
collaboration C.

To simplify the definition of the operational rules, in Figure 6, we define auxiliary
functions and relations that update states of process configurations and act on the place
graph topology. The operational rules defining the transition relation of the process
semantics are given by the inference rules in Figures 7, and 8. We now briefly comment
on these rules starting from those dealing with events and gateways in Figures 7. Rule
P-Start starts the execution of a process when it has been activated. To denote the en-
abled status of start events we have included in their syntactical definition an incoming
(spurious) sequence flow, named enabling sequence flow. Thus, the process is activated



Corradini F. et al. 11

start(f, f ′) τ−→⟨inc(dec(σ f , f), f
′)⟩ σ f (f)> 0 (P-Start)

end(f) τ−→⟨dec(σ f , f)⟩ σ f (f)> 0 (P-End)
⟨startRcv(m :do.a, f),σ0

f ,σ
0
t ⟩ τ−→

⟨inc(σ f , f),upd(σa,do.a := v),rm(σm,m)⟩
v ∈ σm(m) (P-StartRcv)

⟨startCond(exp, f),σ0
f ,σ

0
t ⟩ τ−→⟨inc(σ f , f)⟩ eval(exp,σa, true) (P-StartCond)

endSnd(f,m :exp) τ−→⟨dec(σ f , f),add(σm,m,v)⟩ σ f (f)> 0 ∧
eval(exp,σa,v)

(P-EndSnd)

interRcv(f,m :do.a, f ′) τ−→
⟨inc(dec(σ f , f), f

′),upd(σa,do.a := v),rm(σm,m)⟩
σ f (f)> 0 ∧
v ∈ σm(m)

(P-InterRcv)

interCondCatch(f,exp, f ′) τ−→⟨inc(dec(σ f , f), f
′)⟩ σ f (f)> 0 ∧

eval(exp,σa, true)
(P-CondCatch)

interSnd(f,m :exp, f ′) τ−→
⟨inc(dec(σ f , f), f

′),add(σm,m,v)⟩
σ f (f)> 0 ∧
eval(exp,σa,v)

(P-InterSnd)

andSplit(f,F) τ−→⟨inc(dec(σ f , f),F)⟩ σ f (f)> 0 (P-AndSplit)

xorSplit(f,(exp1, f1), . . . ,(expn, fn)) τ−→
⟨inc(dec(σ f , f), f

′)⟩

σ f (f)> 0 ∧
∃1 ≤ j ≤ n.
eval(exp j,σa, true)

(P-XorSplit1)

xorSplit(f,(exp1, f1), . . . ,(default, f
′),(expn, fn)) τ−→

⟨inc(dec(σ f , f), f
′)⟩

σ f (f)> 0 ∧
∀1 ≤ j ≤ n.
eval(exp j,σa, false)

(P-XorSplit2)

andJoin(F, f) τ−→⟨inc(dec(σ f ,F), f)⟩ ∀f ′ ∈ F .
σ f (f

′)> 0
(P-AndJoin)

xorJoin({f}∪F, f ′) τ−→⟨inc(dec(σ f , f), f
′)⟩ σ f (f)> 0 (P-XorJoin)

eventBased(f,(m1 :do.a1, f1), . . . ,(mh :do.ah, fh),
(exph+1, fh+1), . . . ,(exph+n, fh+n)) τ−→

⟨inc(dec(σ f , f), f j)⟩

σ f (f)> 0 ∧
∃ h+1 ≤ j ≤ h+n.
eval(exp j,σa, true)

(P-EventGC)

eventBased(f,(m1 :do.a1, f1), . . . ,(mh :do.ah, fh),
(exph+1, fh+1), . . . ,(exph+n, fh+n)) τ−→

⟨inc(dec(σ f , f), f j),upd(σa,do.a := v),rm(σm,mj)⟩

σ f (f)> 0 ∧
∃ 1 ≤ j ≤ n.
v ∈ σm(mj)

(P-EventGM)

Fig. 7: BPMN process semantics: events and gateways.

when the enabling sequence flow of a start event is marked. The effect of the rule is
to increment the number of tokens in the sequence flow outgoing from the start event
and to decrease the marking of the enabling sequence flow. To show how the auxiliary
functions and relations of Figure 6 update process configurations, we exemplify their
outcome in the application of rule P-Start, without applying the simplifications to
the transition. Let us assume that σ f (f) is 1 for f = f1 and 0 for any other f; thus
⟨start(f1, f2),S,σ f ,σa,σt ,σp,σm⟩ τ−→⟨start(f1, f2),S,σ ′

f ,σa,σt ,σp,σm⟩ where σ ′
f (f) is

1 for f = f2 and 0 for any other f. Indeed, dec(σ f , f1) = σ f · [f1 7→ σ f (f1)−1] =
σ f · [f1 7→ 0] = σ ′′

f and, hence, σ ′
f = inc(dec(σ f , f1), f2) = inc(σ ′′

f , f2) =

σ ′′
f · [f2 7→ σ ′′

f (f2)+1] = σ ′′
f · [f2 7→ 1]; thus, we have σ ′

f = σ f · [f1 7→ 0] · [f2 7→ 1].
Rule P-End instead is enabled when there is at least one token in the incoming

sequence flow of the end event, which is then consumed. Rule P-StartRcv starts the



12 Corradini F. et al.

process execution when there is a value in the message queue, then it increments the
number of tokens in the outgoing sequence flow, updates the data object with the re-
ceived value, and removes it from the queue. Rule P-StartCond starts the execution of a
process when the conditional expression is evaluated as true, incrementing the number
of tokens in the sequence flow. Rule P-EndSnd is enabled when there is at least a token
in the incoming edge of the end event, which is then removed. Moreover, the value re-
sulting from the evaluation of the expression exp is added to the message queue. Rules
P-InterRcv and P-InterSnd are enabled when there is at least a token in their incoming
edge, then behave respectively as rules P-StartRcv and P-EndSnd. Rules P-CondCatch
is enabled when there is at least a token in their incoming edge, then behaves as rules
P-StartCond. Rule P-AndSplit is applied when there is at least one token in the incom-
ing edge of an AND split gateway; as a result of its application, the rule decrements
the number of tokens in the incoming sequence flow, and increments the tokens in each
outgoing sequence flow. Rule P-XorSplit1 is applied when a token is available in the
incoming sequence flow of a XOR split gateway and a conditional expression of one of
its outgoing sequence flows is evaluated to true; the rule decrements the token in the in-
coming sequence flow and increments the token in the selected outgoing sequence flow.
Notably, if more edges have their guards satisfied, one of them is non-deterministically
chosen. Rule P-XorSplit2 is applied when all guard expressions are evaluated to false; in
this case, the default sequence flow is marked. Rule P-AndJoin decrements the tokens in
each incoming sequence flow and increments the number of tokens of the outgoing se-
quence flow, when each incoming sequence flow has at least one token. Rule P-XorJoin
is activated every time there is a token in one of the incoming sequence flows, which
is then moved to the outgoing sequence flow. Rules P-EventGC and P-EventGS are
activated when there is a token in the incoming edge and respectively a conditional ex-
pression is evaluated as true or a value is present in a message queue. The application of
the rule moves the token from the incoming edge to the outgoing edge corresponding to
the true condition (P-EventGC) or the non-empty queue (P-EventGM). In the latter rule,
the data object attribute is updated and the value is removed from the message queue.

Rules in Figure 8 deal with task execution following the task status evolution from
inactive (σt(t)=0), to active (σt(t)=1); and the interleaving of processes and collab-
oration elements. Rule P-Task activates the task when it is not already active, there is a
token in the incoming edge, and the guard exp is satisfied. Then, it removes the token in
the incoming sequence flow and increments the task state to notify its activation. Rule
P-TaskM deals with tasks that involve a movement in the place graph, i.e., when the des-
tination D is defined. If the task is active, but not its eventual boundary events, and the
destination is not reached (the next function returns a non-empty set), the rule moves
the process participant from the current position to one of the next places in the path
toward the destination place. Since movements in space consume time in reality, this
rule produces a transition labeled with ✓. Rule P-TaskA deals with task assignments. If
the task is active, but not its eventual boundary events, and either the destination is nil
or reached, the rule increments the outgoing sequence flow, performs the assignments,
and deactivates the task. Rule P-TaskB deals with the boundary events B attached to the
task. If the task and one of the boundary events are active, the rule adds a token in the
outgoing sequence flow of the boundary event and deactivates the task. Regarding the



Corradini F. et al. 13

task(f,t,exp,A,D,B, f ′) τ−→⟨dec(σ f , f), inc(σt ,t)⟩ σ f (f)> 0 ∧σt(t) = 0
∧ eval(exp,σa, true)

(P-Task)

task(f,t,exp,A,D,B, f ′)✓−→⟨move(σp,p,pl)⟩ σt(t)> 0 ∧pl ∈ next(S,σp,p,D)
∧ whichActive(B,σa,σm,nil)

(P-TaskM)

task(f,t,exp,AA,AS,D,B, f ′) τ−→
⟨mod(S,AS), inc(σ f , f

′),upd(σa,AA),dec(σt ,t)⟩
σt(t)> 0 ∧ next(S,σp,p,D) = /0
∧ whichActive(B,σa,σm,nil)

(P-TaskA)

task(f,t,exp,A,D,B, f ′) τ−→⟨inc(σ f , f
b),dec(σt ,t)⟩ σt(t)> 0

∧ whichActive(B,σa,σm, f
b)

(P-TaskB)

task(f,t,exp,A,D,B, f ′)✓−→⟨⟩ σ f (f) = 0 ∧σt(t) = 0 (P-TaskE)

P✓−→⟨⟩ P ̸=task(f,t,exp,A,D,B, f ′) | P′ (P-Empty)

P1 τ−→⟨σ ′⟩

P1 | P2 τ−→⟨σ ′⟩
(P-τ)

P1✓−→⟨σ1⟩ ⟨P2,σ1⟩✓−→⟨σ ′⟩

P1 | P2✓−→⟨σ ′⟩
(P-✓)

P l−→⟨σ ′⟩

pool(p,P) l−→⟨σ ′⟩
(C-Int)

C1 τ−→⟨σ1⟩

C1 ∥C2 τ−→⟨σ ′⟩
(C-τ)

C1✓−→⟨σ1⟩ ⟨C2,σ1⟩✓−→⟨σ ′⟩

C1 ∥C2✓−→⟨σ ′⟩
(C-✓)

Fig. 8: BPMN process and collaboration semantics: tasks and interleaving.

operational rules dealing with the interleaving of process and collaboration elements,
rule P-τ enables single process elements to evolve the process configuration with silent
transitions τ . Instead, rules P-TaskE , P-Empty, and P-✓ enable process elements to
evolve the process configuration with temporal transitions ✓. Regarding collaboration
elements, rule C-Int propagates the transition from process to collaboration configura-
tion, while C-τ and C-✓ behave as P-τ and P-✓ respectively. Notably, rules P-τ and
C-τ allow single process elements to evolve the collaboration configuration, while P-✓
and C-✓ imposes a synchronous triggering of rules producing a temporal transition.

4 Environmental BPMN collaboration formalization at work

In this section, we assess our formalization and show in practice the interplay between
BPMN and the physical environment using the running example.

Referring to Figure 5, the fire-extinguishing collaboration structure is Cdorm =
pool(p f cs,Pf cs) | pool(p f ,Pf ) | pool(ps,Ps), and the space model is Sd := (Pl ,E). The
initial configuration of the environmental BPMN collaboration model is the following:
⟨Cd ,Sd ,σ f ,σ

0
a ,σ

0
t ,σp,σ

0
m⟩, where σ f = σ0

f · [f ′23 7→ 1] and σp =σ0
p · [p f 7→pl28] · [ps 7→

pl39]. Following, we describe two different execution outcomes of the running exam-
ple. Note that, we focus on the execution steps that better show the interaction between
BPMN and the environment.

The collaboration starts with the enactment of the Student’s process since the only
token in the collaboration is in f ′23. This enables rule P-Start which consumes the token



14 Corradini F. et al.

in f ′23 and produces a token in f23. Then, the token in f23 enables rule P-Task on task
Move to kitchen. As a consequence, rule P-Task decrements the sequence flow f23 and
puts the task in the active status. Now that the task is active and the destination field is
not empty, rule P-TaskM moves the process from its current place (pl39) toward the one
corresponding to the kitchen (pl4) as reported in the corresponding syntax term. Thus,
P-TaskM is repeated until the student reaches the kitchen, then rule P-TaskA deactivates
the task and produces a token on f24 since no assignment is involved. At this point, rule
P-Task activates activity Cook. This activity simulates the fact that the student starts the
fire, this is formalized through the assignment pl4.fire := true which sets as true the
attribute fire in the location pl4. Immediately after, the students perform task Move to
corridor to reach the place pl17 using the same rules as for Move to kitchen. Here, the
student can close or not the door linking the kitchen with the rest of the dormitory. For-
mally, the conditional expression in the sequence flows outgoing the XOR split gateway
are both set to true, therefore whether a token is on f26, rule P-XorSplit1 is enabled and
it can non deterministically choose to increment the token on f27 or f29.

This choice opens the way to two possible outcomes. The first is when the student
leaves the door open. After the student sets the fire in the kitchen, the location attribute
pl4.fire changes to true. Therefore, rule P-StartCond is enabled for the conditional start
event of the fire control system that notifies the fire-fighter of the fire position pl4. Ap-
plying rule P-Task, the fire-fighter activates task Move to fire position and starts moving
from its current position pl28 toward place pl4. Essentially, the fire-fighter reaches the
fire position and extinguishes it leading to the expected completion of the collaboration.

The latter case is when the student closes the door before moving toward its
room. Indeed activity Close the door brings the assignments disable(pl3,pl17) and
disable(pl17,pl3) which removes the connections between places pl3 and pl17. Again,
the place attribute pl4.fire is true therefore, the fire control system and the fire-fighter
processes start. According to our semantics, which synchronizes temporal actions, rule
P-TaskM starts to be applied at the same time on tasks Move to corridor and Move to
fire position, immediately after the completion of task Cook. Therefore, to extinguish
the fire, the fire-fighter has to reach the fire position before the student closes the door.
The fire-fighter has to traverse at least seven edges to reach the kitchen from place
pl28, while the student moves from pl4 (previously reached by task Move to kitchen)
and can reach place pl17 traversing only two edges. Since each step between adjacent
places corresponds to the passing of a tick and the steps are synchronized in the whole
collaboration (see rules P-TaskM , P-✓ and C-✓), after two ticks from the start of the
fire, the student closes the door, and the fire-fighter reaches pl22. Then, the student con-
tinues moving toward his room, while P-TaskM does not produce effects for the task
Move to fire position. This is because no more paths exist for reaching the kitchen, for-
mally next(S,σp,p f ,pl4) = /0. Nonetheless, the conditional boundary event attached to
the task is regulated by the conditional expression thus, once the door is closed the rule
P-TaskB becomes active and the exceptional flow f21 receives a token. Consequently, the
message Fire fighter blocked is sent to the fire control system that will ask for human in-
tervention. Notably, to better explain the described scenarios, we provide a video 3 that

3 https://pros.unicam.it/environmental-bpmn/

https://pros.unicam.it/environmental-bpmn/


Corradini F. et al. 15

shows the entire execution of the running example employing the animation of tokens
over the BPMN model and the place graph.

Summing up, this example shows how a simple interaction with the environment,
like closing a door, can impact the outcome of a collaboration. This paves the way
for reasoning on different scenarios where the physical environment can influence the
process execution and vice-versa.

5 Related work

Concerning the literature that discusses the interplay between BPMN and the physi-
cal environment, Decker et al. [5] propose a modeling approach that assigns location
conditions to BPMN tasks so that their execution is constrained by spatial aspects.

Dorndorfer et al. [6] propose an extension to BPMN notation where spatial infor-
mation can trigger conditional boundary events attached to tasks to handle exceptional
behaviors. Similarly, Zhu et al. [19] extend the BPMN notation by defining a new type
of task called location-dependent task. The execution of this kind of task is restricted
to desired spatial locations. Also, they define location-dependent exclusive gateways
which base their decisions on environmental conditions. Tomas Kozel [9] does a step
forward proposing a graphical extension to BPMN that focuses on mobility. This work
gives a categorization of mobile objects and introduces location-based events to trigger
process activities based on changes in the physical location. Poss et al. [12] introduce
in the BPMN meta-model novel concepts related to the environment such as location
data, location-based resource allocation, and location events. Nevertheless, these works
focus only on BPMN processes, adding constraints and handlers based on environmen-
tal aspects. Moreover, they do not provide any spatial model and do not keep track of
the participant’s position during the process execution.

An approach that overcomes this limitation is the one of Saddem-Yagoubi et al. [16],
which define a formal temporal logic that extends BPMN elements, such as gate-
ways and conditional sequence flows, to incorporate location information and enable
location-dependent decision-making. Concerning the spatial model, they describe the
space graphs only formally, without a graphical representation. Moreover, they provide
a model checker for the verification of behavioral properties on the produced models.
Nevertheless, they focus mostly on the effect of the environment on process execution
while leaving under specified the influence of process activities on the environment,
both in terms of topology and spatial attributes.

Summing up, even though the literature lately is increasingly dealing with the con-
cept of the environment within BPMN, our approach advances the current state of the
art for different aspects, as resumed in Table 1. To the best of our knowledge, ours is
the only formal approach that allows altogether to: keep track of participants’ position
during the process execution, model the physical environment and its attributes explic-
itly, link the task execution and the environment by means of environmental constraints
(guards) and modifications (assignments), and model taks that involve a movement in
the space. Moreover, our approach allows the definition of environmental conditions
on decision gateways and on events, both boundary and intermediate, all this without
introducing new BPMN elements.



16 Corradini F. et al.

Paper Formal Spatial Model Task Location Location New Participant
Semantics Topology Place

attributes
Env.

constraint
Env.

modification Movement -based
Gateway

-based
Events

BPMN
Elements Tracking

[5] no no no yes no no no no no no
[6] no no no yes no no no no no no

[19] no no no yes no no yes no no no
[9] no no no yes no yes no yes yes no

[12] no no no no no no no yes yes no
[16] yes yes no yes no yes yes no no yes

our yes yes yes yes yes yes yes yes no yes

Table 1: Resuming related work Table

6 Concluding remarks

This work discusses the interplay between BPMN collaborations and the physical en-
vironment. In particular, we prescribe the use of place graphs and place attributes as an
abstraction of the physical environment where the collaborations take place. We link
these concepts representing the physical environment with the BPMN meta-model re-
sulting in the definition of environmental BPMN collaborations. Finally, we provide
a formal operational semantics of the environmental BPMN collaboration models and
illustrate and assess it on a running example.

Discussion. We merge business processes in the form of BPMN collaborations and the
environment in the form of place graphs and place attributes. The choice of adopting
the BPMN notation depends on its large application [18]. In particular, we use collab-
oration diagrams to model of process aspects of interest when dealing with the envi-
ronment. Reasoning on multiple participants amplifies the interaction with the environ-
ment, while communication enables the sharing of environmental information. At the
same time, we intentionally left out of the discussion those BPMN elements that draw
away the reader from the addressed problem, e.g., multiple instances or sub-processes.
Notably, we decided to extend the BPMN meta-model with environmental concepts
without modifying the graphical notation so that designers are not required to learn new
elements, and existing modeling tools can be used without customization. Nevertheless,
graphical enhancements of the model that show the link between the BPMN model and
the place graph can facilitate comprehension. This objective could be achieved with the
support of custom BPMN modeling or animation tools.

Concerning the environment, we use place graph models to give an abstract rep-
resentation of the space rather than using geometric models which represent the space
with faithful measures. In particular, place graphs represent space at varying levels of
abstraction tailored to specific domains; for instance, a place may correspond to a room
or a tile. This flexibility enables the modeling of varying degrees of spatial detail. Any-
way, our approach assumes that participants of the environmental BPMN collaboration
possess a priori knowledge regarding the environment where they can move. Further-
more, we consider some aspects of the environment as static, e.g., it forbids the addition
or removal of places, as well as the insertion of obstacles that may impede (even par-
tially) the access to specific places. Another assumption we made on the place graphs
is that places are equidistant with each other and no weight function is defined on edges
for representing such environmental concepts as distance and gradient.



Corradini F. et al. 17

Nevertheless, place graphs can be extended to support these omitted features by
adding to the semantics new spatial assignments that act on the places. Moreover, they
could support weight functions for individual edges to accommodate diverse and more
flexible spatial scenarios.

Future Work. In future work, we intend to continue the investigation of the interplay
between BPMN collaborations and the environment enriching the spatial model as well
as the formal account as mentioned above. Moreover, we plan to work on animation and
verification techniques to ease the understanding of our environmental BPMN models
and enable formal reasoning.

References

1. Afyouni, I., Ray, C., Christophe, C.: Spatial models for context-aware indoor navigation
systems: A survey. Journal of Spatial Information Science 1(4), 85–123 (2012)

2. Aoumeur, N., Fiadeiro, J., Oliveira, C.: Towards an architectural approach to location-aware
business process. In: Enabling Technologies: Infrastructure for Collaborative Enterprises.
vol. 13, pp. 147–152. IEEE (2004)

3. Corradini, F., Muzi, C., Re, B., Rossi, L., Tiezzi, F.: Formalising and animating multiple
instances in bpmn collaborations. Information Systems 103, 101459 (2022)

4. Corradini, F., Polini, A., Re, B., Rossi, L., Tiezzi, F.: Consistent modelling of hierarchical
BPMN collaborations. Business Process Management Journal 28(2), 442–460 (2022)

5. Decker, M., Che, H., Oberweis, A., Stürzel, P., Vogel, M.: Modeling mobile workflows with
bpmn. In: Mobile Business and Mobility Roundtable. pp. 272–279. IEEE (2010)

6. Dörndorfer, J., Seel, C.: A framework to model and implement mobile context-aware busi-
ness applications. In: Modellierung 2018, pp. 23–38. Gesellschaft für Informatik e.V. (2018)

7. Hermann, A., Scholta, H., Bräuer, S., Becker, J.: Collaborative business process management
- a literature-based analysis of methods for supporting model understandability. In: Towards
Thought Leadership in Digital Transformation. Wirtschaftsinformatik (2017)

8. Jensen, C., Lu, H., Yang, B.: Graph model based indoor tracking. In: Mobile Data Manage-
ment: Systems, Services and Middleware. pp. 122–131. ACM (2009)

9. Kozel, T.: Bpmn mobilisation. In: Ninth International Conference on Mobile Business and
2010 Ninth Global Mobility Roundtable. p. 307–310. World Scientific and Engineering
Academy and Society (2010)

10. Monsalve, C., April, A., Abran, A.: Business process modeling with levels of abstraction. In:
Conference on Communication and Computing, pp. 13–15. IEEE (2015)

11. OMG: Business process model and notation. (BPMN V2.0) (2011)
12. Poss, L., Dietz, L., Schönig, S.: Labpmn: Location-aware business process modeling and

notation. In: Cooperative Information Systems. vol. 14353, pp. 198–216. Springer (2024)
13. Poss, L., Schönig, S.: A generic approach towards location-aware business process execution.

In: Enterprise, Business-Process and Information Systems Modeling. LNCS, vol. 479, pp.
103–118. Springer (2023)

14. Rosemann, M., Recker, J.: Context-aware process design: Exploring the extrinsic drivers for
process flexibility. In: Proceedings of the Workshops and Doctoral Consortium, pp. 149–158.
Namur University Press (2006)

15. Rosemann, M., Recker, J., Flender, C.: Contextualisation of business processes. International
Journal of Business Process Integration and Management 3(1), 47–60 (2008)

16. Saddem-Yagoubi, R., Poizat, P., Houhou, S.: Business processes meet spatial concerns: the
sbpmn verification framework. In: Formal Methods. pp. 218–234. Springer (2021)



18 Corradini F. et al.

17. Stroppi, L.J.R., Chiotti, O., Villarreal, P.D.: Extending BPMN 2.0: Method and Tool Support.
In: Business Process Model and Notation, pp. 59–73. Springer (2011)

18. Surname, N., Surname, N., Surname, N., Surname, N., Surname, N.: Title. In: Conference
paper, p. Pages. Publisher (Year)

19. Zhu, X., Recker, J., Zhu, G., Maria Santoro, F.: Exploring location-dependency in process
modeling. Business Process Management Journal (2014)



Corradini F. et al. 19

A One-to-one correspondence between the BPMN graphical
notation, the textual notation and the BPMN XML format.

In this appendix, we show the one-to-one correspondence between the BPMN graphical
notation, the textual notation, and the BPMN XML format. Table 2 regards pool and
events, Table 3 regards gateways, and Table 4 regards tasks.



20 Corradini F. et al.
BPMN elements Textual Notation BPMN XML syntax

pool(p,P)
< p a r t i c i p a n t name=" p " . . . / >

f' start(f, f ′) < s t a r t E v e n t . . . >
< ou tgo ing >f < / ou tgo ing >

</ s t a r t E v e n t >

m

f

startRcv(m :do.a, f)

< s t a r t E v e n t . . . >
< ou tgo ing >f < / ou tgo ing >
< m e s s a g e E v e n t D e f i n i t i o n . . . / >
<bpmn : e x t e n s i o n E l e m e n t s >

<bpmnenv : f i e l d f i e l d =" do . a " / >
</bpmn : e x t e n s i o n E l e m e n t s >

</ s t a r t E v e n t >

f startCond(exp, f)

< s t a r t E v e n t . . . . >
< ou tgo ing >f < / ou tgo ing >
< c o n d i t i o n a l E v e n t D e f i n i t i o n . . . >

< c o n d i t i o n . . . > exp </ c o n d i t i o n >
</ c o n d i t i o n a l E v e n t D e f i n i t i o n >

</ s t a r t E v e n t >

f

m endSnd(f,m :exp)

< endEvent . . . >
<incoming >f < / incoming >
< m e s s a g e E v e n t D e f i n i t i o n . . . / >
<bpmn : e x t e n s i o n E l e m e n t s >

<bpmnenv : f i e l d f i e l d =" exp " / >
</bpmn : e x t e n s i o n E l e m e n t s >

</ endEvent >

f end(f) < endEvent . . . >
<incoming >f < / incoming >

</ endEvent >

f

m

f'

interRcv(f,m :do.a, f ′)

< i n t e r m e d i a t e C a t c h E v e n t . . . >
<incoming >f < / incoming >
< ou tgo ing >f ’ < / ou tgo ing >
< m e s s a g e E v e n t D e f i n i t i o n . . . / >
<bpmn : e x t e n s i o n E l e m e n t s >

<bpmnenv : f i e l d f i e l d =" do . a " / >
</bpmn : e x t e n s i o n E l e m e n t s >

</ i n t e r m e d i a t e C a t c h E v e n t >

f

m

f'

interSnd(f,m :exp, f ′)

< i n t e r m e d i a t e T h r o w E v e n t . . . >
<incoming >f < / incoming >
< ou tgo ing >f ’ < / ou tgo ing >
< m e s s a g e E v e n t D e f i n i t i o n . . . / >
<bpmn : e x t e n s i o n E l e m e n t s >

<bpmnenv : f i e l d f i e l d =" exp " / >
</bpmn : e x t e n s i o n E l e m e n t s >

</ i n t e r m e d i a t e T h r o w E v e n t >

f f' interCondCatch(f,exp, f ′)

< i n t e r m e d i a t e C a t c h E v e n t . . . >
<incoming >f < / incoming >
< ou tgo ing >f ’ < / ou tgo ing >
< c o n d i t i o n a l E v e n t D e f i n i t i o n . . . . >

< c o n d i t i o n . . . > exp </ c o n d i t i o n >
</ c o n d i t i o n a l E v e n t D e f i n i t i o n >

</ i n t e r m e d i a t e C a t c h E v e n t >

Table 2: Correspondence between graphical, textual and BPMN XML notation: pool
and events.



Corradini F. et al. 21

Graphical Notation Textual Notation BPMN XML syntax

f1

f2

f3

andSplit(f1,{f2, f3})
< p a r a l l e l G a t e w a y . . . >

<incoming >f1 < / incoming >
< ou tgo ing >f2 < / ou tgo ing >
< ou tgo ing >f3 < / ou tgo ing >

</ p a r a l l e l G a t e w a y >

f1

query

f2

f3

xorSplit(f1,{(f2,do.a> 0),(f3,default)})

< e x c l u s i v e G a t e w a y . . . d e f a u l t =" f3
">

<incoming >f1 < / incoming >
< ou tgo ing >f2 < / ou tgo ing >
< ou tgo ing >f3 < / ou tgo ing >

</ e x c l u s i v e G a t e w a y >
. . .
< sequenceFlow i d =" f1 ">

< c o n d i t i o n E x p r e s s i o n . . . > do . a
> 0 </ c o n d i t i o n E x p r e s s i o n

>
</ sequenceFlow >

f1

f2

f3
andJoin({f1, f2}, f3)

< p a r a l l e l G a t e w a y . . . >
<incoming >f1 < / incoming >
<incoming >f2 < / incoming >
< ou tgo ing >f3 < / ou tgo ing >

</ p a r a l l e l G a t e w a y >

f1

f2

f3
xorJoin({f1, f2}, f3)

< e x c l u s i v e G a t e w a y . . . >
<incoming >f1 < / incoming >
<incoming >f2 < / incoming >
< ou tgo ing >f3 < / ou tgo ing >

</ e x c l u s i v e G a t e w a y >

f1

f2

f3

f1

f2

f3

eventBased(f1,(m2 :do.a, f2),(exp, f3))

<eventBasedGateway . . . >
<incoming >f1 < / incoming >
. . .

</ eventBasedGateway >
< i n t e r m e d i a t e C a t c h E v e n t . . . >

. . .
< ou tgo ing >f2 < / ou tgo ing >
< m e s s a g e E v e n t D e f i n i t i o n . . . / >
<bpmn : e x t e n s i o n E l e m e n t s >

<bpmnenv : f i e l d f i e l d =" do .
a " / >

</bpmn : e x t e n s i o n E l e m e n t s >
</ i n t e r m e d i a t e C a t c h E v e n t >
< i n t e r m e d i a t e C a t c h E v e n t . . . >

. . .
< ou tgo ing >f3 < / ou tgo ing >
< c o n d i t i o n a l E v e n t D e f i n i t i o n

. . . . >
< c o n d i t i o n . . . > exp </

c o n d i t i o n >
</ c o n d i t i o n a l E v e n t D e f i n i t i o n >

</ i n t e r m e d i a t e C a t c h E v e n t >

Table 3: Correspondence between graphical, textual and BPMN XML notation:
gateways.



22 Corradini F. et al.

Graphical Notation Textual Notation BPMN XML syntax

t
f f' task(f,t,exp,do.a= 1,pl.a= 0,pl,nil, f ′)

< t a s k name=" t " . . . >
<incoming >f < / incoming >
< ou tgo ing >f ’ < / ou tgo ing >
<bpmn : e x t e n s i o n E l e m e n t s >

<bpmnenv : d e s t i n a t i o n >
p l

</ bpmnenv : d e s t i n a t i o n >
<bpmnenv : guard >

exp
</ bpmnenv : guard >
<bpmnenv : a s s i g n m e n t s >

<bpmnenv : a s s ignmen t >
do . a = 1

</ bpmnenv : a s s ignmen t >
<bpmnenv : a s s ignmen t >

p l . a = 0
</ bpmnenv : a s s ignmen t >

</ bpmnenv : a s s i g n m e n t s >
</bpmn : e x t e n s i o n E l e m e n t s >

</ t a s k >

t
f f'

fb

task(f,t,true,ε,ε,nil,boundCond(exp, fb), f ′)

< t a s k name=" t " . . . . >
<incoming >f < / incoming >
< ou tgo ing >f ’ < / ou tgo ing >

</ t a s k >
< bounda ryEven t . . . >

< ou tgo ing > f b </ ou tgo ing >
< c o n d i t i o n a l E v e n t D e f i n i t i o n

. . . . >
< c o n d i t i o n . . . > exp </

c o n d i t i o n >
</ c o n d i t i o n a l E v e n t D e f i n i t i o n >

</ boundaryEvent >

t
f f'

fb

task(f,t,true,ε,ε,nil,boundRcv(m :do.a, fb), f ′)

< t a s k name=" t " . . . >
<incoming >f < / incoming >
< ou tgo ing >f ’ < / ou tgo ing >

</ t a s k >
< bounda ryEven t . . . >

< ou tgo ing > f b </ ou tgo ing >
< m e s s a g e E v e n t D e f i n i t i o n . . . / >
<bpmn : e x t e n s i o n E l e m e n t s >

<bpmnenv : f i e l d f i e l d =" do .
a " / >

</bpmn : e x t e n s i o n E l e m e n t s >
</ boundaryEvent >

Table 4: Correspondence between graphical, textual and BPMN XML notation: tasks.



Corradini F. et al. 23

B Additional example of a table service in a restaurant

In this appendix, we provide a further example to show the approach’s applicability in
another domain. Figure 9 depicts the BPMN collaboration model about a table service
in a restaurant.

C
he

f

Prepare dishes

W
ai

te
r

Move to table Leave dishes
Return to
kitchen

Receive order Call waiter Give dishes to
waiter

End Order

f1 f2 f3 f4

Order

Receive call
Dishes

f7 f8

End Service

f9

Receive
dishes

f5 f6

call dishes

Fig. 9: Table service collaboration model

The collaboration is performed by a waiter, and a chef which collaborate to prepare
and leave dishes to their customers in a restaurant. The collaboration starts when the
chef receives the order. As soon as the chef gets it, he/she prepares the dishes. Once
ready, the chef calls the waiter and gives him/her the ordered dishes. The waiter moves
to the table, leaves the dishes to the customers sitting there, and finally returns to the
kitchen ending its service. Concerning the environment, the model of the restaurant
comprises a kitchen, a dining area, and a bathroom. Figures 10,11 and 12 represent three
versions, namely case 1, case 2, and case 3, of the space model depending on the tables’
position and the presence of obstacles to show different outcomes of the collaboration.
The union of the described BPMN collaboration model and the restaurant represented

as a place graph, results in the environmental BPMN collaboration model of the table
service. Its structure is Cr = pool(pc,Pc) | pool(pw,Pw), and the space models for the
three cases are respectively S1

r , S2
r and S3

r , see Figure 13 for a complete account. The
initial configuration of the environmental BPMN collaboration model is the following:
⟨Cr,Sr,σ f ,σ

0
a ,σ

0
t ,σp,σ

0
m⟩, where σ f = σ0

f · [f ′1 7→ 1] and σp=σ0
p · [pw 7→pl7].

Note that in each case we assume that the waiter has to move from the kitchen
(position pl7) to serve the guest sitting in the bottom-left of the dining area from pl25.
Therefore, the three cases differ in the execution of task Move to table performed by the
waiter by means of rule P-TaskM .

– In the case 1, the waiter can choose to follow the shortest path from pl7 to the
destination place pl25 for instance, he/she can pass these locations in 8 steps:
(pl7,pl6,pl5,pl4,pl11,pl19,pl18,pl17,pl25).



24 Corradini F. et al.

Fig. 10: Floor plan and place graph of a restaurant case 1

Fig. 11: Floor plan and place graph of a restaurant case 2

– In the case 2, the waiter applies the same strategy. However, the table dis-
position is changed and there is a stroller that blocks the link between pl17
and pl25. Thus, the waiter have to pass from the following locations in 14
steps: (pl7,pl6,pl5,pl4,pl11,pl19,pl20,pl21,pl22,pl30,pl29,pl28,pl27,pl26,pl25) taking
longer distance and time respect to the Case 1 (Figure 11).

– In the case 3, the composition of the restaurant is changed again, indeed, the stroller
and the table disposition block the passage to reach the place pl25. In this situation,
the condition of rule P-TaskM is not satisfied, indeed, next(S,σp,p,D) = /0. There-
fore, the task Move to table is in a deadlock due to a spatial concern.



Corradini F. et al. 25

Fig. 12: Floor plan and place graph of a restaurant case 3

Cd = pool(pc,Pc) | pool(pw,Pw)

Pc = start(f ′1, f1) | task(f1,Prepare dishes,true,Order.pos := pl25,ε,nil,nil, f2) |
interSnd(f2,call :Order.pos, f3) | interSnd(f3,dishes :Order.dishes, f3) | end(f4)

Pw = startRcv(call :Dishes.pos, f5) | interRcv(f5,dishes :Dishes.dishes, f6)
task(f6,Move to table,true,ε,ε,Dishes.pos,nil, f7) | task(f7,Leave dishes,true,ε,ε,nil,nil, f8) |
task(f8,Return to kitchen,true,ε,ε,pl25,nil, f9) | end(f9)

S1
r = (Pl ,E1) Pl = {pl j | 1≤ j ≤32} E1 = {(pl1,pl2),(pl1,pl9),(pl2,pl1),(pl2,pl3),(pl2,pl10),(pl2,pl11),

(pl3,pl2),(pl3,pl4),(pl3,pl10),(pl3,pl11),(pl3,pl12),(pl4,pl3),(pl4,pl5),(pl4,pl11),(pl4,pl12),(pl5,pl4),(pl5,pl6),
(pl5,pl13),(pl6,pl5),(pl6,pl7),(pl6,pl14),(pl7,pl6),(pl7,pl8),(pl7,pl15),(pl7,pl16),(pl8,pl7),(pl8,pl15),(pl8,pl16),
(pl9,pl1),(pl9,pl10),(pl9,pl17),(pl10,pl2),(pl10,pl3),(pl10,pl9),(pl10,pl11),(pl10,pl18),(pl11,pl2),(pl11,pl3),(pl11,pl4),
(pl11,pl10),(pl11,pl12),(pl11,pl19),(pl11,pl20),(pl12,pl3),(pl12,pl4),(pl12,pl11),(pl12,pl13),(pl12,pl19),(pl12,pl20),
(pl13,pl5),(pl13,pl12),(pl13,pl14),(pl13,pl21),(pl14,pl6),(pl14,pl13),(pl14,pl22),(pl15,pl7),(pl15,pl8),(pl15,pl16),
(pl16,pl7),(pl16,pl8),(pl16,pl15),(pl17,pl9),(pl17,pl18),(pl17,pl25),(pl18,pl10),(pl18,pl17),(pl18,pl19),(pl19,pl11),
(pl19,pl12),(pl19,pl18),(pl19,pl20),(pl19,pl27),(pl19,pl28),(pl20,pl11),(pl20,pl12),(pl20,pl19),(pl20,pl21),(pl20,pl27),
(pl20,pl28),(pl21,pl13),(pl21,pl20),(pl21,pl22),(pl21,pl29),(pl22,pl14),(pl22,pl21),(pl22,pl30),(pl23,pl24),(pl23,pl31),
(pl23,pl32),(pl24,pl23),(pl24,pl31),(pl24,pl32),(pl25,pl17),(pl25,pl26),(pl26,pl25),(pl26,pl27),(pl27,pl19),(pl27,pl20),
(pl27,pl26),(pl27,pl28),(pl28,pl19),(pl28,pl20),(pl28,pl27),(pl28,pl29),(pl29,pl21),(pl29,pl28),(pl29,pl30),(pl30,pl22),
(pl30,pl29),(pl30,pl31),(pl31,pl23),(pl31,pl24),(pl31,pl30),(pl31,pl32),(pl32,pl23),(pl32,pl24),(pl32,pl31)}

S2
r = (Pl ,E2) Pl = {pl j | 1≤ j ≤32} E2 = {(pl1,pl2),(pl1,pl9),(pl2,pl1),(pl2,pl3),(pl2,pl10),(pl2,pl11),

(pl3,pl2),(pl3,pl4),(pl3,pl10),(pl3,pl11),(pl3,pl12),(pl4,pl3),(pl4,pl5),(pl4,pl11),(pl4,pl12),(pl5,pl4),(pl5,pl6),
(pl5,pl13),(pl6,pl5),(pl6,pl7),(pl6,pl14),(pl7,pl6),(pl7,pl8),(pl7,pl15),(pl7,pl16),(pl8,pl7),(pl8,pl15),(pl8,pl16),
(pl9,pl1),(pl9,pl10),(pl9,pl17),(pl10,pl2),(pl10,pl3),(pl10,pl9),(pl10,pl11),(pl10,pl18),(pl11,pl2),(pl11,pl3),(pl11,pl4),
(pl11,pl10),(pl11,pl12),(pl11,pl19),(pl11,pl20),(pl12,pl3),(pl12,pl4),(pl12,pl11),(pl12,pl13),(pl12,pl19),(pl13,pl5),
(pl13,pl12),(pl13,pl14),(pl14,pl6),(pl14,pl13),(pl15,pl7),(pl15,pl8),(pl15,pl16),(pl16,pl7),(pl16,pl8),(pl16,pl15),
(pl17,pl9),(pl17,pl18),(pl18,pl10),(pl18,pl17),(pl18,pl19),(pl19,pl11),(pl19,pl12),(pl19,pl18),(pl19,pl20),(pl20,pl11),
(pl20,pl19),(pl20,pl21),(pl21,pl20),(pl21,pl22),(pl22,pl21),(pl22,pl30),(pl23,pl24),(pl23,pl31),
(pl23,pl32),(pl24,pl23),(pl24,pl31),(pl24,pl32),(pl25,pl26),(pl26,pl25),(pl26,pl27),(pl27,pl19),(pl27,pl20),
(pl27,pl26),(pl27,pl28),(pl28,pl19),(pl28,pl20),(pl28,pl27),(pl28,pl29),(pl29,pl28),(pl29,pl30),(pl30,pl22),
(pl30,pl29),(pl30,pl31),(pl31,pl23),(pl31,pl24),(pl31,pl30),(pl31,pl32),(pl32,pl23),(pl32,pl24),(pl32,pl31)}

S3
r = (Pl ,E3) Pl = {pl j | 1≤ j ≤32} E3 = {(pl1,pl2),(pl1,pl9),(pl2,pl1),(pl2,pl3),(pl2,pl10),(pl2,pl11),

(pl3,pl2),(pl3,pl4),(pl3,pl10),(pl3,pl11),(pl3,pl12),(pl4,pl3),(pl4,pl5),(pl4,pl11),(pl4,pl12),(pl5,pl4),(pl5,pl6),
(pl5,pl13),(pl6,pl5),(pl6,pl7),(pl6,pl14),(pl7,pl6),(pl7,pl8),(pl7,pl15),(pl7,pl16),(pl8,pl7),(pl8,pl15),(pl8,pl16),
(pl9,pl1),(pl9,pl10),(pl9,pl17),(pl10,pl2),(pl10,pl3),(pl10,pl9),(pl10,pl11),(pl10,pl18),(pl11,pl2),(pl11,pl3),(pl11,pl4),
(pl11,pl10),(pl11,pl12),(pl11,pl19),(pl11,pl20),(pl12,pl3),(pl12,pl4),(pl12,pl11),(pl12,pl13),(pl12,pl19),(pl12,pl20),
(pl13,pl5),(pl13,pl12),(pl13,pl14),(pl13,pl21),(pl14,pl6),(pl14,pl13),(pl14,pl22),(pl15,pl7),(pl15,pl8),(pl15,pl16),
(pl16,pl7),(pl16,pl8),(pl16,pl15),(pl17,pl9),(pl17,pl18),(pl18,pl10),(pl18,pl17),(pl18,pl19),(pl19,pl11),(pl19,pl12),
(pl19,pl18),(pl19,pl20),(pl19,pl28),(pl20,pl11),(pl20,pl12),(pl20,pl19),(pl20,pl21),(pl20,pl27),(pl20,pl28),
(pl21,pl13),(pl21,pl20),(pl21,pl22),(pl21,pl29),(pl22,pl14),(pl22,pl21),(pl22,pl30),(pl23,pl24),(pl23,pl31),
(pl23,pl32),(pl24,pl23),(pl24,pl31),(pl24,pl32),(pl26,pl27),(pl27,pl20),(pl27,pl26),(pl27,pl28),(pl28,pl19),(pl28,pl20),
(pl28,pl27),(pl28,pl29),(pl29,pl21),(pl29,pl28),(pl29,pl30),(pl30,pl22),(pl30,pl29),(pl30,pl31),(pl31,pl23),
(pl31,pl24),(pl31,pl30),(pl31,pl32),(pl32,pl23),(pl32,pl24),(pl32,pl31)}

Fig. 13: Textual representation of the table service collaboration.


	On the interplay between BPMN collaborations and the physical environment

