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Abstract. Business processes, in particular collaborations, describe how various
participants interact and behave to achieve specific objectives. Depending on the
business scenario, process participants operate in a specific environment charac-
terized by spatial and contextual dimensions. Participants can interact with and
modify the environment, which in turn may influence process execution. Indeed,
there exists a bidirectional relationship between business processes and the envi-
ronment, which involves the necessity of representing the environment in a way
that allows business processes to benefit from its awareness. Despite extensive re-
search on environment modeling, the seamless integration of business processes
and environment models has not been explored yet. To address this gap, we con-
ceptualize environment-aware BPMN collaboration models to capture spatial and
contextual dimensions at the desired level of granularity and abstraction; we for-
malize the operational semantics of such models; and we propose a tool for ani-
mating their execution with the aid of geographic maps. We illustrate our findings
through an emergency response collaborative scenario.

Keywords: Environment-Aware BPMN · Formal Semantics · Animation.

1 Introduction
Business processes specify how different participants behave, exchange information,
and interact to reach an objective. In this regard, the BPMN collaboration [20] is the
most adopted notation to model business processes with different participants. Busi-
ness processes usually happen in a physical space, which is also indicated with the term
environment [6]. The environment comprises spatial dimensions, which describe metric
properties of the tangible space occupied and navigated by process participants. The
extent of a corridor connecting two rooms is an example of such spatial dimensions.
Beyond these, the environment is also characterized by invisible contextual dimensions
that capture domain knowledge [23]. Such dimensions influence how the environment
is perceived and utilized, revealing interactions beyond its spatial dimensions. The de-
creasing of the speed limit in a residential area to ensure safety is an example of such
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contextual dimensions. The ability to leverage such environmental dimensions, both
spatial and contextual, is referred to as environmental awareness [8].

Within the scope of BPMN, environmental awareness enables participants to opti-
mize operations on the basis of the working environment [22,24]. A process participant
can hold a position or move between locations, e.g., move toward a parking lot; check
the environment’s state, e.g., check for free parking slots; and modify it, e.g., occupy
a parking slot. In parallel, the environment can influence tasks and decisions of a pro-
cess, e.g., a traffic light that temporarily stops a movement task or the temperature of
a room that drives the decision taken by a gateway. Considering collaborations, the
environment acts as a shared resource, providing a common context that participants
access and interact with, influencing each other’s behavior. For instance, participants
can move synchronously in the environment, e.g., a taxi driver who carries a passenger;
can take possession of environmental resources, e.g., a participant who occupies a toi-
let, making it inaccessible to others; or can indirectly communicate by modifying the
environment and responding to these modifications (aka stigmergy), e.g., a participant
planting tomatoes, thereby enabling another participant to detect and water the area ac-
cordingly. Overall, such interplay establishes a bidirectional relationship between the
collaboration and the environment, where one influences the other and vice versa.

Therefore, an accurate representation of the environment, properly integrated with
collaborations to achieve its awareness, are crucial for correctly managing business
processes [22]. In this regard, environment modeling has been largely studied in lit-
erature [2,3,12,18,14,13]. Concerning environmental awareness in BPMN, most ap-
proaches focus solely on extending its graphical notation, while only a few works [24,6]
define environment models integrated with business process models. However, all these
works discard relevant aspects: the possibility to model different parts of the same envi-
ronment at different levels of granularity, thus enabling environmental reasoning with
distinct accuracy; the possibility to define different levels of abstraction, thus enabling
the seamless integration of high-level environmental aspects in the collaboration model;
the possibility to specify constraints on movements involving different participants, thus
enabling the representation of situations where a participant follows the same move-
ments of another. Finally, these works lack approaches to support the modeler in the
specification of the environment and the visualization of process execution on it.

To this aim, we propose an approach to model, formalize, and animate environment-
aware BPMN collaborations, whose effectiveness and feasibility are demonstrated
through an emergency case study. The contribution of our work is threefold. We first
provide a conceptualization of environment-aware BPMN collaboration models in-
tegrating BPMN collaborations with an environment model that captures both spatial
and contextual dimensions, allowing multiple levels of granularity. Specifically, we ex-
tend BPMN along two directions. (i) We define new BPMN task elements that explicitly
represent movements in the environment and binding/unbinding participants to enable
synchronized movements within the same environment. (ii) We define an environment
model based on a semantically-enriched place graph, whose nodes represent locations
in the space, edges define how locations are connected, and both places and edges are
equipped with attributes representing either spatial or contextual dimensions. Exploit-
ing attributes, we can define in our environment model different logical views, provid-
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ing higher levels of abstraction with respect to the physical layer described by the place
graph. Each view consists of a set of logical places defined by expressions on attributes.
Logical places are equipped in their own turn with logical attributes, whose values can
be get/set by means of specific aggregation/disaggregation functions. We then define
a formalization of the conceptualized environment-aware BPMN collaboration mod-
els, which rigorously describes the execution of a BPMN collaboration on its working
environment. Finally, we present a tool for animating and debugging environment-
aware BPMN collaborations. The tool implements the formal semantics to guarantee a
faithful execution of the model. The tool graphically represents the place graph on top
of the geographic map from which it has been derived. Thus, the model execution is
visualized over both the BPMN model and the geographic map.

The rest of this paper is organized as follows. Sec. 2 discusses environment mod-
eling. Sec. 3 introduces environment-aware BPMN collaborations through a running
example. Sec. 4 presents the relevant aspects of our formal semantics. Sec. 5 illustrates
our animation tool. Sec. 6 presents related works. Finally, Sec. 7 concludes the paper.

2 Environment Modeling

Classifications of models representing the environment in a structured manner to cap-
ture its relevant properties have been largely addressed in previous research [2,3,12].
The literature emphasizes that a model’s specific properties define the extent to which
environmental reasoning can be applied. For instance, shortest path queries may be less
precise or even infeasible to perform, depending on the aspects captured by the model,
highlighting the strong interconnection between its design and intended use. Models are
classified into geometric and symbolic [2]. Geometric models consider space as con-
tinuous or discrete, usually via cell-based and boundary-based representations. These
models typically focus on quantitative aspects of space, such as room dimensions or
road lengths, providing precise information. However, they require an integration of se-
mantic annotations to achieve a higher degree of environmental awareness. Conversely,
symbolic models focus on qualitative aspects, such as connectivity and containment,
mostly utilizing set-based and graph-based representations. Symbolic models facilitate
environmental awareness by providing human-readable descriptions, though they are
typically less accurate due to the lack of geometric details. From an application perspec-
tive, symbolic-based models are often preferred over geometric-based ones, as they can
capture the semantics of entities and places. All the above models encode spatial topol-
ogy by representing connectivity among locations, an essential feature for navigational
reasoning. However, none captures all the relevant aspects necessary to achieve full
environmental awareness. To overcome this limitation, hybrid models [18,15,10] pro-
vide combinations between geometrical and symbolic information. In particular, hybrid
models, such as semantically-enriched place graphs, are commonly used in practice.

Another key aspect to consider is the level of detail at which information is rep-
resented, often referred to as granularity, which determines the environmental rea-
soning accuracy [17]. A coarser granularity groups larger areas, like entire floors or
neighborhoods, while a finer granularity captures more precise distinctions, such as
individual rooms within a building. However, finer granularity increases the number
of elements, which in turn decreases query performance. The impact on performance
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depends on the model’s scalability, i.e., its ability to maintain efficient environmental
reasoning as the number of elements grows. To this aim, some models adopt abstrac-
tion mechanisms to support reasoning over large environments. Hierarchical models,
for instance, manage multiple abstraction layers effectively [10,4], but require inter-
level connections and detailed geometry, increasing overall complexity [2]. Granular-
ity is key to balancing the model’s accuracy and performance. Nevertheless, it de-
pends on whether the environment is indoor or outdoor. Indoor spaces typically fea-
ture more complex layouts and constrained movement paths, often requiring a finer
granularity. To address this, some studies have explored unified modeling approaches
[14,13,26], enabling the usage of multiple granularities within the same model.

Features \ Paper [18] [15] [4] [10] [13] [14] [26]
Topology • • • • • • •
Symbolic annotations • • • • •
Geometric annotations • • • • • • •
Multiple granularities • • • • • •
Abstraction mechanisms • •

Table 1: Resuming environment models.

Table 1 resumes the key characteris-
tics of the presented environment mod-
els. Guided by these key aspects, we
decided to adopt semantically-enriched
place graphs as they enable the represen-
tation of spatial topology and the anno-
tation of their elements with both symbolic and geometric properties. As a result, the
spatial extent covered by each element can be individually defined, thus supporting
multiple granularities. Moreover, abstraction mechanisms can be defined on top of the
model without relying on complex hierarchical constructs.

3 Environment-aware BPMN Collaboration

This section introduces a running example, explores how to model the environment, and
establishes its connection to processes through an environmental BPMN meta-model.

Running Example. We adopt a simple running example set in a university compound.
The environment is composed of two buildings, Building A and Building B, and a park-
ing lot between them. The collaboration concerns two participants: a Student and a
Tutor Buddy. Since the student needs course assistance, they visit the tutor’s office. The
tutor buddy uses the university mobile app to find an available study room, guiding the
student there and providing information before they part ways.

Modeling the Environment. To achieve environment-aware BPMN collaborations, it
is essential to represent relevant spatial and contextual dimensions through an environ-
ment model, which is then combined with BPMN collaborations. Specifically, the en-
vironment is modeled as a semantically-enriched place graph whose nodes and edges
represent locations and their reachability, respectively. Both places and edges can be
characterized by attributes, representing either spatial or contextual dimensions, which
process participants can interpret to make decisions. Spatial attributes enable reasoning
about place extents and distances, such as computing the shortest path between two
classrooms. Contextual attributes extend this reasoning to additional dimensions, such
as determining the least crowded path rather than just the shortest one. However, op-
erating in large environments may require process participants to reason at different
scales, particularly when combining both indoor and outdoor spaces. For example, we
may want to determine whether the student is inside one of the two buildings or in a
specific classroom within them. To manage these variations, the model must seamlessly
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Fig. 1: Running example: environment model.

integrate multiple abstract views, providing different levels of abstraction. To this aim,
we resort to an environment model that defines a logical layer on top of the place graph,
which we now refer to as the physical layer. The logical layer is made of two main
components: logical places and views. A logical place refers to a set of physical places
within the place graph; each logical place is defined through an expression on the at-
tributes of physical places. A view is instead the union of one or more logical places and
their logical attributes, whose values are given by the application of specific functions.

Figure 1 represents our approach applied to the running example, illustrating one
possible way to model its environment. The physical layer includes places represent-
ing the rooms in the two buildings, labeled from R1 to R16, and the parking slots,
from P1 to P15. Such a physical layer of the place graph can be obtained by tessel-
lating the space into homogeneous areas. Also, each physical place has a zone con-
textual attribute indicating its main area, and places in the two buildings also have
freeSeats and purpose contextual attributes, specifying available seats and their pur-
pose of use. The logical layer contains seven logical places and three views. The logical
place Available Study Rooms is defined by all physical places that satisfy the expres-
sion “purpose == studying and freeSeats > 0”, while the logical place Available Class-
rooms by the expression “purpose == teaching and freeSeats > 30”. In Available Study
Rooms, a room is available if it has at least one free seat, as these spaces are meant for
individual study. While Available Classrooms require 30 free seats, as they are reserved
as whole units. Similarly, the logical places Building A and Building B include all phys-
ical places with the zone attribute equal to A or B, respectively. Finally, the Parking
Lot 1, Parking Lot 2, and Parking Lot 3 logical places correspond to physical places
where the zone attribute has value park 1, park 2, or park 3. Concerning the views,
Available Rooms is formed by combining two logical places: Available Study Rooms
and Available Classrooms. An aggregation function is then used to dynamically com-
pute the value of their attribute seats, based on the values of the attribute freeSeats in
the corresponding physical places. Similarly, a disaggregation function can be used to
set the attribute seats to occupy free seats in the underlying physical places. The Build-
ings view contains Building A and Building B logical places, and the Parking Lots view
contains the Parking Lot 1, Parking Lot 2, and Parking Lot 3 logical places.

However, one may argue that parking lots are not crucial in the running example, as
they merely serve as transit areas between buildings. Thus, they could be represented
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Fig. 2: Running example: adjusted environment model.

with a coarser granularity by using a single physical place P to cover the entire parking
area. Additionally, a new view can be added to deal with offices of tutors and PhDs, see
Figure 2. By allowing flexibility in granularity, the model can be adjusted by omitting
irrelevant details. This emphasizes how modeling the two layers depends on the specific
use case, requiring the modeler to make thoughtful decisions accordingly.
Combining Environment with BPMN Meta-model. To capture environmental aspects,
we extend the BPMN meta-model using its extensibility mechanism [25], as described
in Figure 3. Notably, all generalization associations in the metamodel are assumed to
be disjoint and incomplete; for the sake of readability, their labels have been omitted
in Figure 3. For what concerns the environment, we introduce two new classes for the
physical layer, called Physical Place and Edge. Physical Place refers to Edge (and
vice-versa) through two attributes: sourcePlace and targetPlace. The Physical Place
and Edge classes also have a list of environmental attributes called envAttribute, which
refers to spatial and contextual dimensions of the environment. For the logical layer, we
introduce the class View, which is a composition of one or more elements of the class
Logical Place and their environmental attributes. Each view also has a list of aggrega-
tion and disaggregation functions, which offer a transparent mechanism for accessing
and updating logical place attributes, based on the values of the corresponding physical
place environmental attributes. For the sake of presentation, from now on, we use the
term attribute to refer to an environmental attribute. The connection between the envi-
ronment and a BPMN collaboration happens through the attribute position, which links
the BPMN classes Participant and Physical Place. This relationship is used to indicate
the current position of participants in the environment. Another connection between
the environment and a BPMN collaboration lies in tasks as they may depend from the
environment and affect it. BPMN process tasks have two new attributes, assignment
and guard, used to modify and constrain the execution to the environment’s state, re-
spectively. These are defined through expressions, which indeed may refer to places
and their attributes. In the same way, as XOR gateways specify conditions through
expressions, the decisions they take may also depend on the environment’s state. To
explicitly model movement, we introduce the class Movement Task, which extends the
BPMN class Task and represents tasks involving movement within the environment.
These tasks specify a destination attribute, which corresponds to a Place: an abstract
class extended by both the Logical Place and Physical Place classes. A movement task
is graphically distinguished by an arrow icon. Nevertheless, a participant’s movement
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Fig. 3: Environmental BPMN Meta-model.

is not always self-directed. In collaborative scenarios, one participant may define the
destination for another, revealing the need for synchronization between them. To han-
dle this, the concept of handshake is introduced, representing an interaction where two
participants synchronize their movements within the same environment. To model this
interaction, we introduce two new task type classes: Binding Task and Unbinding Task.
The former establishes a link between participants, enabling one to follow the move-
ments of another. In contrast, the latter breaks this connection, allowing participants
to resume independent movements and actions. These tasks can only be executed if
the two participants are in the same location in the environment. To distinguish them
from other types of tasks, binding tasks graphically report a handshake icon, while un-
binding tasks report a two-separated hand icon. Additionally, the two types of tasks are
connected with a new flow called HandshakeFlow, represented by a continuous line. As
indicated in the metamodel, the HandshakeFlow associations indicate that one flow con-
nects a maximum of two binding or unbinding tasks. Using multiple HandshakeFlows,
it is possible to bind (or unbind) an arbitrary number of participants. For instance, if
participant A binds with participant B, and subsequently binds with participant C, then
a movement by A will result in all three participants moving together. Notably, undesir-
able behaviors may occur during the execution due to modeling errors. For instance, if
two bound participants move simultaneously, it becomes unclear which one should be
followed, resulting in a non-deterministic behavior. Anyway, such modeling errors are
detected and notified by the animation tool introduced in Section 5.

To give a concrete view of the newly introduced elements that form environment-
aware BPMN collaborations, we provide in Figure 4 the BPMN collaboration dia-
gram representing the participants’ behavior of the running example. The collaboration
starts with the student performing a movement task to reach the tutor’s office for assis-
tance. Notably, the destination of this movement task is specified as the logical place
Tutors Office. The usage of logical places, instead of physical places, in the BPMN col-
laboration model, permits to simplify the modeling task, as the modeler can refer to
the space in the environment by means of logical names (e.g., Tutors Office) rather than
low-level identifiers (e.g., R1). In addition, this permits decoupling the collaboration
model from the physical layer of the environment, so that the same collaboration model
continues to behave correctly even if the environment model is reconfigured (e.g., the
tutors’ office is relocated to a different physical place). The tutor receives the assistance
request, registers it into a data object, and brings the student to an available study room
to assist him. Also, the task to move to the study room specifies a logical place as its
destination, i.e. Available Student Room; however, this logical place belongs to a dif-
ferent view that permits to reason in terms of seat availability. Before moving, the two
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participants perform a handshake. Indeed, the student should not go where he/she wants
but has to follow the tutor. This is represented in the model by the binding tasks Meet
tutor and Meet student and the unbinding tasks Leave student and Thank tutor. Binding
tasks enable the student to move in sync with the tutor until they reach the designated
available room, where they then perform unbinding tasks.

4 Formal Account of Environment-aware Collaborations

This section provides the formal semantics of environment-aware BPMN collabora-
tions. The formalization extends the one proposed in [6] with new BPMN elements,
specifically devised for dealing with the interplay between the collaboration processes
and the environment. Most of all, our formalization considers a richer model of the
environment. To keep the formalization manageable and understandable, we focus on
elements that are strictly needed to define meaningful models. For the sake of presen-
tation, we following provide the essential part of the formalization, for a more detailed
account of it the interested reader can refer to the companion technical report [1].
Formal Syntax. The formalization resorts to a textual representation that uses a Backus-
Naur Form (BNF) syntax for representing the BPMN collaboration model and the en-
vironment model. The motivation for using here a textual representation rather than
the usual graphical notation is that the former is more manageable for writing oper-
ational semantic rules than the latter. In addition, the textual notation makes explicit
those technical details of collaboration models that are not part of the graphical repre-
sentation (e.g., message payloads, assignments, guard conditions), but are part of the
low-level XML characterization of the model. This information is needed to properly
define the execution semantics of the environment-aware BPMN collaboration models.

Figure 5 reports the BNF syntax defining the textual notation describing the struc-
ture of environment-aware BPMN collaboration models. Specifically, the upper table
reports the grammar productions defining the syntax of collaboration models together
with the notation of the related generic elements of the syntactic categories. Symbol
∗ stands for (possibly empty) sequences, and + for non-empty sequences. As usual in
BPMN, we assume that message flows, sequence flows, and task have unique names in
the model; we make the same assumption for handshake flows names. The bottom table
reports the definition of the environment, together with the related notation.

Intuitively, a environment-aware BPMN collaboration is the union of the terms C,
indicating the structure of the collaboration, and ENV , indicating the environment. A
collaboration is rendered as a collection of pools coupled with an environment model
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C ::= (Collaboration Structures)

pool(p,P) | C ∥ C′ (pool, pool composition)

P ::= (Process Structures)

start(f, f ′) | end(f) | snd(f,m,exp, f ′) | rcv(f,m,do.i, f ′) (start/end/send/receive event)

| andSplit(f,F) | andJoin(F, f) | xorSplit(f,(exp, f)+) | xorJoin(F, f) (AND/XOR split/join gateway)

| eventBased(f,(m,do.i, f ′)+) | taskB(f,h, f ′) | taskU(f,h, f ′) (event-based, bind/unbind task)

| task(f,n,exp,A,d, f ′) | taskM(f,n,exp,A,exp′, f ′) | P |P′ (basic/movement task, composition)

A ::= assign(exp,v)∗ (Assignments)

(Notation)
Pool name: p Expression: exp Edge name: e
Sequence flow: f Task name: n Field name: i
Sequence flow set: F Data object name: do Attribute name: a
Message flow: m Physical place name: pp Variable (i.e., do.i, pp.a, lp.a, e.a): v
Handshake flow: h Logical place name: lp

ENV ::= (PL,LL) (Environment Model)

PL ::= (PP,E,E,App,Ae) with E ⊆ PP×E×PP (Physical Layer)

LL ::= (V ∗,LP) with LP : LP→ EXP (Logical Layer)

V ::= (LP,Al p,Al p) with Al p : Al p → (AG×DAG) (View)

(Notation)
Physical place names set: PP Logical place names set: LP
Edge names set: E Logical place attributes: Al p
Edges: E Attribute (dis)aggregation: Al p
Physical place attributes: App Expressions set: EXP
Edge attributes: Ae Aggregation functions set: AG
Logical place definition function: LP Disaggregation functions set: DAG

Fig. 5: BNF syntax of environment-aware BPMN collaboration models.
composed of a physical layer and a logical layer. Formally, a collaboration C is a com-
position by means of the operator ∥, of pool elements pool(p,P) uniquely identified by
a pool name p and enveloping process structures of the form P. Similarly, a process P is
a composition of process elements (denoted by the sans serif font) through the operator
|. To support a compositional approach, each sequence/message flow of the graphical
notation is split into two parts: the part outgoing the source element and the part incom-
ing the target element. The two parts are correlated by a unique sequence/message flow
name. The correspondence between the textual terms of the process elements and the
usual graphical ones is straightforward. We describe following the meaning of tasks,
which have a key role in the interplay with the environment; the meaning of the other
elements is standard. The term task(f,n,exp,A,d, f ′) denotes a basic task, which has
an incoming sequence flow f, a name n, a guard exp that is a conditional expression
predicating on fields and attributes, a list of assignments A, a duration d that represents
the amount of time it takes to execute the task, and an outgoing sequence flow f ′. An as-
signment assign(exp,v) assigns the value resulting from the evaluation of the expression
exp to a variable v, which can be a data object field do.i, an attribute of a physical place
pp.a, an attribute of a logical place lp.a, or an attribute of an edge e.a. For the sake of
readability, when the guard and/or the assignments are not used, they are omitted from
the syntactic definition of the element. taskM(f,n,exp,A,exp′, f ′) denotes a movement
task, which is a type of task that may involve a movement in the environment; it is simi-
lar to the basic task, but has an additional expression exp′ that represents the destination
to reach. In addition, a movement task does not have the term d, because it is assumed
that its duration is given by the time to reach the destination. taskB(f,h, f ′) denotes
a binding task that, besides incoming and outgoing sequence flows f and f ′, specifies
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Cuniv = pool(pstudent ,Pstudent) ∥ pool(ptutor ,Ptutor)

Pstudent = start(f ′1, f1) | taskM(f1,nmoveToTutorOffice, lptutorOffice, f2) | snd(f2,massistance,vquestion, f3) |
taskB(f3,hfollow, f4) | taskU(f4,hleave, f5) | end(f5)

Ptutor = start(f ′6, f6) | rcv(f6,massistance,doquestion.imsg, f7) | taskB(f7,hfollow, f8) |
taskM(f8,nbringStudentToRoom,(lpavailableStudyRooms.aseats > 0),

assign((myplace.afreeSeats −1),myplace.afreeSeats), lpavailableStudyRooms, f9) |
taskU(f9,hleave, f10) | end(f10)

ENVuniv = (PLuniv,LLuniv)

PLuniv = ({ppR1, . . . ,ppR16,ppP}, {e1, . . . ,e20}, {(ppR1,e1,ppR2),(ppR2,e1,ppR1), . . . ,(ppR16,e20,ppR14)},
{azone,apurpose,afreeSeats}, {astatus})

LLuniv = (Vbuildings,VavailableRooms,Voffices,LPuniv)

LPuniv = [lpbuildingA 7→ (azone == vA), lpbuildingB 7→ (azone == vB),
lpavailableStudyRooms 7→ (apurpose == vstudying and afreeSeats > 0),
lpavailableClassrooms 7→ (apurpose == vteaching and afreeSeats > 30),
lpphdOffice 7→ (apurpose == vresearch), lptutorOffice 7→ (apurpose == vtutoring)]

Vbuildings = ({lpbuildingA, lpbuildingB}, /0, /0)

VavailableRooms = ({lpavailableStudyRooms, lpavailableClassrooms},{aseats}, [aseats 7→ (sum⟨afreeSeats⟩,occupy⟨afreeSeats⟩)])

Voffices = ({lpphdOffice, lptutorOffice}, /0, /0)

sum⟨a⟩(this) : occupy⟨a⟩(this,n) :
res := 0; foreach pp in P(this):
foreach pp in P(this): if (n > pp.a) : n -= pp.a; pp.a := 0;

res += pp.a; else : pp.a -= n; break;
return res;

Fig. 6: Textual representation of the running example.
a handshake flow h that connects it to the binding task of another participant (which
has the same h). taskU(f,h, f ′) denotes an unbinding task, which specifies a handshake
flow h that connects it to the unbinding task of another participant (which has the same
h). Tasks’ expressions can use the distinguished place myplace to refer to the current
physical place of their participant.

Let us focus now on the syntax of the environment model. An environment ENV is
a pair (PL,LL) whose elements represent two layers. The physical layer PL consists of a
place graph, i.e., a graph whose nodes represent physical places (whose names are in the
set PP) and directed arcs represent edges E (whose names are in the set E) connecting
places. Both physical places and edges are equipped with contextual information repre-
sented in terms of attributes (whose names belong to the sets App and Ae, respectively).
The logical layer LL consists of a set of views and a function LP : LP → EXP that
specifies which physical places form each logical place. Notably, the physical places
forming a logical place are not statically listed in the model, because the constituents of
a logical place may change dynamically. Thus, the LP function maps each logical place
to a boolean expression on physical place attributes, whose evaluation on a physical
place determines if it belongs (at the time of such evaluation) to the corresponding log-
ical place. Formally, the set of physical places forming a given logical place lp ∈ LP is
defined as follows: P(lp) = {pp ∈ PP | [LP(lp)]pp}, where function [·]pp returns an ex-
pression resulting from the instantiation of the input expression with the physical place
name pp, i.e., [exp]pp replaces each attribute a in exp with pp.a. Finally, a view V groups
a set of logical places LP, defining how the values of their attributes (in the set Al p) re-
sult from the aggregation of the values of physical place attributes and, vice versa, prop-
agate from the logical to the physical layer. The handling of the logical place attributes
of a view is defined by the function Al p that maps each logical attribute to an aggre-
gation and a disaggregation function. The aggregating function of a logical attribute is
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called during the evaluation of an expression when the logical attribute is encountered;
the disaggregating function, instead, is called when an assignment, having the logical
attribute as target, is processed. An aggregation function always returns the aggregated
value, while a disaggregation function returns void. In practice, these functions provide
a transparent mechanism to access and update the value of a logical attribute (like a
C# property). This allows the modeler to simply deal with logical attributes as standard
physical attributes in expressions and assignments, thus relieving him/her from the duty
of explicitly handling aggregation and disaggregation of values. In Figure 6 we provide
the textual representation of the running example, whose BPMN collaboration model
is depicted in Figure 4 and its environment in Figure 2. This exemplifies the correspon-
dence between the graphical representation of the model and the proposed BNF syntax.
Note that in Figure 2, edges are undirected, so they are represented here by two directed
edges with the same edge name, thus having the same attribute values. At the bottom of
Figure 6, we report the definition, in terms of pseudocode, of the aggregation function
sum and the disaggregation function occupy.
Formal Semantics. To describe the semantics of environment-aware BPMN collab-
oration, we enrich the structural part of the model with the execution state (denoted
by σ ). These stateful descriptions are called process configurations, with the form
⟨P,ENV,p,σ⟩, and collaboration configurations, with the form ⟨C,ENV,σ⟩. A state
σ consists of a list of state functions, among which we mention here: the sequence
flow state function σ f specifying for each sequence flow the current number of tokens
marking it; the physical place attribute state function σppa assigning values to physical
place attributes; the handshake state function σh that, given a participant p, returns the
set of participants with which p is bound; the task state function σs used to keep track
of the active tasks; the place state function σp mapping each participant to a physical
place. The state obtained by updating in σ f the number of tokens of the sequence flow
f to n, written as σ f · [f 7→ n], is defined as follows: (σ f · [f 7→ n])(f ′) returns n if f ′ = f,
otherwise it returns σ f (f

′). The update of the other state functions is similarly defined.

The semantics of environment-aware BPMN collaborations is given in the struc-
tural operational semantics style [21] by relying on the notion of Labeled Transition
System (LTS). Specifically, we define an LTS for the process behavior and another for
the collaboration behavior, whose states represent process and collaboration configura-
tions, respectively. The labels of LTSs are: a binding label � h �; an unbinding label
� h �; a silent action τ (due, e.g., to token flow in the processes); and a timed action ✓
denoting the passing of a unit of time (due, e.g., to movements in the environment). The
transition relations of the LTSs are the least relations induced by a set of operational
rules. Indeed, they define the transitions from one configuration to another. Each rule
is designed to capture the behavior of a specific BPMN element. The most significant
rules are given in Figure 7; the rest is given in the companion technical report [1].

To improve the readability, when possible, we omit: the environment ENV and the
the execution state σ from the source configuration of transitions; the process/collabo-
ration structure and the environment from the target configuration of transitions; those
state functions from target configurations that are not affected by transitions. The names
of the operational rules are aligned with the kinds of elements they operate on; for in-
stance, the rule named TaskM deals with movement tasks. Moreover, to further simplify
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taskM(f,n,expg,A,expd , f
′)

τ−→ ⟨dec(σ f , f),enab(σs,n)⟩ σ f (f)> 0 ∧ σs(n) = dis ∧ eval(expg) (TaskMA)

taskM(f,n,expg,A,expd , f
′)

✓−→ ⟨move(σp,σh,p,pp)⟩ σs(n) = enab ∧ pp ∈ next(PL,σp,p,eval(expd)) (TaskMT1)

taskM(f,n,expg,A,expd , f
′)

✓−→ ⟨⟩ σs(n) = dis (TaskMT2)

taskM(f,n,expg,A,expd , f
′)

✓−→ ⟨⟩
σs(n) = enab ∧ next(PL,σp,p,eval(expd)) = /0
∧¬arrived(σp,p,eval(expd))

(TaskMT3)

taskM(f,n,expg,A,expd , f
′)

τ−→
⟨inc(σ f , f

′),upd(A),dis(σs,n)⟩
σs(n) = enab ∧ arrived(σp,p,eval(expd)) (TaskMC)

taskB(f,h, f)
�h�−−−→ ⟨inc(dec(σ f , f), f

′)⟩ σ f (f)> 0 (TaskB)

P1
�h�−−−→ ⟨σ ′⟩ ⟨P2,σ

′⟩ �h�−−−→ ⟨σ ′′⟩ σp(p1) = σp(p2)

pool(p1,P1) ∥ pool(p2,P2)
τ−→ ⟨σ ′′ ·bind(σh,p1,p2)⟩

(C-Bind)

Fig. 7: Environment-aware BPMN operational semantics: excerpt of rules.
Function inc(σ f , f) = σ f · [f 7→ σ f (f)+1], resp. dec(σ f , f) = σ f · [f 7→ σ f (f)−1], increments, resp. decrements, by one the
number of tokens marking the sequence flow f in the state σ f .
Function enab(σs,n) = σs · [n 7→ enab], resp. dis(σs,n) = σs · [n 7→ dis], activates, resp. deactivates, the task n in σs.
Function eval(ENV,σdoi,σppa,σea,σp,exp) = v states that v is the value resulting from the evaluation of the expression
exp on the data fields in σdoi, attributes in σppa and σea, and participants’ positions in σp. For logical place attributes,
the evaluation resorts to the aggregation functions specified in the views of the environment model ENV . We omit the
environment and the state functions when they are clear from the context, thus writing eval(exp).
Function upd(ENV,σdoi,σppa,σea,σp,A) performs the assignments A and returns the updated data object, physical place
attribute and edge attributes state functions. The assignment of a logical place attribute lp.a resorts to the disaggregation
function corresponding to a in the view containing lp. specified in the environment model ENV . We omit the environment
and the state functions when they are clear from the context, thus writing upd(A).
Function next(PL,σp,p,pp) returns the set of places that are next in the shortest paths in the physical layer PL from the
current place σp(p) of the process participant to the destination pp; the function returns /0 when there is no path to the
destination. next(PL,σp,p, lp) returns next(PL,σp,p,pp) where pp ∈ P(lp).
Function arrived(σp,p,pp) returns (σp(p) == pp), which is true if the current position of the participant p is the destination
pp. Instead, arrived(σp,p, lp) = (σp(p) ∈ P(lp)).
Function move(σp,σh,p,pp) assigns to the the participant p, and all participants bound to it, the physical place pp in the
state σp. Formally, move(σp,σh,p,pp) = σp · [p 7→pp] · [p1 7→ pp] · . . . · [pn 7→ pp] with σh(p) = {p1, · · · ,pn}.
Function bind(σh,p1,p2) binds the participants p1 and p2 in σh. Formally, bind(σh,p1,p2) = σ ′

h with σ ′
h(p) = σh(p) if

p /∈ {p1,p2}, σ ′
h(p1) =σh(p1)∪{p2}, and σ ′

h(p2) =σh(p2)∪{p1}. Function unbind is similarly defined, where ∪ is replaced
by \. Notation σ ·σ ′

h denotes the update of state σ by replacing the enclosed σh by σ ′
h.

Fig. 8: Auxiliary functions.

the definition of the operational rules, in Figure 8 we define auxiliary functions that up-
date the state functions of process configurations or perform checks in rules’ conditions.

We now briefly comment on the rules in Figure 7. Rule TaskMA is responsible
for activating movement tasks. It applies when there is a token marking its incom-
ing sequence flow (σ f (f) > 0), the task is currently disabled (σs(n) = dis), and the
guard expg is satisfied (predicate eval(expg) returns true). Upon activation, the rule
consumes the token by removing it from the incoming sequence flow (dec(σ f , f))
and enables the task (enab(σs,n)). Referring to the running example, this rule is ap-
plied to the movement task with name nbringStudentToRoom and, in that case, the guard
that checks if there are some free seats in the logical places related to available
study rooms (lpavailableStudyRooms.aseats > 0) evaluates true. To evaluate the logical at-
tribute aseats within the expression, eval resorts to the first element of the pair (given
by the projection function ↓1) returned by the Al p function belonging to the view
(LP,Al p,Al p) in ENV such that lpavailableStudyRooms ∈ LP. In this case, Al p(aseats) ↓1=
sum⟨afreeSeats⟩; thus, the aggregated value of the attribute is returned by the call
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sum⟨afreeSeats⟩(lpavailableStudyRooms). Notably, during the execution of the aggregation
function code, the value of physical attribute pp.a is get by σppa(pp,a). Rule TaskMT1
performs a movement to the next place of the physical layer, and it applies when the task
is enabled and the next physical place is reachable. Rule TaskMT2 enables movement
tasks to evolve with temporal transitions when they are disabled. Rule TaskMT3 enables
movement tasks to evolve with temporal transitions when it is enabled, the destination
is not reachable, and the current position is not the destination. Rule TaskMC deals with
the completion of the movement task; if the task is enabled and the destination has been
reached, the rule increments the outgoing sequence flow, performs the assignments, and
disables the task. Assuming the rule is applied to a movement task specifying the assign-
ment assign(5, lpavailableStudyRooms.aseats), used to reserve seats on study rooms. Function
upd is used to perform the assignment; it resorts to the second element of the pair re-
turned by Al p. In this case, Al p(aseats) ↓2= occupy⟨afreeSeats⟩. The update of the execu-
tion state is then computed by the call occupy⟨afreeSeats⟩(lpavailableStudyRooms,5). Notably,
during the execution of the disaggregation function code, an assignment pp.a := exp
corresponds to σppa · [(pp,a) 7→ eval(exp)]. Rule TaskB deals with binding tasks, pro-
ducing a transition label (� h �) about the will of the participant to bind with the other
one connected by the handshake flow h. Rule C-Bind binds two participants if they are
in the same physical place. Similar rules deal with unbinding.

5 Tool and Evaluation

We now present our web application for animating environment-aware BPMN col-
laborations and discuss its features through a case study. The tool repository, avail-
able at https://zenodo.org/records/15587686 and https://pros.
unicam.it/environmental-bpmn/, contains source code, a user guide, and 11
case studies spanning different application domains. Most are provided in two vari-
ants—intended behavior and error scenarios—to showcase debugging features. Some
case studies focus on binding and unbinding tasks, such as those in the transportation
domain. Others, like those in the agriculture domain, emphasize the dynamicity of log-
ical places and environmental attributes, and share the same environment model.
Environment-aware BPMN Collaborations Animator. The tool’s interface, shown in
Figure 9, displays the BPMN collaboration on the left (highlighted in green), the en-
vironment model in the center (highlighted in red), and a right-side panel listing en-
vironment’s spatial and contextual dimensions (highlighted in light blue). The BPMN
collaboration is modeled using the integrated BPMN modeler, which comprises the ad-
ditional elements previously introduced. The environment is modeled in JSON with the
assistance of coordinate extrapolation tools, such as https://www.keene.edu/
campus/maps/tool/, enabling its overlay on a geographic map.

The tool’s main feature is process animation, which begins when the play button
(top-left) is clicked and ends when no tokens can move. Colored tokens (one color per
participant) indicate execution progress, flowing through the BPMN and environment
models to represent the process state and participant positions. The animation can be
paused at any time, allowing users to inspect the token distribution across the two mod-
els and assess the environment’s state through the right-side panel. This panel allows
users to inspect attributes of places, both physical and logical, and edges, and track their

https://zenodo.org/records/15587686
https://pros.unicam.it/environmental-bpmn/
https://pros.unicam.it/environmental-bpmn/
https://www.keene.edu/campus/maps/tool/
https://www.keene.edu/campus/maps/tool/
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Fig. 9: Environment-aware BPMN collaborations animator GUI.

evolution over time. It lists both contextual and spatial attributes, with spatial attributes
also being visualized on the map, such as by coloring the extent of a place.

During the animation, warning and error messages support effective debugging of
environment-aware BPMN collaborations by enabling the designers to identify unde-
sired executions. Warnings indicate potential deadlock situations, i.e. two participants
attempting a binding task from different positions, a participant unable to reach a spe-
cific destination, or a violated guard. Animation continues, as these conditions may
eventually resolve. Errors, however, occur when the collaboration cannot proceed, i.e.
a missing participant’s initial position or two bound participants moving in opposite
directions, and cause the animation to stop.
Emergency response case study. We present a case study that models an emer-
gency response collaboration within a hospital and its surroundings. The col-
laboration concerns four participants: Injured Patient, Ambulance, Emergency
Nurse, and Emergency Doctor. It starts when the Injured Patient is in-
volved in a car accident and calls an ambulance, providing its position.

Fig. 10: Debugging features.

Upon receiving the call, the Ambulance moves to the pa-
tient’s position. During this operation, the ambulance’s
travel can be seen in both models: its process token waits
near the movement task while its environment token
moves across the map. However, if the accident occurs
in an unreachable location, such as due to a closed road,
the tool displays a warning message, depicted in the up-
per part of Figure 10. Similarly, failing to specify the
ambulance’s initial position displays an error message,
depicted in the lower part of Figure 10, and halts the an-
imation. The collaboration continues with the ambulance picking up and transporting
the patient to the hospital. From a process perspective, the tokens wait for each other
near the respective binding tasks. When bound, the patient’s token waits at the next
unbinding task, while the ambulance executes the movement task to return to the hos-
pital. About the environment, both tokens move across the map, with the ambulance
dictating the patient’s movements. Once at the hospital, the ambulance’s token reaches
an unbinding task, detaching from the patient.

6 Related Work

In the literature, several works focus on the interplay between business processes and
the environment. Decker et al. [7], Grefen et al. [11] and Zhu et al. [27] propose BPMN
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extensions that allow modeling location-based tasks whose execution is constrained
by the participant’s location; in addition, the latter introduce location-dependent gate-
ways whose conditions are based on environmental information. Similarly, Mazhar et
al. [19] propose a new type of element to represent participant movements and group
task elements based on the location where they are performed. Differently, Dorndorfer
et al. [9] discuss the use of environmental information to trigger conditional boundary
events and thus handle exceptional behaviors. Similarly, Chiu et al. [5] introduce a new
type of event called location event triggered by environmental conditions captured by
IoT sensors. Also, Poss et al. [22] adopt location-based events and, in addition, define
location data, i.e., data objects used to store and retrieve environmental information, and
introduce the possibility of allocating resources to tasks based on the location. Tomas
Kozel [16] does a step forward, proposing, in addition to location-based events, the pos-
sibility to use specific markers for participants that can move in the environment and
track their position. In our work, we include all these concepts adding environmental
constraints on tasks and gateways and representing movements explicitly with move-
ment tasks. Differently from the mentioned works, we introduce novel tasks that bind or
unbind participants, enabling synchronized movements within the same environment.
We also combine an environment model with BPMN collaborations and formalize it.

Features \ Paper [7] [11] [27] [19] [9] [5] [22] [16] [24] [6] our

E
nv

ir
on

m
en

t Physical layer • •
Logical layer •

Contextual attributes • •
Spatial attributes •

Multiple granularities •
Abstract views •

Agg/Dis functions •

B
PM

N
M

od
el

Location-based task • • • • • • • •
Movement task • • •

Binding/Unbinding task •
Location-based gateway • • • •
Location-based events • • • • • •

Participant position • • • •
Formal semantics • • •

Tool support •

Table 2: Resuming related work.

Concerning the combination of
an environment model with BPMN,
only a few works consider it.
Saddem-Yagoubi et al. [24] extend
and formalize with temporal logic
the BPMN notation. They intro-
duce location-based gateways and
location-based tasks and provide
a graph-based environment model
without any graphical representa-
tion. Nevertheless, they primarily fo-
cus on how the environment affects
process execution while neglecting the impact of process activities on the environment,
which instead is our main focus. Corradini et al. [6] introduce a model capable of rep-
resenting the interplay between BPMN and the environment. The adopted environment
model represents the physical layer of the environment with a fixed granularity without
the possibility of specifying logical layers, which is one of the key contributions of our
work. Still differently from our work, the environment model in [6] captures only con-
textual attributes, neglecting spatial ones, and does not account for interactions where
participants synchronize their movements within the same environment. Additionally,
the authors consider movement tasks using standard tasks without providing an explicit
definition. Our approach also overcomes the above works by formalizing and repre-
senting large-scale environments, both physically and logically, at different levels of
granularity, along with their spatial and contextual attributes, supported by aggregation
and disaggregation functions. In this way, our environment-aware BPMN collaboration
model seamlessly integrates multiple abstract views, providing different levels of ab-
straction. Moreover, our work is the only one that provides a tool to easily animate and
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debug the integrated model. Summing up, even though the literature lately is increas-
ingly dealing with the concept of environment within BPM, our contribution overcomes
the current state of the art for different aspects, as resumed in Table 2.

7 Concluding Remarks

This paper explores the concept of environment and its interplay with business pro-
cesses to expose the need for environmental awareness. To enable it, BPMN collabo-
ration model is integrated with an explicit model of the environment, which proves to
be fundamental for reasoning on spatial and contextual attributes, and on relationships
between places and edges (e.g., reachability), information not captured by raw business
data. Having a separate model for the environment also supports reuse across scenarios
and allows for graphical representation, as witnessed by our animation tool.

Discussion. In this paper, we focus on the conceptualization of environment-aware
BPMN collaboration models, deliberately working at an abstract level and avoiding
low-level implementation concerns. While achieving a realistic environment-aware col-
laboration would require integration with sensors capable of tracking the location and
movement of people or objects, our goal is to provide a conceptual abstraction. In line
with this choice, we also avoid working with raw geographical information, as it would
introduce complexity and irrelevant details at the level of modeling we target. Indeed,
we propose an abstraction by leveraging semantically-enriched place graphs that allows
for a simpler specification of the environment, which is more suitable for a seamless in-
tegration at business process level and more manageable for a formal treatment.

We use a reduced version of the BPMN notation. Including such additional BPMN
elements as event sub-processes or boundary events would allow us to deal with anoma-
lous or exceptional situations following an event-driven style. In addition, while the
proposed approach supports the modeling of interactions among multiple participants
through the use of separate pools, each representing an individual participant, we ac-
knowledge that scalability can be further improved by incorporating multi-instance
pools. However, the above extensions would also have significantly increased the com-
plexity of the approach, both in terms of formalization and implementation.

It is worth noticing that the approach to build environment-aware BPMN collabo-
ration models may vary depending on the domain and context of use. In fact, in some
cases the environment model is known a priori and the process model has to be de-
veloped on top of it, while in others the process is already available and it has to be
deployed and checked in different environments. For this reason, we leave it up to the
modeler to decide how to proceed to build environment-aware BPMN collaborations.

Future Works. As future work, we plan to explore how the enactment of environment-
aware BPMN collaborations can be achieved by integrating an environment modeler
into the tool and enabling interoperability with external sources. In particular, we aim
to incorporate spatial modeling capabilities and leverage data from sensors to construct
a logical environment grounded in real-world data. Moreover, we plan to extend our
approach with additional BPMN elements, enabling a broader range of modeling sce-
narios, including the handling of exceptions and multiple instances. Finally, we intend
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to exploit the formal semantics and its implementation, to enable the verification of
properties using, e.g., model checking techniques.
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