
Companion Technical Report Associated to the Paper
“Modeling, Formalizing, and Animating

Environment-Aware BPMN Collaborations”

Abstract. In this technical report, we provide the full account of the formal se-
mantics of the environment-aware BPMN collaboration models introduced in the
paper “Modeling, Formalizing, and Animating Environment-Aware BPMN Col-
laborations”, which is under submission.

1 Formal Syntax

In this section, we provide the formalization of the syntax of environment-aware BPMN
collaboration models. Our syntax extends the one proposed in [1] with new BPMN ele-
ments, specifically devised to deal with the interaction between collaboration processes
and the environment. Most of all, our formalization considers in addition a richer model
of the environment. To keep the formalization manageable and understandable, we fo-
cus on elements that are strictly needed to define meaningful collaborations, the envi-
ronment where the collaboration happens, and the relations between them.

The formalization resorts to a textual representation that uses a Backus-Naur Form
(BNF) syntax for representing the new BPMN elements and the extension of the en-
vironment. The motivation for using here a textual representation rather than the usual
graphical notation is that the former is more manageable for writing operational seman-
tic rules than the latter. In addition, the textual notation makes explicit those technical
details of collaboration models that are not part of the graphical representation (e.g.,
message payloads, assignments, guard conditions), but are part of the low-level XML
characterization of the model. This information is needed to properly define the execu-
tion semantics of the environment-aware BPMN collaboration models.

Figure 1 reports the BNF syntax defining the textual notation describing the struc-
ture of environment-aware BPMN collaboration models. Specifically, the upper table
reports the grammar productions defining the syntax of collaboration models together
with the notation of the related generic elements of the syntactic categories. The sym-
bol ∗ stands for (possibly empty) sequences, and + for non-empty sequences. As usual
for BPMN models, we assume that message flows, sequence flows, and task names
are unique in the model; similarly, we also assume that handshake flows are unique.
Notably, even if this syntax would allow writing collaboration models that cannot be
expressed in BPMN, we will consider only those terms of the syntax that can be de-
rived from BPMN models. The bottom table reports the definition of the environment
where a collaboration is enacted, together with the related notation.

Intuitively, a environment-aware BPMN collaboration is the union of the terms C,
indicating the structure of the collaboration, and ENV , indicating the environmental

2

C ::= (Collaboration Structures)

pool(p,P) | C ∥ C′ (pool, pool composition)

P ::= (Process Structures)

start(f, f ′) | end(f) (start event, end event)

| snd(f,m,exp, f ′) (msg sending intermediate event)

| rcv(f,m,do.i, f ′) (msg receiving intermediate event)

| andSplit(f,F) | andJoin(F, f) (AND split/join gateway)

| xorSplit(f,(exp, f)+) | xorJoin(F, f) (XOR split/join gateway)

| eventBased(f,(m,do.i, f ′)+) (event-based gateway)

| T | P |P′ (tasks and process composition)

T ::= task(f,n,exp,A,d, f ′) (basic task)

| taskM(f,n,exp,A,exp′, f ′) (movement task)

| taskB(f,h, f ′) (binding task)

| taskU(f,h, f ′) (unbinding task)

A ::= assign(exp,v)∗ (Assignments)

(Notation)

Pool name: p Data object name: do

Sequence flow: f Physical place name: pp

Sequence flow set: F Logical place name: lp

Message flow: m Edge name: e

Handshake flow: h Field name: i

Expression: exp Attribute name: a

Task name: n Variable (i.e., do.i, pp.a, lp.a, e.a): v

ENV ::= (PL,LL) (Environment Model)

PL ::= (PP,E,E,App,Ae) with E ⊆ PP×E×PP (Physical Layer)

LL ::= (V ∗,LP) with LP : LP→ EXP (Logical Layer)

V ::= (LP,Al p,Al p) with Al p : Al p → (AG×DAG) (View)

(Notation)

Physical place names set: PP Logical place names set: LP
Edge names set: E Logical place attributes: Al p

Edges: E Attribute (dis)aggregation: Al p

Physical place attributes: App Expressions set: EXP
Edge attributes: Ae Aggregation functions set: AG
Logical place definition function: LP Disaggregation functions set: DAG

Fig. 1: BNF syntax of environment-aware BPMN collaboration models.

3

model. A collaboration is rendered in the presented syntax as a collection of pools cou-
pled with an environmental model divided into a physical layer and a logical layer. For-
mally, a collaboration C is a composition by means of the operator ∥, of pool elements
pool(p,P) uniquely identified by a pool name p and enveloping process structures of
the form P. Similarly, a process P is a composition of process elements (denoted by the
sans serif font) by means of the operator |. We identify collaborations (resp. processes)
up to commutativity and associativity of pool (resp. process element) collection. Thus,
e.g., C1 ∥ C2 and C2 ∥ C1 are identified as the same collaboration due to the commuta-
tivity property, while P1 | (P2 | P3) and (P1 | P2) | P3 are identified as the same process
due to the associativity property. To support a compositional approach, in the textual
notation each sequence/message flow of the graphical notation is split into two parts:
the part outgoing from the source element and the part incoming into the target element.
The two parts are correlated by a unique sequence/message flow name.

More specifically, the elements of the notation are as follows.

– pool(p,P) denotes a pool identified by a name p, enveloping a process structure P.
– start(f, f ′) denotes a start event that contains an incoming (spurious) sequence flow
f, named enabling flow, used to activate the start event, and the outgoing sequence
flow f ′.

– end(f) denotes the end event and f is the incoming sequence flow.
– snd(f,m,exp, f ′) denotes the message intermediate sending event that is charac-

terized by an incoming sequence flow f, a message m, an expression exp, whose
evaluation will return the value to be sent, and an outgoing sequence flow f ′.

– rcv(f,m,do.i, f ′) denotes the message intermediate receiving event that is charac-
terized by an incoming sequence flow f, a message m, a data object field do.i, and
an outgoing sequence flow f ′.

– andSplit(f,F) denotes an AND split gateway characterized by an incoming se-
quence flow f and a set of outgoing sequence flow F .

– andJoin(F, f) denotes an AND join gateway characterized by a set of incoming
sequence flow F and an outgoing sequence flow f.

– xorSplit(f,(exp, f)+) denotes an XOR split gateway characterized by an incoming
sequence flow f and a list of outgoing sequence flows, each one specifying a trig-
gering condition exp.

– xorJoin(F, f) denotes XOR join gateways characterized by a set of incoming se-
quence flow F and an outgoing sequence flow f.

– eventBased(f,(m,do.i)+) denotes an event-based gateway which is similar to the
XOR-split gateway, but its outgoing sequence flow activation depends on taking
place of message receiving events.

– task(f,n,exp,A,d, f ′) denotes a basic task, which has a name n, a guard exp that
is a conditional expression predicating on attributes, a list of assignments A, and
a duration d that represents the amount of time it takes to execute the task. The
task has also an incoming and an outgoing sequence flow. Note that, for the sake of
readability, when the guard and/or the assignments are not used, they are omitted
from the syntactic definition of the element .

– taskM(f,n,exp,A,exp′, f ′) denotes a movement task, which is a type of task that
may involve a movement in the environment; it is similar to the basic task but it has

4

an additional expression exp′ that represents the destination to reach. In addition, a
movement task does not have the term d because it is assumed that its duration is
given by the time to reach the destination.

– taskB(f,h, f ′) denotes a binding task, which specifies a handshake flow h that con-
nects it to the binding task of another participant (which has the same h).

– taskU(f,h, f ′) denotes an unbinding task, which specifies a handshake flow h that
connects it to the unbinding task of another participant (which has the same h).

– assign(exp,v) denotes an assignment that assigns the value resulting from the eval-
uation of the expression exp to a variable, which can be a data object field do.i, an
attribute of a physical place pp.a, an attribute of a logical place lp.a, or an attribute
of an edge e.a.

Let us focus now on the syntax of the environment model. An environment ENV is
a tuple (PL,LL) where PL represents the physical layer while LL represents the logical
layer.

The physical layer PL consists of a place graphs, i.e. a graph whose nodes represent
physical places (whose names are in the set PP) and directed arcs represent edges E
(whose names are in the set E) connecting places. Both physical places and edges are
equipped with contextual information represented in terms of attributes (whose names
belong to the sets App and Ae, respectively).

The logical layer LL consists of a set of views and a function LP : LP→ EXP that
specifies which physical places form each logical place. Notably, the physical places
forming a logical place are not statically listed in the model because the constituents of
a logical place may change dynamically. Thus, the LP function maps each logical place
to a boolean expression on physical place attributes, whose evaluation on a physical
place determines if it belongs (at the time of such evaluation) to the corresponding
logical place. Formally, the set of physical places forming a given logical place lp ∈ LP
is defined as follows: P(lp) = {pp ∈ PP | [LP(lp)]pp}, where function [·]pp returns
an expression resulting from the instantiation of the input expression with the physical
place name pp, i.e., [exp]pp replaces each attribute a in exp with pp.a.

Finally, a view V groups a set of logical places LP, defining how the values of their
attributes (in the set Al p) result from the aggregation of the values of physical place
attributes and, vice versa, propagate from the logical to the physical layer. Specifically,
the handling of the logical place attributes of a view is defined by the function Al p that
maps each logical attribute to an aggregation and a disaggregation function. The ag-
gregating function of a logical attribute is called during the evaluation of an expression
when the logical attribute is encountered; the disaggregating function, instead, is called
when an assignment, having the logical attribute as target, is processed. In practice,
these functions provide a transparent mechanism to access and update the value of a
logical attribute (like a C# property). This allows the modeler to simply deal with logi-
cal attributes as standard (i.e., physical) attributes in expressions and assignments, thus
relieving him/her from the duty of explicitly handling aggregation and disaggregation
of values.

5

2 Formal Semantics

To describe the semantics of environment-aware BPMN collaboration, we enrich the
structural part of the model with the execution state, given by: the marking of sequence
flows with tokens [2, p. 27]; the value of the data object fields, physical place attributes
and edge attributes; the binding among participants; the status of tasks; the position
of the participants in the place graph; the status of timers; and the payloads of the ex-
changed messages. These stateful descriptions are called configurations; we have three
kinds of configurations: a process configuration has the form ⟨P,ENV,p,σ⟩, a collabo-
ration configuration has the form ⟨C,ENV,σ⟩, and an open-world environment config-
uration has the form [C,ENV,σ], where σ is an execution state. The last configuration
differs from the previous one because it allows the environment to evolve freely and
independently from the collaboration execution. The environment, indeed, can change
based on external factors, such as the traffic on a road.

As mentioned before, the execution state carries many information concerning the
execution of the environment-aware BPMN collaboration. In fact, the state σ consists
of the following list of state functions:

– σ f : F→ N is a sequence flow state function (where F is the set of sequence flows
and N is the set of natural numbers) specifying for each sequence flow the current
number of tokens marking it; σ0

f denotes the state where all sequence flows are
unmarked except for the spurious flows, each one marked by one token;

– σdoi : (DO× I) → V is a data object state function (where DO is the set of data
object names, I is the set of data object fields, and V is the set of values) assigning
values (possibly null) to data object fields; σ0

doi denotes the state where all data
object attributes are set to null except for those data objects (the so-called data
inputs) whose initial value is already provided by the modeler;

– σppa : (PP×App)→V is a physical place attribute state function assigning values
(possibly null) to physical place attributes; σ0

app denotes the state where all place
attributes are set to null or the initial value provided by the modeler;

– σea : (PP×Ae)→ V is an edge attribute state function assigning values (possibly
null) to edge attributes; σ0

ape denotes the state where all edge attributes are set to
null or the initial value provided by the modeler;

– σh : P→ 2P is a handshake state function (where P is the set of pool names, each
one denoting a collaboration participant) that, given a participant, returns the set of
participants with which it is bound;

– σs : T→{enab,dis} is a task state function (where T is the set of task names) used
to keep track of the active tasks; the status of a task depends on its evolution from
enabled (enab) to disabled (dis) states and vice versa; σ0

s denotes the state where
all tasks are disabled;

– σp : P → PP is the place state function mapping each participant to a place; σ0
p

denotes the state where all places are empty except for those containing the initial
positions of particpants provided by the modeler;

– σt : T→ N is a timer state function specifying for each task’s timer the time units
to wait until it expires; σ0

t denotes the state where all timers are set to undef;
– σm : M→ 2V

n
is a message state function (where M is the set of message flow

names) that assigns to each message flow name m an ordered multiset of values

6

representing the messages received along m; σ0
m denotes the state where all message

multisets are empty.

We define the update of state functions only for σ f , as the update of the other state
functions are similarly defined. The state obtained by updating in σ f the number of
tokens of the sequence flow f to n, written as σ f · [f 7→ n], is defined as follows: (σ f · [f 7→
n])(f ′) returns n if f ′ = f, otherwise it returns σ f (f

′).
The operational semantics of environment-aware BPMN collbaorations is defined

employing labeled transition systems (LTSs). The LTS of the process behavior is a triple
⟨P,L ,→⟩ where: P is a set of processes configurations; L , ranged over by λ , is a set
of labels; and →⊆P×L ×P is a transition relation. The labels used by the transition
relations → are generated by the following grammar:

η ::= (Handshake labels)
� h � (binding)

| � h � (unbinding)

ϕ ::= (Untimed labels)
η (handshake)

| τ (silent actions)

λ ::= (Process labels)
ϕ (untimed action)

| ✓ (timed action)

where ✓ denotes the passing of a unit of time (due, e.g., to movements in the envi-
ronment), and τ denotes a silent transition (due, e.g., token flow in the processes). As

simplification, ⟨P,ENV,σ⟩ λ−→ ⟨P,ENV,σ ′⟩ indicates that (⟨P,ENV,σ⟩, λ , ⟨P,ENV,σ ′⟩)
∈→, and says that the process P and the environment ENV in the state σ can do a tran-
sition labeled by λ and evolve to the state σ ′. The LTS describing the behavior of col-
laborations (resp. open-world open-world environments) is a triple ⟨C ,L ′,→c⟩ (resp.
⟨O,L ′,→o⟩) where: C (resp. O) is a set of collaboration (resp. open-world environ-
ment) configurations, L ′, ranged over by α , is a set of labels; and →c⊆ C ×L ′×C
(resp. →o⊆ O ×L ′ ×O) is a transition relation. The labels used by these transition
relations are generated by the follwoing grammar:

α ::= (Collaboration labels)
τ (silent action)

| ✓ (timed action)

To improve the readability, the following simplifications reduce the notation of op-
erational rules. We omit: (i) the environment ENV from the source configuration
of transitions, as it is the same in all rules; (ii) the execution state σ from the
source configuration of transitions, except in those rules with more than one transi-
tion in the premise; (iii) the process/collaboration structure and the environment from
the target configuration of transitions, since they are not not affected by transitions;
(iv) those state functions from target configurations that are not affected by tran-

sitions. Thus, for example, a transition ⟨P,ENV,σ f ,σdoi,σppa,σea,σs,σp,σt ,σm⟩
λ−→

7

⟨P,ENV,σ ′
f ,σ

′
doi,σ

′
ppa,σ

′
ea,σ

′
s,σ

′
p,σ

′
t ,σ

′
m⟩ will be written as P λ−→ ⟨σ ′

f ⟩ when it simply
affects the sequence flow state function.

Function inc(σ f , f) = σ f · [f 7→ σ f (f)+ 1], resp. dec(σ f , f) = σ f · [f 7→ σ f (f)− 1], increments, resp. decrements,
by one the number of tokens marking the sequence flow f in the state σ f . They extend in a natural way to sets
F of sequence flows; they are inductively defined as follows: inc(σ f , /0) = dec(σ f , /0) = σ f , inc(σ f ,{f} ∪ F) =
inc(inc(σ f , f),F), dec(σ f ,{f} ∪F) = dec(dec(σ f , f),F). Function dec(σt ,n), which decrements the timer value
for the timer n, is defined similarly.
Function enab(σs,n) = σs · [n 7→ enab], resp. dis(σs,n) = σs · [n 7→ dis], activates, resp. deactivates, the task n in the
state σs.
Function eval(ENV,σdoi,σppa,σea,σp,exp) = v states that v is the value resulting from the evaluation of the ex-
pression exp on the data fields in σdoi, attributes in σppa and σea, and participants’ positions in σp. For logical place
attributes, the evaluation resorts to the aggregation functions specified in the views of the environment model ENV .
For the sake of presentation, we omit the environment and the state functions when they are clear from the context,
thus writing eval(exp).
Function upd(ENV,σdoi,σppa,σea,σp,A) performs the assignments A and returns the updated data object, physi-
cal place attribute and edge attributes state functions. For example, upd(ENV,σdoi,σppa,σea,σp,assign(exp,do.i))
= (σdoi · [do.i 7→ eval(exp)],σppa,σea). Differently, the assignment of a logical place attribute resorts to the dis-
aggregation function specified in the environment model ENV . upd(ENV,σdoi,σppa,σea,σp,assign(exp, lp.a)) =
(σdoi,σ

′
ppa,σea) where σ ′

ppa is returned by the call of the disaggreggation function associated to lp.a. Formally, given
the view (LP,Al p,Al p) in ENV such that lp∈LP, the disaggregation function corresponding to a is Al p(a) ↓2= fdag
(where ↓i is a projection function that returns the second item of a pair). Thus, the call of disaggregation function is
fdag(lp,eval(exp)); we recall that aggregation/disaggregation functions are parametric with respect to the physical
attribute on which they operate. For the sake of presentation, we omit the environment and the state functions when
they are clear from the context, thus writing upd(A).
Function next(PL,σp,p, pl), where pl can be either a logical place lp or a physical place pp, is defined as follows.
If a physical place pp is given as input, i.e. next(PL,σp,p,pp), it returns the set of places that are next in the paths
in the physical layer PL from the current place σp(p) of the process participant to the destination pp; the function
returns /0 when there is no path to the destination. If a logical place lp is given as input, i.e. next(PL,σp,p, lp), it
returns next(PL,σp,p,pp) where pp∈P(lp). This means that, when the destination specified by the task is a logical
place, the next place is computed, for the sake of simplicity, considering as destination one of the physical places
(non-deterministically selected) forming the logical place. Notably, the next function determines the next place to
reach by computing the shortest paths to the destination; different definitions can be provided for this function to
specify different navigation strategies.
Function arrived(σp,p, pl), where pl can be either a logical place lp or a physical place pp, returns true if the
current position of the participant p is the destination place pl. Formally, arrived(σp,p,pp) = (σp(p) = pp), and
arrived(σp,p, lp) = (σp(p) ∈ P(lp)).
Function move(σp,σh,p,pp) assigns to the the participant p, and all participants bound to it, the physical place pp
in the state σp. Formally, move(σp,σh,p,pp) = σp · [p 7→pp] · [p1 7→ pp] · . . . · [pn 7→ pp] with σh(p) = {p1, · · · ,pn}.
Function set(σt ,n,k)=σt · [n 7→k] sets the timer of the task named n to the natural number k.
Function reset(σt ,n)=σt · [n 7→ undef] resets the timer of the task named n.
Function add(σm,m,v) = σm · [m 7→ σm(m)⊎{v}] adds the value v for the message flow m in the state σm.
Function rm(σm,m,v) = σm · [m 7→ σm(m)\{v}] removes the value v for message m from the state σm.
Function getD(d) can be expressed in different ways. In this paper, duration d is considered as a couple (kmin,kmax)
such that getD(d) returns a uniformally distributed natural number in the interval [kmin,kmax].
Function notTimedEl(P) returns false when P is a basic task or a movement task, i.e.,
notTimedEl(task(f,n,exp,A,d, f ′)) = notTimedEl(taskM(f,n,exp,A,exp′, f ′)) = false. For all other ele-
ments, this function returns true. Finally notTimedEl(P1 | P2) = notTimedEl(P1) ∧ notTimedEl(P2) .
Function bind(σh,p1,p2) binds together the participants p1 and p2 in σh. Formally, bind(σh,p1,p2) = σ ′

h with
σ ′

h(p) = σh(p) if p /∈ {p1,p2}, σ ′
h(p1) = σh(p1)∪{p2}, and σ ′

h(p2) = σh(p2)∪{p1}. Notation σ ·σ ′
h denotes the

update of state σ by replacing the enclosed σh by σ ′
h.

Function unbind(σh,p1,p2) unbinds the participants p1 and p2 in σh. Formally, unbind(σh,p1,p2) = σ ′
h with

σ ′
h(p) = σh(p) if p /∈ {p1,p2}, σ ′

h(p1) = σh(p1)\{p2}, and σ ′
h(p2) = σh(p2)\{p1}.

Function evolve(σ) updates the environmental attributes in the state σ independently from the activities performed
by the collaboration participants. The definition of this function is application dependent and must be provided by
the modeller when the collaboration is executed in an open-world environment. By default, evolve(σ) = σ , meaning
that the environment does not evolve independently if the modeler does not specify how.

Fig. 2: Auxiliary functions

8

Moreover, to further simplify the definition of the operational rules, in Figure 2 we
define auxiliary functions that update the state functions of process configurations or
performs checks in rules’ conditions.

The operational rules defining the transition relations of the environment-aware
BPMN semantics are given by the inference rules in Figures 3, 4, and 5.

We now briefly comment on the semantic rules, starting from those dealing with
events and gateways in Figures 3. Rule P-Start starts the execution of a process when
it has been activated. To denote the enabled status of start events we have included
in their syntactical definition an incoming (spurious) sequence flow, named enabling
sequence flow. Thus, the process is activated when the enabling sequence flow of a
start event is marked. The effect of the rule is to increment the number of tokens in
the sequence flow outgoing from the start event and to decrease the marking of the
enabling sequence flow. Rule P-End instead is enabled when there is at least one token
in the incoming sequence flow of the end event, which is then consumed. Rule P-Rcv
is enabled when there is at least a token in the incoming flow and when there is a value
in the message queue. As a result, this function increments the number of tokens in
the outgoing sequence flow, updates the data object fields with the received value, and
removes it from the queue. Rule P-Snd is enabled when there is at least a token in
its incoming flow; as a result, the value resulting from the evaluation of the message
expression exp is added to the queue of the message flow m, and the number of tokens
in the outgoing sequence flow is incremented. Rule P-AndSplit is applied when there
is at least one token in the incoming edge of an AND split gateway; as a result of its
application, the rule decrements the number of tokens in the incoming sequence flow,
and increments the tokens in each outgoing sequence flow. Rule P-XorSplit is applied
when a token is available in the incoming sequence flow of a XOR split gateway and
a conditional expression of one of its outgoing sequence flows is evaluated to true; the
rule decrements the token in the incoming sequence flow and increments the token in the
selected outgoing sequence flow. Notably, if more edges have their guards satisfied, one
of them is non-deterministically chosen. Rule P-XorJoin is activated every time there
is a token in one of the incoming sequence flows, which is then moved to the outgoing
sequence flow. Rule P-EventB is activated when there is a token in the incoming flow
and a value is present for at least one of the connected messages. The effect of the rule
is similar to that of rule P-Rcv.

Let us consider the rules in Figure 4, dealing with basic tasks, movement tasks,
binding and unbinding tasks. Rules P-TaskAct and P-TaskMAct both activate tasks and
movement tasks when they are disabled, there is a token in the incoming sequence flow,
and the guard expg is satisfied. Then, they remove the token in the incoming sequence
flow, enable the tasks, and start the timer of the task (not for the movement task). Rule
P-TaskElps1 decrements the value of the task’s timer when it is enabled and the timeout
is not expired. RulesP-TaskElps2 and P-TaskMElps2 enables tasks and movement tasks to
evolve with temporal transitions when they are disabled. Rule P-TaskC deals with the
completion of a basic task. If the task is enabled and the timeout is expired, the rule
increments the token in the outgoing sequence flow, performs the assignments, disables
the task, and resets the timer. RuleP-TaskMElps1 performs a movement to the next place
of the physical layer of the environment when the task is enabled and the next physical

9

start(f, f ′)
τ−→ ⟨inc(dec(σ f , f), f

′)⟩ σ f (f)> 0 (P-Start)

end(f)
τ−→ ⟨dec(σ f , f)⟩ σ f (f)> 0 (P-End)

rcv(f,m,do.i, f ′)
τ−→

⟨inc(dec(σ f , f), f
′),upd(assign(v,do.i)),rm(σm,m,v)⟩

σ f (f)> 0 ∧
v ∈ σm(m)

(P-Rcv)

snd(f,m,exp, f ′)
τ−→ ⟨inc(dec(σ f , f), f

′),add(σm,m,v)⟩ σ f (f)> 0 ∧
eval(exp) = v

(P-Snd)

andSplit(f,F)
τ−→ ⟨inc(dec(σ f , f),F)⟩ σ f (f)> 0 (P-AndSplit)

xorSplit(f,(exp′, f ′)(exp′′, f ′′)∗)
τ−→ ⟨inc(dec(σ f , f), f

′)⟩ σ f (f)> 0 ∧
eval(exp′) = true

(P-XorSplit)

andJoin(F, f) τ−→ ⟨inc(dec(σ f ,F), f)⟩ ∀f ′ ∈ F . σ f (f
′)> 0 (P-AndJoin)

xorJoin({f}∪F, f ′) τ−→ ⟨inc(dec(σ f , f), f
′)⟩ σ f (f)> 0 (P-XorJoin)

eventBased(f,(m,do.i, f ′)(m′,do′.i′, f ′′)∗)
τ−→

⟨inc(dec(σ f , f), f
′),upd(assign(v,do.i)),rm(σm,m,v)⟩

σ f (f)> 0 ∧
v ∈ σm(m)

(P-EventB)

Fig. 3: Environment-aware BPMN process semantics: events and gateways.

place is reachable. Rule P-TaskMElps3 enables movement tasks to evolve with temporal
transitions when it is enabled, the destination is not reachable, and the current position
is not the destination. Rule P-TaskMC deals with the completion of the movement task;
if the task is enabled and the destination has been reached, the rule increments the
outgoing sequence flow, performs the assignments, and disables the task. RulesP-TaskB
andP-TaskU deals with binding and unbinding tasks; if there is a token in the incoming
sequence flow of those tasks, the effect of the rules is to increment the number of tokens
in the outgoing sequence flow and to decrease the token in the incoming sequence flow,
while producing a transition label representing the will of the participant to bind/unbind
with the other participant connected by the handshake flow h.

Finally, we comment on the operational rules in Figure 5, dealing with the inter-
leaving of process and collaboration elements. Rule P-Elps enables not timed process
elements to evolve the process configuration with temporal transitions. Rule P-Int1 en-
ables single process elements to evolve the process configuration with silent transi-
tions, instead rule P-Int2 enables process elements to evolve the process configuration
with temporal transitions ✓ if no silent actions ϕ may occur (see maximal progress as-
sumption of timed process calculi [3]). Regarding collaboration elements, rule C-Prop
propagates the transition from process to collaboration configuration, while C-Int1 and
C-Int2 behave as P-Int1 and P-Int2, respectively. Notably, rules P-Int1 and C-Int1 allow
single process elements to evolve the configuration, while P-Int2 and C-Int2 imposes
a synchronous triggering of rules producing a temporal transition. Rule C-Bind (resp.
C-Unbind) binds (resp. unbinding) two participants if they are in the same physical

10

task(f,n,expg,A,d, f ′)
τ−→

⟨dec(σ f , f),enab(σs,n),set(σt ,n,getD(d))⟩
σ f (f)> 0 ∧σs(n) = dis ∧
eval(expg) = true

(P-TaskAct)

task(f,n,expg,A,d, f ′)
✓−→ ⟨dec(σt ,n)⟩ σs(n) = enab ∧ σt(n)> 0 (P-TaskElps1)

task(f,n,expg,A,d, f ′)
✓−→ ⟨⟩ σs(n) = dis (P-TaskElps2)

task(f,n,expg,A,d, f ′)
τ−→

⟨inc(σ f , f
′),upd(A),dis(σs,n),reset(σt ,n)⟩

σs(n) = enab ∧ σt(n) = 0 (P-TaskC)

taskM(f,n,expg,A,expd , f
′)

τ−→
⟨dec(σ f , f),enab(σs,n)⟩

σ f (f)> 0 ∧σs(n) = dis ∧
eval(expg) = true

(P-TaskMAct)

taskM(f,n,expg,A,expd , f
′)

✓−→
⟨move(σp,σh,p,pp)⟩

σs(n) = enab ∧
pp ∈ next(PL,σp,p,eval(expd))

(P-TaskMElps1)

taskM(f,n,expg,A,expd , f
′)

✓−→ ⟨⟩ σs(n) = dis (P-TaskMElps2)

taskM(f,n,expg,A,expd , f
′)

✓−→ ⟨⟩
σs(n) = enab ∧
next(PL,σp,p,eval(expd)) = /0 ∧
¬arrived(σp,p,eval(expd))

(P-TaskMElps3)

taskM(f,n,expg,A,expd , f
′)

τ−→
⟨inc(σ f , f

′),upd(A),dis(σs,n)⟩
σs(n) = enab ∧
arrived(σp,p,eval(expd))

(P-TaskMC)

taskB(f,h, f)
�h�−−−→ ⟨inc(dec(σ f , f), f

′)⟩ σ f (f)> 0 (P-TaskB)

taskU(f,h, f)
�h�−−−→ ⟨inc(dec(σ f , f), f

′)⟩ σ f (f)> 0 (P-TaskU)

Fig. 4: Environment-aware BPMN process semantics: tasks and movement tasks.

place. Rule C-Open1 allows the environmental attributes of the configuration to evolve
in an open-world fashion, i.e. independently from the collaboration execution. Rule C-
Open2, instead, does not allow the environment to evolve independently when there is
no elapse of time.

3 Case Study Formalization

To assess our formalization, we propose a case study concerning an emergency response
collaboration process, which occurs within a hospital and its surroundings.

11

P ✓−→ ⟨⟩ notTimedEl(P) = true (P-Elps)

P1
ϕ−→ ⟨σ ′⟩

P1 | P2
ϕ−→ ⟨σ ′⟩

(P-Int1)
P1

✓−→ ⟨σ ′⟩ ⟨P2,σ
′⟩ ✓−→ ⟨σ ′′⟩ P1 | P2 ̸

ϕ−→

P1 | P2
✓−→ ⟨σ ′′⟩

(P-Int2)

⟨P,ENV,p,σ⟩ λ−→ ⟨σ ′⟩

⟨pool(p,P),ENV,σ⟩ λ−→ ⟨σ ′⟩
λ ̸= η (C-Prop)

P1
�h�−−−→ ⟨σ ′⟩ ⟨P2,σ

′⟩ �h�−−−→ ⟨σ ′′⟩ σp(p1) = σp(p2)

pool(p1,P1) ∥ pool(p2,P2)
τ−→ ⟨σ ′′ ·bind(σh,p1,p2)⟩

(C-Bind)

P1
�h�−−−→ ⟨σ ′⟩ ⟨P2,σ

′⟩ �h�−−−→ ⟨σ ′′⟩ σp(p1) = σp(p2)

pool(p1,P1) ∥ pool(p2,P2)
τ−→ ⟨σ ′′ ·unbind(σh,p1,p2)⟩

(C-Unbind)

C1
τ−→ ⟨σ ′⟩

C1 ∥C2
τ−→ ⟨σ ′⟩

(C-Int1)
C1

✓−→ ⟨σ ′⟩ ⟨C2,σ
′⟩ ✓−→ ⟨σ ′′⟩ C1 ∥C2 ̸

τ−→

C1 ∥C2
✓−→ ⟨σ ′′⟩

(C-Int2)

⟨C,ENV,σ⟩ ✓−→ ⟨σ ′⟩

[C,ENV,σ]
✓−→ ⟨evolve(σ ′)⟩

(C-Open1)
⟨C,ENV,σ⟩ τ−→ ⟨σ ′⟩

[C,ENV,σ]
τ−→ ⟨σ ′⟩

(C-Open2)

Fig. 5: Environment-aware BPMN process and collaboration semantics.

S13

S10

S8 S9

S11

S14

S16 S17

S12

S15

S7 S6

S4 S5

S2 S3

S1

H6

H10

H14 H13

H9

H5

H2 H1

H4

[[[[[

H8

H12 H11

H7

H3

ROADS

 DEPARTMENTS

 AVAILABLE ROOMS

P

SP17 SP256

Radiology
Department

Emergency
Department

Available
Emergency

rooms

Available
Radiology

rooms

L
O
G
I
C
A
L

P
H
Y
S
I
C
A
L

L
A
Y
E
R

L
A
Y
E
R

Fig. 6: Case Study Environment Representation

12

The environment model depicted in Figure 6 overall comprises 32 physical places,
6 logical places and 3 views. The Departments view includes the Emergency Depart-
ment and Radiology Department logical places. The Available Rooms view includes
the Available Emergency Rooms and Available Radiology Rooms logical places. The
Roads view comprises the SP17 and SP256 logical places. The collaboration, see Fig-
ure 7, is performed by four participants: Injured Patient, Ambulance, Emergency Nurse
and Emergency Doctor.

Em
er

ge
nc

y
nu

rs
e

Em
er

ge
nc

y
do

ct
or

In
ju

re
d

pa
tie

nt
Am

bu
la

nc
e

Accident
occured

Emergency
start

Visit started

Arrive
patient

Receive injured
patient info

Call
emergency

EmergencyEmergency call
start received

emergency

Patient pos

Injured patient
information

load

patient_info

Injured patient
response

Final
room

unload

arrival

Send patient
information

Send patient
response

folllow

Receive
final room

final room

Send final room

Notify patient
arrival

End visit

Receive doctor
response

Final patient room

Emergency
managed

leave

Emergency
managed

End of emergency
process

response

Meet patient

Move to
Position

Get into
ambulance

See patient
information

Move to
Emergency

room

Load patient

Visit patient

Get out the
ambulance

Drive to
hospital

Move to doctor
room

Meet the
emergency

nurse

Leave patient

Move to final
room

Arrive at visit
room

Leave patient to
final room

Fig. 7: Emergency response collaboration process

The emergency response collaboration starts when the Injured Patient is involved in
a car accident and calls an ambulance, providing its position. Upon receiving the call,
the Ambulance moves to the patient’s position. Once arrived, the ambulance picks up the
patient with the bind tasks Get into ambulance and Load patient into ambulance and
transports him to the hospital. Once at the hospital, the ambulance leaves the patient
to the hospital with an unbind task. The patient is then received by the Emergency
Nurse, who escorts him to an available emergency room and send his information to the
Emergency Doctor. The Emergency doctor, after reviewing the patient’s information,
examines the patient upon his arrival with the nurse. Following the examination, the
doctor provides a diagnosis and instructs the nurse on which room the patient should be
taken to for further tests. The nurse then escorts the patient to the designated room and
leaves him for the necessary analyses.

13

Cer = pool(ppatient ,Ppatient) ∥ pool(pambulance,Pambulance) ∥ pool(pnurse,Pnurse) ∥ pool(pdoctor ,Pdoctor)

Ppatient = start(f ′1, f1) | snd(f1,memergency,vs14, f2) | taskB(f2,hload , f3) | taskU(f3,hunload , f4) |
taskB(f4,h f ollow, f5) | rcv(f5,mresponse,doresponse.imsg, f6) | taskU(f6,hleave, f7) | end(f7)

Pambulance = start(f ′8, f8) | rcv(f8,memergency,doPatientPos.iposition, f9) | taskM(f9,nMovetoposition,doPatientPos.iposition, f10) |
taskB(f10,hload , f11) | taskM(f11,nDrivetohospital ,ppH1, f12) | taskU(f12,hleave, f13) |
snd(f13,marrival,vpatientarrival, f14)end(f14)

Pnurse = start(f ′15, f15) | rcv(f15,marrival,doInfo.iinfo, f16) | taskB(f16,h f ollow, f17) |
taskM(f17,nMovetoEmergencyRoom,(lpavailableStudyRooms.aseats > 0),A1, lpAvailableEmergencyrooms, f18) |
snd(f18,mpatientinfo,vpatientinfo, f19) | taskM(f19,nMovetoDoctorRoom,ppH4, f20) |
rcv(f20,mfinalroom,doFinalRoom.iposition, f21) | taskM(f21,nMovetoFinalroom,doFinalRoom.iposition, f22) |
taskU(f22,hleave, f23) | end(f23)
A1 = assign((myplace.afreeSeats −1),myplace.afreeSeats)

Pdoctor = start(f ′24, f24) | rcv(f24,mpatientinfo,doInjuredPatientInformation.i, f25) | task(f25,nSeePatientIn f ormation,d1, f26) |
task(f26,nVisitPatient ,1, f27) | andSplit(f27,(f28, f29)) | snd(f28,mresponse,vpatientresponse, f30) |
snd(f29,mfinalroom,vppH8 , f31) | andSplit(f30,(f31, f32)) | end(f32)

ENVh = (PLh,LLh)

PLh = ({ppH1, . . . ,ppH14,ppP,ppS1, . . . ,ppS17}, {e1, . . . ,e35}, App : {azone, apurpose, a f reeSeats}, Ae : {astatus},
E = {(ppH1,e1,ppH2),(ppH2,e2,ppH1), . . . ,(ppS17,e35,ppS16),(ppS16,e20,ppS17),}

LLh = (VDepartements,VAvailable Rooms,VRoads,LPh)

LPh = [lpEmergencyDepartment 7→ azone == vhospital and apurpose == vemergency,
lpRadiology 7→ azone == vhospital and apurpose == valradiology,
lpAvailableRadiologyRooms 7→ azone == vhospital and apurpose == vradiology and a f reeSeats > 0,
lpAvailableEmergencyRooms 7→ azone == vhospital and apurpose == vemergency and a f reeSeats > 0,
lpSP276 7→ azone == vstreet and apurpose == vSP176,
lpSP17 7→ azone == vstreet and apurpose == vSP17]

VDepartments = ({lpEmergencyDepartment , lpRadiologyDepartment}, /0, /0)

VAvailableRooms = ({lpAvailableEmergencyRooms, lpAvailableRadiologyRooms},{aseats}, [aseats 7→ (sum⟨a f reeSeats⟩,occupy⟨a f reeSeats⟩)])

VRoads = ({lpSP17, lpSP276}, /0, /0)

sum⟨a⟩(this) : occupy⟨a⟩(this, n) :
res = 0; f orEach pp in P(this)
f orEach pp in P(this) i f n > pp.a then n−= pp.a; pp.a= 0;
res+= pp.a; else pp.a−= n;
return res; return;

Fig. 8: Spatial Textual representation of the university example

In Figure 8, we provide the textual representation of the presented case study. This
exemplifies the correspondence between the graphical representation of the environ-
ment and the proposed BNF syntax. Note that the edges are undirected in the example,
so they are represented by two directed edges with the same edge id, having the same
attribute values.

References

1. Corradini, F., Piccioni, J., Re, B., Rossi, L., Tiezzi, F.: On the Interplay Between BPMN Col-
laborations and the Physical Environment. In: International Conference of Business Process
Management, BPM2024. p. 93–110. Springer-Verlag (2024)

2. OMG: Business process model and notation. (BPMN V2.0) (2011)
3. Roever, W.P.d., Hooman, J.: Design and verification in real-time distributed computing: an in-

troduction to compositional methods. In: International Symposium on Protocol Specification,
Testing and Verification. p. 37–56. North-Holland Publishing (1989)

	Companion Technical Report Associated to the Paper ``Modeling, Formalizing, and Animating Environment-Aware BPMN Collaborations''

